(3.237.97.64) 您好!臺灣時間:2021/03/03 01:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡宇軒
研究生(外文):Yu-Hsuan Tsai
論文名稱:鋪陳在其他金屬上及覆蓋在其他金屬下銀奈米顆粒的侷域表面電漿子共振行為
論文名稱(外文):Localized Surface Plasmon Resonance Behaviors of Silver Nanoparticles Overlaid on and Covered by Other Metals
指導教授:楊志忠楊志忠引用關係
口試委員:江衍偉黃建璋吳育任郭仰
口試日期:2019-07-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:99
中文關鍵詞:表面電漿子共振侷域表面電漿子共振銀奈米顆粒
DOI:10.6342/NTU201902280
相關次數:
  • 被引用被引用:0
  • 點閱點閱:26
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究中,我們在銀奈米顆粒周遭設置各種金屬,包含其下之間置層以及其上之覆蓋層,並量測樣品穿透頻譜以檢視銀奈米顆粒所產生侷域表面電漿子共振行為的變化。間置層和覆蓋層金屬包括鈦、鋁、鎳、金、鉑,我們也使用包括氮化矽及二氧化矽的介電材質,同時也變化各層厚度以為比較。隨著材料變化,侷域表面電漿子共振波長產生紅移、藍移或甚至消失。理論上,金屬的間置層會使得銀奈米顆粒的表面電漿子之基板模態共振行為消失;覆蓋層則會使銀奈米顆粒的表面電漿子之空氣模態共振行為消失。然而實驗顯示出不同於理論之結果,不同金屬界面電子濃度產生變化而影響介電常數,使得金屬界面兩側的介電常數之實數部分一邊為正數,一邊為負數,滿足了在界面產生表面電漿子共振的條件,因此我們可以觀測到銀奈米顆粒的侷域表面電漿子共振行為。
The transmission spectra of various structures surrounding Ag nanoparticles (NPs) are measured to show the transmission depressions or localized surface plasmon (LSP) resonance features of the Ag NPs. The structures surrounding Ag NPs include the interlayers and coverages of various metals different from Ag, such as Ti, Al, Ni, Au, and Pt, with different thicknesses. For comparison, dielectrics of SiN and SiO2 are also used as interlayer and coverage materials. The blue or red shift, or even disappearance of the LSP resonance feature indicates the different surface plasmon (SP) resonance behaviors at the interfaces between Ag and other metals or dielectrics. Theoretically, a metal interlayer and a metal coverage should lead to the disappearances of the substrate and air LSP modes, respectively. However, the persistence of the LSP resonance feature in the experimental observation indicates that the metal contact causes the modification of metal dielectric constants (DCs) near the interface. The modification of DC can result in a positive DC real part in one of the contacting metal and a negative DC real part in another metal near the interface such that SP resonance can occur at the metal/metal interface.
口試委員會審定書 i
致謝 ii
摘要 iii
Abstract iv
Chapter 1 Introduction 2
1.1 Surface plasmon resonance at a metal/metal interface 2
1.2 Optical property near a metal/metal interface 3
1.3 Research motivations 3
1.4 Thesis structure 4
Chapter 2 Device Structures, Measurement Method and Fabrication Procedures 5
2.1 Device structures and measurement method 5
2.2 Fabrication conditions 6
2.3 TEM images of the samples 7
Chapter 3 Ag NPs Overlaid on Other Materials (Interlayer Structure) 13
3.1 Interlayer on sapphire 13
3.2 Interlayer on GaN 14
3.3 Comparisons 15
Chapter 4 Ag NPs Covered by Other Materials (Coverage Structure) 35
4.1 Coverage on sapphire 35
4.2 Coverage on GaN 36
4.3 Comparisons 37
Chapter 5 Ag NPs Sandwiched by Other Materials (Sandwich Structure) 57
5.1 Ag NPs sandwiched by the same material 57
5.2 Ag NPs sandwiched by different metals 58
5.3 Ag NPs sandwiched by a different metal and a dielectric material 59
Chapter 6 Simulation results and discussions 88
6.1 Structure model for interpreting the experimental data 88
6.2 Simulation results of the structures with Al interlayers 90
Chapter 7 Conclusions 96
References 97
1.S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-enhanced Raman Scattering,” Science 275(5303), 1102-1106 (1997).
2.A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir-Blodgett Silver Nanowire Monolayers for Molecular Sensing Using Surface-enhanced Raman Spectroscopy,” Nano Lett. 3(9), 1229-1233 (2003).
3.J. Homola, S. S. Yee, and G. Gauglitz, “Surface Plasmon Resonance Sensors: Review.” Sensors and Actuators B 54(1-2), 3-15 (1999).
4.A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. Van Duyne, “A Localized Surface Plasmon Resonance Biosensor:  First Steps toward an Assay for Alzheimer''s Disease,” Nano Lett. 4(6), 1029-1034 (2004).
5.X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer Cell Imaging and Photothermal Therapy in the Near-infrared Region by Using Gold Nanorods,” J. Am. Chem. Soc. 128(6), 2115-2120 (2006).
6.H. Y. Tseng, W. F. Chen, C. K. Chu, W. Y. Chang, Y. Kuo, Y. W. Kiang, and C. C. Yang, “On-substrate Fabrication of a Bio-conjugated Au Nanoring Solution for Photothermal Therapy Application,” Nanotechnology 24(6), 065102 (2013).
7.E. Hwang, I. I. Smolyaninov, and C. C. Davis, “Surface plasmon polariton enhanced fluorescence from quantum dots on nanostructured metal surfaces,” Nano Lett. 10(3), 813-820 (2010).
8.Y. Kuo, S. Y. Ting, C. H. Liao, J. J. Huang, C. Y. Chen, C. Hsieh, Y. C. Lu, C. Y. Chen, K. C. Shen, C. F. Lu, D. M. Yeh, J. Y. Wang, W. H. Chuang, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupling with radiating dipole for enhancing the emission efficiency of a light-emitting diode,” Opt. Express 19(S4), A914-A929 (2011).
9.H. A. Atwater and A. Polman, “Plasmonics for Improved Photovoltaic Devices,” Nature Mater. 9(10), 205-213 (2010).
10.J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome Solar Cells with Efficient Light Management and Self-cleaning,” Nano Lett. 10(6), 1979-1984 (2010).
11.W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface Plasmon Subwavelength Optics,” Nature 424(6950), 824-830 (2003).
12.S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local Detection of Electromagnetic Energy Transport below the Diffraction Limit in Metal Nanoparticle Plasmon Waveguides,” Nature Mater. 2(4), 229-232 (2003).
13.C. Y. Su, C. H. Lin, Y. F. Yao, W. H. Liu, M. Y. Su, H. C. Chiang, M. C. Tsai, C. G. Tu, H. T. Chen, Y. W. Kiang, and C. C. Yang, “Dependencies of Surface Plasmon Coupling Effects on the p-GaN Thickness of a Thin-p-type Light-emitting Diode,” Opt. Express 25(18), 21526-21536 (2017).
14.C. H. Lin, C. Hsieh, C. G. Tu, Y. Kuo, H. S. Chen, P. Y. Shih, C. H. Liao, Y. W. Kiang, C. C. Yang, C. H. Lai, G. R. He, J. H. Yeh, and T. C. Hsu, “Efficiency Improvement of a Vertical Light-emitting Diode through Surface Plasmon Coupling and Grating Scattering,” Opt. Express 22(suppl 3), A842-A856 (2014).
15.C. M. Gonzalez, Y. Liu, and J. C. Scaiano, “Photochemical Strategies for the Facile Synthesis of Gold-silver Alloy and Core-shell Bimetallic Nanoparticles,” J. Phys. Chem. C 113(27), 11861-11867 (2009).
16.Y. Bu and S. W. Lee, “The Characteristic AgcoreAushell Nanoparticles as SERS Substrates in Detecting Dopamine Molecules at Various pH Ranges,” Inter. J. Nanomedicine 10(Spec iss), 47-54 (2015).
17.S. O. Kasap, Principles of Electronic Materials and Devices, 3rd edition, Chapter 4 (McGraw-Hill, Boston, 2006).
18.P. Peljo, J. A. Manzanares, and H. H. Girault, “Contact potentials, Fermi level equilibration, and surface charging,” Langmuir 32(23), 5765-5775 (2016).
19.M. K. Nayak and S. K. Ghosh, “Optical properties of bimetallic nanospheres: Effect of diffuse electron density profiles at the boundary surfaces,” J. Chem. Phys. 130(20), 204702 (2009).
20.B. Rodríguez-Gonzalez, A. Burrows, M. Watanabe, C. J. Kiely, and L. M. Liz Marzan, “Multishell Bimetallic AuAg Nanoparticles: Synthesis, Structure and Optical Properties,” J. Mater. Chem. 15(17), 1755-1759 (2005).
21.X. Wang, Z. Zhang, and G. V. Hartland, “Electronic Dephasing in Bimetallic Gold-silver Nanoparticles Examined by Single Particle Spectroscopy,” J. Phys. Chem. B 109(43), 20324-20330 (2005).
22.H. Ehrenreich, H. R. Philipp, and B. Segall, “Optical Properties of Aluminum,” Phys. Rev. 132(5), 1918-1928 (1963).
23.H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical Dielectric Function of Silver,” Phys. Rev. B, 91(23), 235137 (2015).
24.E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Boston, 1991).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔