|
[1] Lindholm-Sethson, B., Nyström, J., Geladi, P., Koeppe, R., Nelson, A., & Whitehouse, C. (2003). Are biosensor arrays in one membrane possible? A combination of multifrequency impedance measurements and chemometrics. Analytical and bioanalytical chemistry, 377(3), 478-485. [2] Subrahmanyam, S., Piletsky, S. A., & Turner, A. P. (2002). Application of natural receptors in sensors and assays. Analytical chemistry, 74(16), 3942-3951. [3] Rasooly, A., & Jacobson, J. (2006). Development of biosensors for cancer clinical testing. Biosensors and Bioelectronics, 21(10), 1851-1858. [4] Mohanty, S. P., & Kougianos, E. (2006). Biosensors: a tutorial review. Ieee Potentials, 25(2), 35-40. [5] Patching, S. G. (2014). Surface plasmon resonance spectroscopy for characterisation of membrane protein–ligand interactions and its potential for drug discovery. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1838(1), 43-55. [6] Garber, E. A. (2008). Detection of melamine using commercial enzyme-linked immunosorbent assay technology. Journal of food protection, 71(3), 590-594. [7] Kurien, B. T., & Scofield, R. H. (2015). Western blotting: an introduction. In Western Blotting (pp. 17-30): Springer. [8] Cheng, S., Hideshima, S., Kuroiwa, S., Nakanishi, T., & Osaka, T. (2015). Label-free detection of tumor markers using field effect transistor (FET)-based biosensors for lung cancer diagnosis. Sensors and Actuators B: Chemical, 212, 329-334. [9] Yakimova, R., Steinhoff, G., Petoral Jr, R., Vahlberg, C., Khranovskyy, V., Yazdi, G., . . . Spetz, A. L. (2007). Novel material concepts of transducers for chemical and biosensors. Biosensors and Bioelectronics, 22(12), 2780-2785. [10] Lin, J.-C., Huang, B.-R., & Yang, Y.-K. (2013). IGZO nanoparticle-modified silicon nanowires as extended-gate field-effect transistor pH sensors. Sensors and Actuators B: Chemical, 184, 27-32. [11] Liu, X., Lin, P., Yan, X., Kang, Z., Zhao, Y., Lei, Y., . . . Zhang, Y. (2013). Enzyme-coated single ZnO nanowire FET biosensor for detection of uric acid. Sensors and Actuators B: Chemical, 176, 22-27. [12] Guo, D., Zhuo, M., Zhang, X., Xu, C., Jiang, J., Gao, F., . . . Wang, T. (2013). Indium-tin-oxide thin film transistor biosensors for label-free detection of avian influenza virus H5N1. Analytica chimica acta, 773, 83-88. [13] Reyes, P. I., Ku, C.-J., Duan, Z., Lu, Y., Solanki, A., & Lee, K.-B. (2011). ZnO thin film transistor immunosensor with high sensitivity and selectivity. Applied Physics Letters, 98(17), 173702. [14] Jung, J., Kim, S. J., Yoon, D. H., Kim, B., Park, S. H., & Kim, H. J. (2012). Electrical responses of artificial DNA nanostructures on solution-processed In-Ga-Zn-O thin-film transistors with multistacked active layers. ACS applied materials & interfaces, 5(1), 98-102. [15] Kim, S. J., Jung, J., Yoon, D. H., & Kim, H. J. (2012). The effect of various solvents on the back channel of solution-processed In–Ga–Zn–O thin-film transistors intended for biosensor applications. Journal of Physics D: Applied Physics, 46(3), 035102. [16] Ruess, J., Milias-Argeitis, A., & Lygeros, J. (2013). Designing experiments to understand the variability in biochemical reaction networks. Journal of the Royal Society Interface, 10(88), 20130588. [17] Zhang, T., Wei, T., Han, Y., Ma, H., Samieegohar, M., Chen, P.-W., . . . Lo, Y.-H. (2016). Protein–ligand interaction detection with a novel method of transient induced molecular electronic spectroscopy (TIMES): experimental and theoretical studies. ACS central science, 2(11), 834-842. [18] Cala, O., Guillière, F., & Krimm, I. (2014). NMR-based analysis of protein–ligand interactions. Analytical and bioanalytical chemistry, 406(4), 943-956. [19] Langley, J. N. (1905). On the reaction of cells and of nerve‐endings to certain poisons, chiefly as regards the reaction of striated muscle to nicotine and to curari. The Journal of physiology, 33(4-5), 374-413. [20] Swinney, D. C. (2009). The role of binding kinetics in therapeutically useful drug action. Current opinion in drug discovery & development, 12(1), 31-39. [21] Copeland, R. A., Pompliano, D. L., & Meek, T. D. (2006). Drug–target residence time and its implications for lead optimization. Nature reviews Drug discovery, 5(9), 730. [22] Pan, A. C., Borhani, D. W., Dror, R. O., & Shaw, D. E. (2013). Molecular determinants of drug–receptor binding kinetics. Drug discovery today, 18(13-14), 667-673. [23] Gobby, D., Angeli, P., & Gavriilidis, A. (2001). Mixing characteristics of T-type microfluidic mixers. Journal of Micromechanics and microengineering, 11(2), 126. [24] Lee, C.-Y., Chang, C.-L., Wang, Y.-N., & Fu, L.-M. (2011). Microfluidic mixing: a review. International journal of molecular sciences, 12(5), 3263-3287. [25] Riahi, R., Tamayol, A., Shaegh, S. A. M., Ghaemmaghami, A. M., Dokmeci, M. R., & Khademhosseini, A. (2015). Microfluidics for advanced drug delivery systems. Current Opinion in Chemical Engineering, 7, 101-112. [26] Teh, S.-Y., Lin, R., Hung, L.-H., & Lee, A. P. (2008). Droplet microfluidics. Lab on a Chip, 8(2), 198-220. [27] Yamada, M., Sugaya, S., Naganuma, Y., & Seki, M. (2012). Microfluidic synthesis of chemically and physically anisotropic hydrogel microfibers for guided cell growth and networking. Soft Matter, 8(11), 3122-3130. [28] Ahmed, D., Mao, X., Juluri, B. K., & Huang, T. J. (2009). A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles. Microfluidics and nanofluidics, 7(5), 727. [29] Zhang, J., Tan, K., Hong, G., Yang, L., & Gong, H. (2001). Polymerization optimization of SU-8 photoresist and its applications in microfluidic systems and MEMS. Journal of Micromechanics and microengineering, 11(1), 20. [30] Kendall, C., Ionescu-Matiu, I., & Dreesman, G. R. (1983). Utilization of the biotin/avidin system to amplify the sensitivity of the enzyme-linked immunosorbent assay (ELISA). Journal of immunological methods, 56(3), 329-339. [31] VON BOXBERG, Y., WÜTZ, R., & SCHWARZ, U. (1990). Use of the biotin‐avidin system for labelling, isolation and characterization of neural cell‐surface proteins. European journal of biochemistry, 190(2), 249-256. [32] Savran, C., Burg, T., Fritz, J., & Manalis, S. (2003). Microfabricated mechanical biosensor with inherently differential readout. Applied Physics Letters, 83(8), 1659-1661. [33] Eteshola, E., & Leckband, D. (2001). Development and characterization of an ELISA assay in PDMS microfluidic channels. Sensors and Actuators B: Chemical, 72(2), 129-133. [34] Segato, T. P., Coltro, W. K. T., de Jesus Almeida, A. L., de Oliveira Piazetta, M. H., Gobbi, A. L., Mazo, L. H., & Carrilho, E. (2010). A rapid and reliable bonding process for microchip electrophoresis fabricated in glass substrates. Electrophoresis, 31(15), 2526-2533. [35] Jo, M. C., & Guldiken, R. (2013). Dual surface acoustic wave-based active mixing in a microfluidic channel. Sensors and Actuators A: Physical, 196, 1-7. [36] Peuker, S., Cukkemane, A., Held, M., Noé, F., Kaupp, U. B., & Seifert, R. (2013). Kinetics of ligand-receptor interaction reveals an induced-fit mode of binding in a cyclic nucleotide-activated protein. Biophysical journal, 104(1), 63-74. [37] Huang, Y.-W., Wu, C.-S., Chuang, C.-K., Pang, S.-T., Pan, T.-M., Yang, Y.-S., & Ko, F.-H. (2013). Real-time and label-free detection of the prostate-specific antigen in human serum by a polycrystalline silicon nanowire field-effect transistor biosensor. Analytical chemistry, 85(16), 7912-7918. [38] Cong, Y., Katipamula, S., Trader, C. D., Orton, D. J., Geng, T., Baker, E. S., & Kelly, R. T. (2016). Mass spectrometry-based monitoring of millisecond protein–ligand binding dynamics using an automated microfluidic platform. Lab on a Chip, 16(9), 1544-1548. [39] Iešmantavičius, V., Dogan, J., Jemth, P., Teilum, K., & Kjaergaard, M. (2014). Helical propensity in an intrinsically disordered protein accelerates ligand binding. Angewandte Chemie International Edition, 53(6), 1548-1551. [40] Perspicace, S., Rufer, A. C., Thoma, R., Mueller, F., Hennig, M., Ceccarelli, S., . . . Seelig, J. (2013). Isothermal titration calorimetry with micelles: thermodynamics of inhibitor binding to carnitine palmitoyltransferase 2 membrane protein. FEBS open bio, 3(1), 204-211. [41] Duan, X., Li, Y., Rajan, N. K., Routenberg, D. A., Modis, Y., & Reed, M. A. (2012). Quantification of the affinities and kinetics of protein interactions using silicon nanowire biosensors. Nature nanotechnology, 7(6), 401. [42] Choi, K., Kim, J.-Y., Ahn, J.-H., Choi, J.-M., Im, M., & Choi, Y.-K. (2012). Integration of field effect transistor-based biosensors with a digital microfluidic device for a lab-on-a-chip application. Lab on a Chip, 12(8), 1533-1539. [43] Primo, E. D., Otero, L. H., Ruiz, F., Klinke, S., & Giordano, W. (2018). The disruptive effect of lysozyme on the bacterial cell wall explored by an in‐silico structural outlook. Biochemistry and Molecular Biology Education, 46(1), 83-90. [44] Cho, I.-T., Lee, J.-M., Lee, J.-H., & Kwon, H.-I. (2008). Charge trapping and detrapping characteristics in amorphous InGaZnO TFTs under static and dynamic stresses. Semiconductor Science and Technology, 24(1), 015013. [45] Guzman, K. D., Karnik, R. N., Newman, J. S., & Majumdar, A. (2006). Spatially controlled microfluidics using low-voltage electrokinetics. Journal of microelectromechanical systems, 15(1), 237-245. [46] Chen, T.-Y., Yang, T.-H., Wu, N.-T., Chen, Y.-T., & Huang, J.-J. (2017). Transient analysis of streptavidin-biotin complex detection using an IGZO thin film transistor-based biosensor integrated with a microfluidic channel. Sensors and Actuators B: Chemical, 244, 642-648. [47] Shao, D., Xu, K., Song, X., Hu, J., Yang, W., & Wang, C. (2009). Effective adsorption and separation of lysozyme with PAA-modified Fe3O4@ silica core/shell microspheres. Journal of colloid and interface science, 336(2), 526-532. [48] Parker, G. (2001). Encyclopedia of materials: science and technology (2nd ed.); 299-304. [49] Clark, S. M., & Konermann, L. (2004). Screening for Noncovalent Ligand− Receptor Interactions by Electrospray Ionization Mass Spectrometry-Based Diffusion Measurements. Analytical chemistry, 76(5), 1257-1263. [50] College, O. (2015). Chemistry: Houston, Texas : OpenStax College, Rice University; [51] Bernetti, M., Cavalli, A., & Mollica, L. (2017). Protein–ligand (un) binding kinetics as a new paradigm for drug discovery at the crossroad between experiments and modelling. MedChemComm, 8(3), 534-550. [52] Jaquillard, L., Saab, F., Schoentgen, F., & Cadene, M. (2012). Improved accuracy of low affinity protein–ligand equilibrium dissociation constants directly determined by electrospray ionization mass spectrometry. Journal of The American Society for Mass Spectrometry, 23(5), 908-922. [53] Svobodová, J., Mathur, S., Muck, A., Letzel, T., & Svatoš, A. (2010). Microchip‐ESI‐MS determination of dissociation constant of the lysozyme–NAG3 complex. Electrophoresis, 31(15), 2680-2685.
|