跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/08 22:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳建霖
研究生(外文):Chien-Lin Wu
論文名稱:應用於中紅外波段感測的侷限型表面電漿共振型元件之製作與特性
論文名稱(外文):Fabrication and Characterization of Localized Surface Plasmon Resonance Sensors for Mid-Infrared Range Applications
指導教授:王倫
口試委員:蔡五湖黃念祖徐世祥
口試日期:2019-07-19
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:64
中文關鍵詞:干涉微影掀離製程中紅外波段侷限型表面電漿
DOI:10.6342/NTU201903943
相關次數:
  • 被引用被引用:0
  • 點閱點閱:129
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近來,製作奈米金屬粒子結構並應用於侷限型表面電漿共振感測十分受到矚目,到目前為止已經發展了許多應用。我們實驗室先前已有利用奈米轉印的方法製作表面電漿共振元件的經驗,但應用皆只有在可見光波段,往中紅外等長波長的應用顯得較為新穎。
在此論文中,我們致力於週期性奈米金屬粒子的製作。透過創新的製程將奈米金粒子製作在矽基板上以及D型矽核光纖上。此外我們也使用了FDTD Solutions此商業用軟體來研究侷限型表面電漿共振元件的光學特性,模擬結果預測了穿透頻譜,同時侷限型表面電漿共振的位置與特性也被探討與證實。在折射率量測上,我們感測不同濃度的葡萄糖水溶液,且我們的元件也隨改變濃度有波長飄移的現象。在中紅外的指紋訊號也發現有被侷限型表面電漿共振所增強的現象。
Recently the fabrication of metallic nano-structures and subsequent applications to sensing based on localized surface plasmon resonance (LSPR) has drawn a lot of attentions. By nanotransfer printing (nTP) method, fabrication of quality SPR sensors was realized in our lab. However, the applications were limited in the visible range, so extension to mid-infrared is attractive.
In this thesis, we study how to fabricate metallic nanodisks. Through a novel fabrication process, the periodic metallic nanodisks were made onto silicon chip and D shaped silicon core fiber. To simulate the optical characteristics of the LSPR sensors, a commercial software, FDTD Solutions was used in this study. The simulated results revealed the trends of the measured transmission spectra and the characteristics of LSPR were also confirmed and discussed. In refractive index sensing, various concentrations of glucose solution were under test, and the resonant wavelengths of the spectra shifted as the concentration changed. The fingerprint signal in mid infrared range was enhanced by LSPR.
中文摘要………………………………………………………………..ii
ABSTRACT …………………………………………………………….iii
Statement of Contributions iv
LIST OF FIGURES viii
LIST OF TABLES xii
LIST OF SYMBOLS AND ABBREVIATIONS xiii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Organization of thesis 5
Chapter 2 Fabrication of Localized Surface Plasmon Resonance Sensors 7
2.1 Two-beam interference lithography 7
2.2 Fabrication of LSPR chip with 2D metallic nanodisks arrays 9
2.2.1 Undercut structure created by lift-off resist 9
2.2.2 Undercut structure created by O2 plasma etching 10
Chapter 3 Novel Fabrication of Localized Surface Plasmon Resonance Using Water-Assisted Peel-off and Scoop-up Method 16
3.1 Water-assisted peel-off and scoop-up method 16
3.1.1 Fabrication of metal mesh film 18
3.1.2 The reliability of peel-off solution 19
3.1.3 The reliability of etching mask material: chromium versus gold 20
3.2 Optimization of process parameter 21
3.2.1 Gold mesh film thickness 21
3.2.2 Soaking time in acetone 23
3.3 Fabrication of gold nanodisks 28
3.3.1 Fabrication of gold nanodisks on silicon wafer 28
3.3.2 Fabrication of gold nanodisks on D shaped fiber 31
Chapter 4 Characteristics of Localized Surface Plasmon Resonance Sensors in MIR Range……………….…………………..33
4.1 Localized surface plasmon resonance 33
4.1.1 The finite-difference time-domain simulation model 33
4.1.2 Comparison of simulation and experiment results 36
4.1.3 Tunable LSPR signal 39
4.1.4 Comparison of electrical field between near-infrared and mid-infrared LSPR sensors …………………………………………………………….40
4.2 Optical characteristics of the LSPR silicon chips fabricated by two methods…………………………………………………………………....43
4.3 Optical characteristics of the D shaped LSPR fiber sensor 46
4.4 Surface enhanced infrared absorption (SEIRA) 50
Chapter 5 Conclusion and Future Work 52
5.1 Conclusions 52
5.2 Future work 55
5.2.1 Improvement the efficiency of enhancement 55
5.2.2 Advantages of the mid-infrared devices for sensing applications 57
References……………...……………………………………………….58
Publication……………………………………………………………...59
[1].Ritchie, Rufus H. "Plasma losses by fast electrons in thin films." Physical review 106.5 (1957): 874.
[2].Kretschmann, Erwin, and Heinz Raether. "Radiative decay of non-radiative surface plasmons excited by light." Zeitschrift für Naturforschung A 23.12 (1968): 2135-2136.
[3].Sanders, Mollye, et al. "An enhanced LSPR fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers." Biosensors and Bioelectronics 61 (2014): 95-101.
[4].Satija, Jitendra, et al. "Optimal design for U-bent fiber-optic LSPR sensor probes." Plasmonics 9.2 (2014): 251-260.
[5].Eidelloth, W., and R. L. Sandstrom. "Wet etching of gold films compatible with high T c superconducting thin films." Applied physics letters 59.13 (1991): 1632-1634.
[6].Green, T. A. "Gold etching for microfabrication." Gold Bulletin 47.3 (2014): 205-216.
[7].Barbillon, G., et al. "Gold nanoparticles by soft UV nanoimprint lithography coupled to a lift-off process for plasmonic sensing of antibodies." Microelectronic Engineering 87.5-8 (2010): 1001-1004.
[8].Dhawan, Anuj, Michael D. Gerhold, and John F. Muth. "Plasmonic structures based on subwavelength apertures for chemical and biological sensing applications." IEEE Sensors Journal 8.6 (2008): 942-950.
[9].Jia, Peipei, and Jun Yang. "Integration of large-area metallic nanohole arrays with multimode optical fibers for surface plasmon resonance sensing." Applied Physics Letters 102.24 (2013): 243107.
[10].Smythe, Elizabeth J., et al. "A technique to transfer metallic nanoscale patterns to small and non-planar surfaces." ACS nano 3.1 (2008): 59-65.
[11].Lipomi, Darren J., et al. "Patterning the tips of optical fibers with metallic nanostructures using nanoskiving." Nano letters 11.2 (2010): 632-636.
[12].Wang, Qiugu, et al. "Tape-based flexible metallic and dielectric nanophotonic devices and metamaterials." 2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2017.
[13].Hartstein, A., J. R. Kirtley, and J. C. Tsang. "Enhancement of the infrared absorption from molecular monolayers with thin metal overlayers." Physical Review Letters 45.3 (1980): 201.
[14].Kosower, Edward M., and Galina Borz. "Thin film infrared spectroscopy on planar silver halide: a new technology for water and other liquids in the mesoscopic domain." RSC Advances 1.8 (2011): 1506-1520.
[15].Jensen, T. R., et al. "Surface-enhanced infrared spectroscopy: a comparison of metal island films with discrete and nondiscrete surface plasmons." Applied Spectroscopy 54.3 (2000): 371-377.
[16].C.H.Chiang, “Fabrication of subwavelength dual structures on silicon substrates with anti-reflection and low sliding angles,” in Graduate Institute of Photonics and Optoelectronics (2010), National Taiwan University: Taipei.
[17].Y. P. Chen, “Stitching submicron periodic patterns over a planar substrate and a roller by utilizing step-and-align interference lithography,” in Graduate Institute of Photonics and Optoelectronics (2011), National Taiwan University: Taipei.
[18].Hatzakis, M., B. J. Canavello, and J. M. Shaw. "Single-step optical lift-off process." IBM Journal of Research and Development 24.4 (1980): 452-460.
[19].Lee, Seung-Woo, et al. "Highly sensitive biosensing using arrays of plasmonic Au nanodisks realized by nanoimprint lithography." ACS nano 5.2 (2011): 897-904.
[20].Chang, Yun-Chorng, et al. "A large-scale sub-100 nm Au nanodisk array fabricated using nanospherical-lens lithography: a low-cost localized surface plasmon resonance sensor." Nanotechnology 24.9 (2013): 095302.
[21].Wei, Weiwei, et al. "Damage of Cr film by oxygen plasma." Applied Surface Science 301 (2014): 539-543.
[22].Kim, Keun Soo, et al. "Large-scale pattern growth of graphene films for stretchable transparent electrodes." nature 457.7230 (2009): 706.
[23].Zhang, Jian, et al. "Gold nanohole array with sub-1 nm roughness by annealing for sensitivity enhancement of extraordinary optical transmission biosensor." Nanoscale research letters 10.1 (2015): 238.
[24].Vargaftik, N. B., B. N. Volkov, and L. D. Voljak. "International tables of the surface tension of water." Journal of Physical and Chemical Reference Data 12.3 (1983): 817-820.
[25].Toryanik, A. I., and V. G. Porebnyak. "Surface tension of aqueous solutions of acetone." Journal of Structural Chemistry17.3 (1977): 464-465.
[26].Kim, Jae-Han, et al. "Tensile testing of ultra-thin films on water surface." Nature communications 4 (2013): 2520.
[27].D. R. Lide, CRC handbook of chemistry and physics, CRC Press (2005).
[28].J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” Journal of Computational Physics 144(2) (1994): 185-200.
[29].Rodríguez-Cantó, Pedro Javier, et al. "Demonstration of near infrared gas sensing using gold nanodisks on functionalized silicon." Optics express 19.8 (2011): 7664-7672.
[30].Lirtsman, V., M. Golosovsky, and D. Davidov. "Infrared surface plasmon resonance technique for biological studies." Journal of Applied Physics 103.1 (2008): 014702.
[31].Neubrech, Frank, et al. "Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection." Physical review letters 101.15 (2008): 157403.
[32].W. H. Jheng, “Method of mass production of surface plasmon resonance fiber probes for lable-free biosensing and preliminary test of efficiency,” in Graduate Institute of Photonics and Optoelectronics (2016), National Taiwan University: Taipei.
[33].C. F. Lo, “Fabrication improvement of surface plasmon resonance type optical fiber probes and their optical characteristics,” in Graduate Institute of Photonics and Optoelectronics (2017), National Taiwan University: Taipei.
[34].C. L. Wu, " Novel fabrication of surface plasmon resonance fiber probes using water-assisted peel-off and scoop-up method." 2018 50th International conference on solid state devices and materials (SSDM)
[35].Brown, Lisa V., et al. "Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA)." Nano letters 15.2 (2015): 1272-1280.
[36].Bukasov, Rostislav, and Jennifer S. Shumaker-Parry. "Silver nanocrescents with infrared plasmonic properties as tunable substrates for surface enhanced infrared absorption spectroscopy." Analytical chemistry 81.11 (2009): 4531-4535.
[37].Shen, Y. C., et al. "Determination of glucose concentration in whole blood using Fourier-transform infrared spectroscopy." Journal of biological physics 29.2-3 (2003): 129-133.
[38].Raichlin, Yosef, and Abraham Katzir. "Fiber-optic evanescent wave spectroscopy in the middle infrared." Applied spectroscopy62.2 (2008): 55A-72A.
[39].Kasahara, Ryosuke, et al. "Noninvasive glucose monitoring using mid-infrared absorption spectroscopy based on a few wavenumbers." Biomedical optics express 9.1 (2018): 289-302.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top