跳到主要內容

臺灣博碩士論文加值系統

(44.200.117.166) 您好!臺灣時間:2023/09/27 07:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周浚和
研究生(外文):Chun-Ho Chou
論文名稱:氧化銦鎵鋅薄膜電晶體生物感測器應用於蛋白質與配體之動態反應分析
論文名稱(外文):Transient Analysis of Protein-Ligand Kinetic Reactions Using an IGZO Thin Film Transistor Biosensor
指導教授:黃建璋黃建璋引用關係
口試委員:林致廷賴韋志黃念祖李翔傑
口試日期:2019-07-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:48
中文關鍵詞:薄膜電晶體生物感測器微流道溶菌酶三乙醯殼三糖動態反應反應常數
DOI:10.6342/NTU201902459
相關次數:
  • 被引用被引用:0
  • 點閱點閱:124
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  這篇論文介紹以氧化銦鎵鋅薄膜電晶體與感測金屬電極組成之生物感測器偵測生物分子擴散與混合狀態並探討蛋白質與配體之動態反應,此研究分兩部分:
  第一部分,分析生物素與鏈親和素的混合情況,我們採用薄膜電晶體生物感測器外接Y型微流道。此外,使用聚二甲基矽氧烷來密封微流道系統以避免待測溶液蒸發。接著分別量測生物素與鏈親和素的電流訊號,定義待測物的擴散時間。進行一系列同時與時間差的混合實驗。藉觀察即時的電流變化,分析待測物在流道中的混合狀況。最後我們使用牛血清白蛋白作為對照組,驗證薄膜電晶體生物感測器之非特異性結合情況。
  第二部分,以溶菌酶及其適體三乙醯殼三糖作為動態反應分析標的物,改使用直線型微流道作為感測平台。溶菌酶以及三乙醯殼三糖溶液注入微流道感測電流訊號。首先,單獨通入溶菌酶溶液至流道中建立溶菌酶濃度與電流變化關係。將三種濃度比例之溶菌酶以及三乙酰殼三糖混合在離心管中,控制兩者的反應時間;對擷取之電流變化,考量屏蔽效應進行修正後可藉已建立之溶菌酶濃度與電流變化關係將電流變化轉為剩餘溶菌酶濃度。以此,可建立剩餘溶菌酶濃度與反應時間擬合曲線。曲線提供之資訊,可助我們藉化學公式得到反應級數、結合速率常數與分解常數。其中,分解常數之結果為39.10μM,與其他團隊提出之數值十分接近。
In this thesis, a biosensor consists of an Indium-Gallium-Zinc-Oxide (IGZO) thin film transistor (TFT) and a gold sensing electrode is demonstrated for diffusion and mixing properties detection of biomolecules. The protein-ligand kinetic reaction is further investigated. The thesis includes two parts.
In the first part, in order to analyze the streptavidin-biotin mixing condition, a Y-type external microfluidic channel is integrated with the TFT biosensor. In addition, the channels are sealed with polydimethylsiloxane to avoid evaporation of the target analyte solutions. The current signals of streptavidin and biotin are measured separately to define the diffusion time. Then, a series of mixing and time delay experiments are conducted. By observing the real-time current change of the TFT biosensor, the mixture condition of the reaction can be analyzed. Finally, bovine serum albumin (BSA) is used for a control experiment to verify the specificity and reliability.
In the second part, kinetic reaction of lysozyme and tri-N-Acetylglucosamine (NAG3) are investigated and applied to a TFT biosensor integrated with a linear shape microfluidic channel. First, lysozyme solutions of several concentrations are introduced into the microfluidic channel to construct the relation between lysozyme concentration and drain current variation. Then, three mixing ratios of lysozyme and NAG3 solution are incubated in the micro-centrifuge for different periods of reaction time. Considering the screen effect, the extracted drain current variations are calibrated by the revision factor and the revised current variations are converted into remained lysozyme concentration by the correlation of current variation and lysozyme concentration. Based on the converted information, the fitting curves of remained lysozyme concentration versus reaction time are illustrated. The curves provide the information that can be utilized to calculate the partial orders, association rate constant, and dissociation constant by biochemical formulas. It is noteworthy that the derived dissociation constant is 39.10 μM, which is close to the results reported by previous researches.
口試委員會審定書 i
致謝 ii
中文摘要 iii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES viii
LIST OF TABLES xii
Chapter 1 Introduction 1
1.1 Overview of Biochemical Detection 1
1.2 Introduction of FET-based Biosensors 2
1.3 Importance of Biochemical Reaction Kinetics 4
1.4 Thesis Outline 5
Chapter 2 IGZO-TFT Biosensors for Investigation of Biotin-Protein Interaction 6
2.1 Introduction 6
2.2 Material and Methods 7
2.2.1 Fabrication of IGZO-TFT Biosensors Integrated with Y-type Microfluidic Channels 7
2.2.2 Measurement and experiment flow 10
2.3 Results and Discussion 12
2.3.1 Confirmation of diffusion dominant or flow dominant 12
2.3.2 Transient drain current responses by applying Biotin and Streptavidin separately 13
2.3.3 Transient drain current responses by applying Biotin and Streptavidin mixture 15
2.3.4 Delay experiment of Biotin and Streptavidin reaction in the microfluidic channel 17
2.3.5 BSA control experiment 21
2.4 Summary 24
Chapter 3 IGZO-TFT Biosensors for Investigation of Protein-Ligand Kinetics 25
3.1 Introduction 25
3.2 Material and Methods 26
3.2.1 Introduction of lysozyme and tri-N-acetylglucosamine 26
3.2.2 Measurement and experiment flow 27
3.3 Results and Discussions 29
3.3.1 Real-time analysis of lysozyme and tri-N-acetylglucosamine 29
3.3.2 Detection of lysozyme and tri-N-acetylglucosamine kinetic reaction 33
3.3.3 Biochemical constants analysis 38
3.4 Summary 41
Chapter 4 Conclusions 43
REFERENCE 45
[1] Lindholm-Sethson, B., Nyström, J., Geladi, P., Koeppe, R., Nelson, A., & Whitehouse, C. (2003). Are biosensor arrays in one membrane possible? A combination of multifrequency impedance measurements and chemometrics. Analytical and bioanalytical chemistry, 377(3), 478-485.
[2] Subrahmanyam, S., Piletsky, S. A., & Turner, A. P. (2002). Application of natural receptors in sensors and assays. Analytical chemistry, 74(16), 3942-3951.
[3] Rasooly, A., & Jacobson, J. (2006). Development of biosensors for cancer clinical testing. Biosensors and Bioelectronics, 21(10), 1851-1858.
[4] Mohanty, S. P., & Kougianos, E. (2006). Biosensors: a tutorial review. Ieee Potentials, 25(2), 35-40.
[5] Patching, S. G. (2014). Surface plasmon resonance spectroscopy for characterisation of membrane protein–ligand interactions and its potential for drug discovery. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1838(1), 43-55.
[6] Garber, E. A. (2008). Detection of melamine using commercial enzyme-linked immunosorbent assay technology. Journal of food protection, 71(3), 590-594.
[7] Kurien, B. T., & Scofield, R. H. (2015). Western blotting: an introduction. In Western Blotting (pp. 17-30): Springer.
[8] Cheng, S., Hideshima, S., Kuroiwa, S., Nakanishi, T., & Osaka, T. (2015). Label-free detection of tumor markers using field effect transistor (FET)-based biosensors for lung cancer diagnosis. Sensors and Actuators B: Chemical, 212, 329-334.
[9] Yakimova, R., Steinhoff, G., Petoral Jr, R., Vahlberg, C., Khranovskyy, V., Yazdi, G., . . . Spetz, A. L. (2007). Novel material concepts of transducers for chemical and biosensors. Biosensors and Bioelectronics, 22(12), 2780-2785.
[10] Lin, J.-C., Huang, B.-R., & Yang, Y.-K. (2013). IGZO nanoparticle-modified silicon nanowires as extended-gate field-effect transistor pH sensors. Sensors and Actuators B: Chemical, 184, 27-32.
[11] Liu, X., Lin, P., Yan, X., Kang, Z., Zhao, Y., Lei, Y., . . . Zhang, Y. (2013). Enzyme-coated single ZnO nanowire FET biosensor for detection of uric acid. Sensors and Actuators B: Chemical, 176, 22-27.
[12] Guo, D., Zhuo, M., Zhang, X., Xu, C., Jiang, J., Gao, F., . . . Wang, T. (2013). Indium-tin-oxide thin film transistor biosensors for label-free detection of avian influenza virus H5N1. Analytica chimica acta, 773, 83-88.
[13] Reyes, P. I., Ku, C.-J., Duan, Z., Lu, Y., Solanki, A., & Lee, K.-B. (2011). ZnO thin film transistor immunosensor with high sensitivity and selectivity. Applied Physics Letters, 98(17), 173702.
[14] Jung, J., Kim, S. J., Yoon, D. H., Kim, B., Park, S. H., & Kim, H. J. (2012). Electrical responses of artificial DNA nanostructures on solution-processed In-Ga-Zn-O thin-film transistors with multistacked active layers. ACS applied materials & interfaces, 5(1), 98-102.
[15] Kim, S. J., Jung, J., Yoon, D. H., & Kim, H. J. (2012). The effect of various solvents on the back channel of solution-processed In–Ga–Zn–O thin-film transistors intended for biosensor applications. Journal of Physics D: Applied Physics, 46(3), 035102.
[16] Ruess, J., Milias-Argeitis, A., & Lygeros, J. (2013). Designing experiments to understand the variability in biochemical reaction networks. Journal of the Royal Society Interface, 10(88), 20130588.
[17] Zhang, T., Wei, T., Han, Y., Ma, H., Samieegohar, M., Chen, P.-W., . . . Lo, Y.-H. (2016). Protein–ligand interaction detection with a novel method of transient induced molecular electronic spectroscopy (TIMES): experimental and theoretical studies. ACS central science, 2(11), 834-842.
[18] Cala, O., Guillière, F., & Krimm, I. (2014). NMR-based analysis of protein–ligand interactions. Analytical and bioanalytical chemistry, 406(4), 943-956.
[19] Langley, J. N. (1905). On the reaction of cells and of nerve‐endings to certain poisons, chiefly as regards the reaction of striated muscle to nicotine and to curari. The Journal of physiology, 33(4-5), 374-413.
[20] Swinney, D. C. (2009). The role of binding kinetics in therapeutically useful drug action. Current opinion in drug discovery & development, 12(1), 31-39.
[21] Copeland, R. A., Pompliano, D. L., & Meek, T. D. (2006). Drug–target residence time and its implications for lead optimization. Nature reviews Drug discovery, 5(9), 730.
[22] Pan, A. C., Borhani, D. W., Dror, R. O., & Shaw, D. E. (2013). Molecular determinants of drug–receptor binding kinetics. Drug discovery today, 18(13-14), 667-673.
[23] Gobby, D., Angeli, P., & Gavriilidis, A. (2001). Mixing characteristics of T-type microfluidic mixers. Journal of Micromechanics and microengineering, 11(2), 126.
[24] Lee, C.-Y., Chang, C.-L., Wang, Y.-N., & Fu, L.-M. (2011). Microfluidic mixing: a review. International journal of molecular sciences, 12(5), 3263-3287.
[25] Riahi, R., Tamayol, A., Shaegh, S. A. M., Ghaemmaghami, A. M., Dokmeci, M. R., & Khademhosseini, A. (2015). Microfluidics for advanced drug delivery systems. Current Opinion in Chemical Engineering, 7, 101-112.
[26] Teh, S.-Y., Lin, R., Hung, L.-H., & Lee, A. P. (2008). Droplet microfluidics. Lab on a Chip, 8(2), 198-220.
[27] Yamada, M., Sugaya, S., Naganuma, Y., & Seki, M. (2012). Microfluidic synthesis of chemically and physically anisotropic hydrogel microfibers for guided cell growth and networking. Soft Matter, 8(11), 3122-3130.
[28] Ahmed, D., Mao, X., Juluri, B. K., & Huang, T. J. (2009). A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles. Microfluidics and nanofluidics, 7(5), 727.
[29] Zhang, J., Tan, K., Hong, G., Yang, L., & Gong, H. (2001). Polymerization optimization of SU-8 photoresist and its applications in microfluidic systems and MEMS. Journal of Micromechanics and microengineering, 11(1), 20.
[30] Kendall, C., Ionescu-Matiu, I., & Dreesman, G. R. (1983). Utilization of the biotin/avidin system to amplify the sensitivity of the enzyme-linked immunosorbent assay (ELISA). Journal of immunological methods, 56(3), 329-339.
[31] VON BOXBERG, Y., WÜTZ, R., & SCHWARZ, U. (1990). Use of the biotin‐avidin system for labelling, isolation and characterization of neural cell‐surface proteins. European journal of biochemistry, 190(2), 249-256.
[32] Savran, C., Burg, T., Fritz, J., & Manalis, S. (2003). Microfabricated mechanical biosensor with inherently differential readout. Applied Physics Letters, 83(8), 1659-1661.
[33] Eteshola, E., & Leckband, D. (2001). Development and characterization of an ELISA assay in PDMS microfluidic channels. Sensors and Actuators B: Chemical, 72(2), 129-133.
[34] Segato, T. P., Coltro, W. K. T., de Jesus Almeida, A. L., de Oliveira Piazetta, M. H., Gobbi, A. L., Mazo, L. H., & Carrilho, E. (2010). A rapid and reliable bonding process for microchip electrophoresis fabricated in glass substrates. Electrophoresis, 31(15), 2526-2533.
[35] Jo, M. C., & Guldiken, R. (2013). Dual surface acoustic wave-based active mixing in a microfluidic channel. Sensors and Actuators A: Physical, 196, 1-7.
[36] Peuker, S., Cukkemane, A., Held, M., Noé, F., Kaupp, U. B., & Seifert, R. (2013). Kinetics of ligand-receptor interaction reveals an induced-fit mode of binding in a cyclic nucleotide-activated protein. Biophysical journal, 104(1), 63-74.
[37] Huang, Y.-W., Wu, C.-S., Chuang, C.-K., Pang, S.-T., Pan, T.-M., Yang, Y.-S., & Ko, F.-H. (2013). Real-time and label-free detection of the prostate-specific antigen in human serum by a polycrystalline silicon nanowire field-effect transistor biosensor. Analytical chemistry, 85(16), 7912-7918.
[38] Cong, Y., Katipamula, S., Trader, C. D., Orton, D. J., Geng, T., Baker, E. S., & Kelly, R. T. (2016). Mass spectrometry-based monitoring of millisecond protein–ligand binding dynamics using an automated microfluidic platform. Lab on a Chip, 16(9), 1544-1548.
[39] Iešmantavičius, V., Dogan, J., Jemth, P., Teilum, K., & Kjaergaard, M. (2014). Helical propensity in an intrinsically disordered protein accelerates ligand binding. Angewandte Chemie International Edition, 53(6), 1548-1551.
[40] Perspicace, S., Rufer, A. C., Thoma, R., Mueller, F., Hennig, M., Ceccarelli, S., . . . Seelig, J. (2013). Isothermal titration calorimetry with micelles: thermodynamics of inhibitor binding to carnitine palmitoyltransferase 2 membrane protein. FEBS open bio, 3(1), 204-211.
[41] Duan, X., Li, Y., Rajan, N. K., Routenberg, D. A., Modis, Y., & Reed, M. A. (2012). Quantification of the affinities and kinetics of protein interactions using silicon nanowire biosensors. Nature nanotechnology, 7(6), 401.
[42] Choi, K., Kim, J.-Y., Ahn, J.-H., Choi, J.-M., Im, M., & Choi, Y.-K. (2012). Integration of field effect transistor-based biosensors with a digital microfluidic device for a lab-on-a-chip application. Lab on a Chip, 12(8), 1533-1539.
[43] Primo, E. D., Otero, L. H., Ruiz, F., Klinke, S., & Giordano, W. (2018). The disruptive effect of lysozyme on the bacterial cell wall explored by an in‐silico structural outlook. Biochemistry and Molecular Biology Education, 46(1), 83-90.
[44] Cho, I.-T., Lee, J.-M., Lee, J.-H., & Kwon, H.-I. (2008). Charge trapping and detrapping characteristics in amorphous InGaZnO TFTs under static and dynamic stresses. Semiconductor Science and Technology, 24(1), 015013.
[45] Guzman, K. D., Karnik, R. N., Newman, J. S., & Majumdar, A. (2006). Spatially controlled microfluidics using low-voltage electrokinetics. Journal of microelectromechanical systems, 15(1), 237-245.
[46] Chen, T.-Y., Yang, T.-H., Wu, N.-T., Chen, Y.-T., & Huang, J.-J. (2017). Transient analysis of streptavidin-biotin complex detection using an IGZO thin film transistor-based biosensor integrated with a microfluidic channel. Sensors and Actuators B: Chemical, 244, 642-648.
[47] Shao, D., Xu, K., Song, X., Hu, J., Yang, W., & Wang, C. (2009). Effective adsorption and separation of lysozyme with PAA-modified Fe3O4@ silica core/shell microspheres. Journal of colloid and interface science, 336(2), 526-532.
[48] Parker, G. (2001). Encyclopedia of materials: science and technology (2nd ed.); 299-304.
[49] Clark, S. M., & Konermann, L. (2004). Screening for Noncovalent Ligand− Receptor Interactions by Electrospray Ionization Mass Spectrometry-Based Diffusion Measurements. Analytical chemistry, 76(5), 1257-1263.
[50] College, O. (2015). Chemistry: Houston, Texas : OpenStax College, Rice University;
[51] Bernetti, M., Cavalli, A., & Mollica, L. (2017). Protein–ligand (un) binding kinetics as a new paradigm for drug discovery at the crossroad between experiments and modelling. MedChemComm, 8(3), 534-550.
[52] Jaquillard, L., Saab, F., Schoentgen, F., & Cadene, M. (2012). Improved accuracy of low affinity protein–ligand equilibrium dissociation constants directly determined by electrospray ionization mass spectrometry. Journal of The American Society for Mass Spectrometry, 23(5), 908-922.
[53] Svobodová, J., Mathur, S., Muck, A., Letzel, T., & Svatoš, A. (2010). Microchip‐ESI‐MS determination of dissociation constant of the lysozyme–NAG3 complex. Electrophoresis, 31(15), 2680-2685.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊