跳到主要內容

臺灣博碩士論文加值系統

(44.222.104.206) 您好!臺灣時間:2024/05/28 13:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:向育民
研究生(外文):Yu-Ming Hsiang
論文名稱:硒化鎘/硫化鋅膠狀量子點應用於微碟共振腔雷射及能量共振轉移之研究
論文名稱(外文):Colloidal CdSe/ZnS Quantum Dots- Application to Microdisk Lasers and Study on Resonance Energy Transfer
指導教授:毛明華毛明華引用關係
指導教授(外文):Ming-Hua Mao
口試委員:林浩雄吳肇欣張子璿
口試委員(外文):Hao-Hsiung LinChao-Hsin WuTzu-Hsuan Chang
口試日期:2018-12-21
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:中文
論文頁數:68
中文關鍵詞:膠狀量子點微碟雷射光穩定性
DOI:10.6342/NTU201804387
相關次數:
  • 被引用被引用:0
  • 點閱點閱:226
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們以硒化鎘/硫化鋅膠狀量子點作為主動層材料,製作出具三明治結構的量子點微碟共振腔,並利用原子層沉積技術成長氧化鋁緻密層包覆量子點,有效阻隔量子點被電漿氣體破壞並提升在空氣中的光穩定性,成功在室溫下以連續式雷射激發產生低雷射閥值,光穩定性高之紅光微碟雷射。量子點層上下及側壁皆包覆氧化鋁的直徑10μm微碟,雷射閥值約為153kW/cm2,品質因子為1280。雷射特性可藉由改變激發功率來觀察,在低於元件雷射閥值時,我們已可觀察到迴音廊模態,模態半寬隨激發功率增加而減小,此一特性證實元件從自發放光到受激放光的雷射產生過程。另外,由黃光量子點作為主動層之微碟共振腔,亦可以觀察到迴音廊模態。然而,因黃光量子點經過原子層沉積以及電漿增強式化學氣相沉積後,發光強度已大幅降低,造成共振腔內增益不夠,無法產生雷射。而由黃、紅量子點混合做為主動層之微碟共振腔,因混和時會稀釋濃度,混和後之紅光量子點濃度降低,導致在相同激發強度下,載子濃度較低,無法產生紅光雷射。若以濃度較高的黃光量子點來補償製程中的損耗,在激發強度低時,黃光模態能夠與紅光模態強度相等,隨著激發強度增加,黃光模態強度大於紅光模態,反映出能態填充的效應(band-filling effect)。
為了瞭解量子點之間Förster resonance energy transfer (FRET)效應,我們進行具有時間解析與頻譜解析之光激發光實驗,發現當光激發結束之後,波長較長的量子點發光衰減呈現延遲現象,並且波長較長的量子點具有較長的載子生命期。這些現象指出FRET效應的存在。另外,藉由改變量子點濃度來調整量子點之間的平均距離,發現隨著量子點之間平均距離增大,FRET效應會降低。最後,我們將混合量子點的微碟元件與薄膜樣品相互比較,發現由於共振腔的Purcell effect效應與非輻射複合導致各個模態處之載子生命期皆大幅縮減,不易觀察FRET效應。
In this thesis, we use CdSe/ZnS colloidal quantum dots as active medium to fabricate microdisk resonators with sandwiched structure, and use atomic layer deposition (ALD) technique to passivate Al2O3 on quantum dots, which can prevent quantum dots from being destroyed by plasma gas and enhance light stability in the air. Finally, we produce red-emitting microdisk lasers with low threshold power density and high photo-stability operating in continuous wave excitation at room temperature. A 10μm-diameter microdisk laser with quantum-dot active medium encapsulated by Al2O3 in all directions exhibits a threshold power density of 153 kW/cm2 and quality factor of 1280. Lasing characteristics can be observed by changing the excitation power. At below threshold, we can observe small whispering gallery modes. The spectral width narrows as the excitation power density increases. It confirms the transition from spontaneous emission to stimulated emission of the laser device. In addition, whispering gallery modes can also be observed from the microdisks with yellow-emitting quantum dots as active medium. However, luminescence intensity of yellow-emitting quantum dots has been significantly reduced after processed by ALD and PECVD, resulting in gain in the resonant cavity insufficient to overcome loss. No lasing action has been observed from these yellow-emitting quantum dots. The microdisk with yellow-emitting and red-emitting quantum dots mixed as the active layer doesn’t show laser action because the red-emitting quantum dot density becomes lower after mixture. If higher concentration of yellow-emitting quantum dots is used to compensate their luminescence loss during the process, luminescence intensity of yellow-emitting quantum dots can be comparable to that of red-emitting quantum dots at low excitation power. As the excitation power increases, luminescence intensity of yellow-emitting quantum dots can become higher than that of red-emitting quantum dots due to band-filling effect.
In order to investigate Förster resonance energy transfer effect, we perform time resolved and spectrally resolved photoluminescence measurement. It is found that quantum dots with longer emission wavelength exhibit a delayed photoluminescence decay and their carrier lifetime is longer. These phenomena indicate the existence of FRET. Furthermore, with increasing the average distance between quantum dots by diluting quantum dot solution, FRET effect will be reduced. Finally, using yellow-emitting and red-emitting quantum dots mixed as active medium, we observe much shortened carrier lifetime in a microdisk cavity in comparison with that in the thin film. This phenomenon is attributed to the Purcell effect of the cavity and the increased nonradiative recombination due to the small cavity size. FRET effect is less likely to be observed in this case.
摘要................................................... i
Abstract...............................................iii
目錄................................................... v
圖目錄.................................................vii
表目錄...................................................x
第一章 緒論..............................................1
1.1量子點(Quantum Dots, QD)............................. 1
1.2膠狀量子點(Colloidal Quantum Dots, CQD).............. 2
1.3球殼-球核膠狀量子點(Core-Shell Colloidal Quantum Dots) 3
1.4微共振腔(Microcavities).............................. 4
1.5量子點微碟雷射(Quantum-Dot Microdisk Lasers)......... 5
1.6論文架構............................................. 6
第二章 理論分析......................................... 7
2.1幾何光學模型(Ray Optics Model)....................... 7
2.2迴音廊模態(Whispering Gallery mode, WGM)............. 8
2.3品質因子(Quality factor, Q-factor)................... 13
2.4模態體積(Mode Volume,V_eff).......................... 15
2.5普色效應(Purcell Effect)............................. 15
2.6雷射閥值功率(Lasing Threshold Pump Power)............ 16
2.7原子層沉積技術(Atomic Layer Deposition, ALD)......... 16
2.8 Förster能量轉移理論(Förster Resonance Energy Transfer, FRET).................................................. 18
第三章 量子點薄膜樣品與微碟元件製作與量測.................. 21
3.1製程步驟......................................... 21
3.1.1量子點薄膜樣品製程步驟...................... 21
3.1.2量子點微碟元件製程步驟...................... 23
3.2 量測架構 ........................................27
3.2.1量子點薄膜樣品量測架構...................... 27
3.2.2量子點微碟元件量測架構...................... 28
3.3 量測結果與討論.................................. 29
3.3.1薄膜樣品量測結果與討論...................... 29
3.3.2微碟樣品量測結果與討論...................... 32
3.3.2.1 三種微碟元件(A)、(B)、(C)量測結果與討論32
3.3.2.2 兩種微碟元件(D)、(E)量測結果與討論.... 38
3.3.2.3 兩種微碟元件(F)、(G)量測結果與討論.....40
第四章 量子點之時間解析量測.............................. 44
4.1 薄膜樣品製程步驟.................................... 44
4.2 量測架構....................................... 44
4.2.1薄膜樣品時間解析量測架構........................... 44
4.2.2微碟共振腔品時間解析量測架構........................ 45
4.3 時間解析量測結果................................ 46
4.3.1薄膜樣品時間解析量測結果........................... 46
4.3.2薄膜樣品與微碟共振腔時間解析量測結果..................59
4.4 時間解析量測結果討論............................. 62
4.4.1薄膜樣品時間解析量測結果討論........................ 62
4.4.2薄膜樣品與微碟共振腔時間解析量測結果討論 ............. 63
第五章 結論............................................. 64
5.1總結................................................ 64
5.2未來方向............................................. 65
參考文獻.................................................66
1. Hoogland, S., The fuss about quantum dots. Photon. Spect. 2008, 42 (1), 80-+.
2. Lim, X., The nanolight revolution is coming. Nature 1993, vol. 115, pp. 8706-8715.
3. Konstantatos, G.; Howard, I.; Fischer, A.; Hoogland, S.; Clifford, J.; Klem, E.; Levina, L.; Sargent, E. H., Ultrasensitive solution-cast quantum dot photodetectors. Nature 2006, 442 (7099), 180-183.
4. Zeng, T. W.; Liu, I. S.; Hsu, F. C.; Huang, K. T.; Liao, H. C.; Su, W. F., Effects of bifunctional linker on the performance of P3HT/CdSe quantum dot-linker-ZnO nanocolumn photovoltaic device. Opt. Express 2010, 18 (19), A357-A365.
5. Kim, T. H.; Cho, K. S.; Lee, E. K.; Lee, S. J.; Chae, J.; Kim, J. W.; Kim, D. H.; Kwon, J. Y.; Amaratunga, G.; Lee, S. Y.; Choi, B. L.; Kuk, Y.; Kim, J. M.; Kim, K., Full-colour quantum dot displays fabricated by transfer printing. Nat. Photonics 2011, 5 (3), 176-182.
6. Cho, K. S.; Lee, E. K.; Joo, W. J.; Jang, E.; Kim, T. H.; Lee, S. J.; Kwon, S. J.; Han, J. Y.; Kim, B. K.; Choi, B. L.; Kim, J. M., High-performance crosslinked colloidal quantum-dot light-emitting diodes. Nat. Photonics 2009, 3 (6), 341-345.
7.http://www.photonics.com/images/spectra/features/2007/May/QuantumDots_Fig5_CoreShell.jpg.
8. Vahala, K. J., Optical microcavities. Nature 2003, 424 (6950), 839-846.
9. Benson, T. M., Micro-optical resonators for microlasers and integrated optoelectronics:
recent advances and future challenges. Frontuers in planer lightwave circuit 2006, pp.39-70.
10. Xie, W. Q.; Stoferle, T.; Raino, G.; Aubert, T.; Bisschop, S.; Zhu, Y. P.; Mahrt, R. F.; Geiregat, P.; Brainis, E.; Hens, Z.; Van Thourhout, D., On-Chip Integrated Quantum-Dot-Silicon-Nitride Microdisk Lasers. Adv. Mater. 2017, 29 (16), 7.
11. Min, B.; Kim, S.; Okamoto, K.; Yang, L.; Scherer, A.; Atwater, H.; Vahala, K., Ultralow threshold on-chip microcavity nanocrystal quantum dot lasers. Appl. Phys. Lett. 2006, 89 (19), 3.
12. 錢皓哲, Study of InGaAs Quantum-Dot Microdisk Lasers. 國立臺灣大學電機資訊學院光電工程學研究所博士論文 2012, pp. 11~17.
13. Yeh, A. Y. a. P., Optical Electronics in Modern Communications. Oxford University Press, New York 2007, 6th, ed.
14. Gorodetsky, M. L.; Savchenkov, A. A.; Ilchenko, V. S., Ultimate Q of optical microsphere resonators. Optics Letters 1996, 21 (7), 453-455.
15. An, P. L.; Zheng, Y. Q.; Yan, S. B.; Xue, C. Y.; Wang, W. J.; Liu, J., High-Q microsphere resonators for angular velocity sensing in gyroscopes. Appl. Phys. Lett. 2015, 106 (6), 5.
16. Braginsky, V. B.; Gorodetsky, M. L.; Ilchenko, V. S., QUALITY-FACTOR AND NONLINEAR PROPERTIES OF OPTICAL WHISPERING-GALLERY MODES. Phys. Lett. A 1989, 137 (7-8), 393-397.
17. Purcell, E. M., SPONTANEOUS EMISSION PROBABILITIES AT RADIO FREQUENCIES. Physical Review 1946, 69 (11-1), 681-681.
18. Corzine, L. A. C. a. S. W., Introduction to Optical Waveguiding in Simple Double-Heterostructures in Diode Lasers and Photonics Intergrated Circuits. Willy 1995, pp. 424-433.
19. Puurunen, R. L., Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process. J. Appl. Phys. 2005, 97 (12), 52.
20. Cheng, C. Y.; Mao, M. H., Photo-stability and time-resolved photoluminescence study of colloidal CdSe/ZnS quantum dots passivated in Al2O3 using atomic layer deposition. J. Appl. Phys. 2016, 120 (8), 8.
21. RM., C., Fluorescence resonance energy transfer. In Fluorescence imaging spectroscopy and microscopy. Ed XF Wang, B Herman. John Wiley & Sons, New York. 1996, PP. 179-252.
22. Chou, K. F.; Dennis, A. M., Forster Resonance Energy Transfer between Quantum Dot Donors and Quantum Dot Acceptors. Sensors 2015, 15 (6), 13288-13325.
23. Clapp, A. R.; Medintz, I. L.; Mauro, J. M.; Fisher, B. R.; Bawendi, M. G.; Mattoussi, H., Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. J. Am. Chem. Soc. 2004, 126 (1), 301-310.
24. Kagan, C. R.; Murray, C. B.; Nirmal, M.; Bawendi, M. G., Electronic energy transfer in CdSe quantum dot solids. Phys. Rev. Lett. 1996, 76 (9), 1517-1520.
25. 蔡長翰, 半導體量子點中的非輻射衰退機制與表面電荷間關聯之研究. 國立中山大學材料與光電科學研究所碩士論文 2011, pp. 13-15.
26. Jones, M.; Scholes, G. D., On the use of time-resolved photoluminescence as a probe of nanocrystal photoexcitation dynamics. J. Mater. Chem. 2010, 20 (18), 3533-3538.
27. Rajeeva, B. B.; Alabandi, M. A.; Lin, L. H.; Perillo, E. P.; Dunn, A. K.; Zheng, Y. B., Patterning and fluorescence tuning of quantum dots with haptic-interfaced bubble printing. J. Mater. Chem. C 2017, 5 (23), 5693-5699.
28. Altug, H.; Englund, D.; Vuckovic, J., Ultrafast photonic crystal nanocavity laser. Nat. Phys. 2006, 2 (7), 484-488.
29. Chen, C.; Wan, L.; Chandrahalim, H.; Zhou, J.; Zhang, H.; Cho, S.; Mei, T.; Yoshioka, H.; Tian, H. P.; Nishimura, N.; Fan, X. D.; Guo, L. J.; Oki, Y., Effects of edge inclination angles on whispering-gallery modes in printable wedge microdisk lasers. Opt. Express 2018, 26 (1), 233-241.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top