Akter, K. F., Owens, G., Davey, D. E., & Naidu, R. (2005). Arsenic speciation and toxicity in biological systems. In Reviews of environmental contamination and toxicology, 97-149
Amstaetter, K., Borch, T., Larese-Casanova, P., & Kappler, A. (2009). Redox transformation of arsenic by Fe (II)-activated goethite (α-FeOOH). Environmental Science & Technology, 44, 102-108.
Anders, E., & Ebihara, M. (1982). Solar-system abundances of the elements. Geochimica et Cosmochimica Acta, 46, 2363-2380.
Baer, D. R., Gaspar, D. J., Nachimuthu, P., Techane, S. D., & Castner, D. G. (2010). Application of surface chemical analysis tools for characterization of nanoparticles. Analytical and bioanalytical chemistry, 396(3), 983-1002.
Bang, S., Johnson, M. D., Korfiatis, G. P., & Meng, X. (2005). Chemical reactions between arsenic and zero-valent iron in water. Water Research, 39(5), 763-770.
Bhowmick, S., Chakraborty, S., Mondal, P., Van Renterghem, W., Van den Berghe, S., Roman-Ross, G., Chatterjee, D. and Iglesias, M. (2014). Montmorillonite-supported nanoscale zero-valent iron for removal of arsenic from aqueous solution: Kinetics and mechanism. Chemical Engineering Journal, 243, 14-23.
Boyle, R. W., & Jonasson, I. R. (1973). The geochemistry of arsenic and its use as an indicator element in geochemical prospecting. Journal of Geochemical Exploration, 2(3), 251-296.
Braman, R. S., & Foreback, C. C. (1973). Methylated forms of arsenic in the environment. Science, 182(4118), 1247-1249.
Bui, T. H., Kim, C., Hong, S. P., & Yoon, J. (2017). Effective adsorbent for arsenic removal: core/shell structural nano zero-valent iron/manganese oxide. Environmental Science and Pollution Research, 24(31), 24235-24242.
Cao, J., Elliott, D., & Zhang, W. X. (2005). Perchlorate reduction by nanoscale iron particles. Journal of Nanoparticle Research, 7(4-5), 499-506.
Chen, C. J., Chen, C. W., Wu, M. M., & Kuo, T. L. (1992). Cancer potential in liver, lung, bladder and kidney due to ingested inorganic arsenic in drinking water. British journal of cancer, 66(5), 888.
Chen, C. J., Chuang, Y. C., Lin, T. M., & Wu, H. Y. (1985). Malignant neoplasms among residents of a blackfoot disease-endemic area in Taiwan: high-arsenic artesian well water and cancers. Cancer research, 45, 5895-5899.
Chen, K. L., & Wu, H. Y. (1962). Epidemiologic studies on blackfoot disease. 2. A study of source of drinking water in relation to the disease. Taiwan yi xue hui za zhi. Journal of the Formosan Medical Association, 61, 611-618.
Chen, K. P. (1962). Epidemiological studies on Blackfoot disease in Taiwan. 3. Physiochemical characteristics of drinking water in endemic Blackfoot disease area. Memoirs College of Medicine the National Taiwan University, 8, 115-129.
Chen, K. P., & Wu, H. Y. (1969). Epidemiologic studies on blackfoot disease in Taiwan, China. 6. Effect of the piped water supply on occurrence and disease progress of blackfoot disease. Taiwan yi xue hui za zhi. Journal of the Formosan Medical Association, 68(6), 291.
Chen, S. L., Dzeng, S. R., Yang, M. H., Chiu, K. H., Shieh, G. M., & Wai, C. M. (1994). Arsenic species in groundwaters of the blackfoot disease area, Taiwan. Environmental Science & Technology, 28(5), 877-881.
Crane, R. A., & Scott, T. B. (2012). Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. Journal of hazardous materials, 211, 112-125.
Cullen, W. R., & Reimer, K. J. (1989). Arsenic speciation in the environment. Chemical reviews, 89(4), 713-764.
Deuel, L. E., & Swoboda, A. R. (1972). Arsenic Solubility in a Reduced Environment 1. Soil Science Society of America Journal, 36(2), 276-278.
Filip, J., Karlický, F., Marušák, Z., Lazar, P., Černík, M., Otyepka, M., & Zbořil, R. (2014). Anaerobic reaction of nanoscale zerovalent iron with water: mechanism and kinetics. The Journal of Physical Chemistry C, 118(25), 13817-13825.
Furukawa, Y., Kim, J. W., Watkins, J., & Wilkin, R. T. (2002). Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron. Environmental Science & Technology, 36(24), 5469-5475.
Giasuddin, A. B., Kanel, S. R., & Choi, H. (2007). Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal. Environmental Science & Technology, 41(6), 2022-2027.
Gillham, R. W., & O''Hannesin, S. F. (1994). Enhanced degradation of halogenated aliphatics by zero‐valent iron. Groundwater, 32(6), 958-967.
Grosvenor, A. P., Kobe, B. A., Biesinger, M. C., & McIntyre, N. S. (2004). Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surface and Interface Analysis, 36(12), 1564-1574.
Harvey, D. T., & Linton, R. W. (1981). Chemical characterization of hydrous ferric oxides by X-ray photoelectron spectroscopy. Analytical Chemistry, 53(11), 1684-1688.
Hoag, G. E., Collins, J. B., Holcomb, J. L., Hoag, J. R., Nadagouda, M. N., & Varma, R. S. (2009). Degradation of bromothymol blue by ‘greener’nano-scale zero-valent iron synthesized using tea polyphenols. Journal of Materials Chemistry, 19(45), 8671-8677.
Huang, Y. H., & Zhang, T. C. (2005). Effects of dissolved oxygen on formation of corrosion products and concomitant oxygen and nitrate reduction in zero-valent iron systems with or without aqueous Fe2+. Water Research, 39(9), 1751-1760.
Hughes, M. F. (2002). Arsenic toxicity and potential mechanisms of action. Toxicology letters, 133(1), 1-16.
Hwang, Y. H., Kim, D. G., & Shin, H. S. (2011). Mechanism study of nitrate reduction by nano zero valent iron. Journal of Hazardous Materials, 185(2-3), 1513-1521.
Jain, A., Raven, K. P., & Loeppert, R. H. (1999). Arsenite and arsenate adsorption on ferrihydrite: surface charge reduction and net OH-release stoichiometry. Environmental Science & Technology, 33(8), 1179-1184.
Kanel, S. R., Greneche, J. M., & Choi, H. (2006). Arsenic (V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environmental Science & Technology, 40(6), 2045-2050.
Kanel, S. R., Manning, B., Charlet, L., & Choi, H. (2005). Removal of arsenic (III) from groundwater by nanoscale zero-valent iron. Environmental Science & Technology, 39(5), 1291-1298.
Katsoyiannis, I. A., Ruettimann, T., & Hug, S. J. (2008). pH dependence of Fenton reagent generation and As (III) oxidation and removal by corrosion of zero valent iron in aerated water. Environmental Science & Technology, 42(19), 7424-7430.
Katsoyiannis, I. A., Voegelin, A., Zouboulis, A. I., & Hug, S. J. (2015). Enhanced As (III) oxidation and removal by combined use of zero valent iron and hydrogen peroxide in aerated waters at neutral pH values. Journal of hazardous materials, 297, 1-7.
Kuo, T. L. (1964). Arsenic content of artesian well water in an endemic area of chronic arsenic poisoning. Rep. Inst. Pathol., Natl. Taiwan Univ., 20, 7-13.
Legeleux, F., Reyss, J. L., Bonte, P., & Organo, C. (1994). Concomitant enrichments of uranium, molybdenum and arsenic in suboxic continental margin sediments. Oceanologica Acta, 17(4), 417-429.
Li, S., Yan, W., & Zhang, W. X. (2009). Solvent-free production of nanoscale zero-valent iron (nZVI) with precision milling. Green Chemistry, 11(10), 1618-1626.
Li, X. Q., & Zhang, W. X. (2006). Iron nanoparticles: The core− shell structure and unique properties for Ni (II) sequestration. Langmuir, 22(10), 4638-4642.
Li, X. Q., Elliott, D. W., & Zhang, W. X. (2006). Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Critical reviews in solid state and materials sciences, 31(4), 111-122.
Lien, H. L., & Zhang, W. X. (1999). Transformation of chlorinated methanes by nanoscale iron particles. Journal of Environmental Engineering, 125(11), 1042-1047.
Ling, L., & Zhang, W. X. (2014). Sequestration of arsenate in zero-valent iron nanoparticles: visualization of intraparticle reactions at angstrom resolution. Environmental Science & Technology Letters, 1(7), 305-309.
Ling, L., & Zhang, W. X. (2017). Visualizing arsenate reactions and encapsulation in a single zero-valent iron nanoparticle. Environmental Science & Technology, 51(4), 2288-2294.
Ling, L., Huang, X., Li, M., & Zhang, W. X. (2017). Mapping the reactions in a single zero-valent iron nanoparticle. Environmental Science & Technology, 51(24), 14293-14300.
Liu, Y., Choi, H., Dionysiou, D., & Lowry, G. V. (2005). Trichloroethene hydrodechlorination in water by highly disordered monometallic nanoiron. Chemistry of Materials, 17(21), 5315-5322.
Liu, Y., Majetich, S. A., Tilton, R. D., Sholl, D. S., & Lowry, G. V. (2005). TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environmental Science & Technology, 39(5), 1338-1345.
Mandal, B. K., & Suzuki, K. T. (2002). Arsenic round the world: a review. Talanta, 58(1), 201-235.
Manning, B. A., Hunt, M. L., Amrhein, C., & Yarmoff, J. A. (2002). Arsenic (III) and arsenic (V) reactions with zerovalent iron corrosion products. Environmental Science & Technology, 36(24), 5455-5461.
Masscheleyn, P. H., Delaune, R. D., & Patrick Jr, W. H. (1991). Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environmental Science & Technology, 25(8), 1414-1419.
McGeehan, S. L. (1996). Arsenic sorption and redox reactions: Relevance to transport and remediation. Journal of Environmental Science & Health Part A, 31(9), 2319-2336.
Moore, J. J., Perez, R., Gangopadhyay, A., & Eggert, J. F. (1988). Factors affecting wear in tumbling mills: influence of composition and microstructure. International Journal of Mineral Processing, 22(1-4), 313-343.
Mueller, N. C., Braun, J., Bruns, J., Černík, M., Rissing, P., Rickerby, D., & Nowack, B. (2012). Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environmental Science and Pollution Research, 19(2), 550-558.
Muhammad, S., Kim, H., & Yoon, W. S. (2017). Synchrotron Radiation-Based X-Ray Study on Energy Storage Materials. In X-ray Characterization of Nanostructured Energy Materials by Synchrotron Radiation. IntechOpen.
Nikolaidis, N. P., Dobbs, G. M., & Lackovic, J. A. (2003). Arsenic removal by zero-valent iron: field, laboratory and modeling studies. Water research, 37(6), 1417-1425.
Nurmi, J. T., Tratnyek, P. G., Sarathy, V., Baer, D. R., Amonette, J. E., Pecher, K., ... & Driessen, M. D. (2005). Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environmental Science & Technology, 39(5), 1221-1230.
Ona-Nguema, G., Morin, G., Wang, Y., Foster, A. L., Juillot, F., Calas, G., & Brown Jr, G. E. (2010). XANES evidence for rapid arsenic (III) oxidation at magnetite and ferrihydrite surfaces by dissolved O2 via Fe2+-mediated reactions. Environmental Science & Technology, 44(14), 5416-5422.
Pang, S. Y., Jiang, J., & Ma, J. (2010). Oxidation of sulfoxides and arsenic (III) in corrosion of nanoscale zero valent iron by oxygen: evidence against ferryl ions (Fe (IV)) as active intermediates in Fenton reaction. Environmental Science & Technology, 45(1), 307-312.
Pedersen, H. D., Postma, D., Jakobsen, R., & Larsen, O. (2005). Fast transformation of iron oxyhydroxides by the catalytic action of aqueous Fe (II). Geochimica et Cosmochimica Acta, 69(16), 3967-3977.
Ponder, S. M., Darab, J. G., & Mallouk, T. E. (2000). Remediation of Cr (VI) and Pb (II) aqueous solutions using supported, nanoscale zero-valent iron. Environmental Science & Technology, 34(12), 2564-2569.
Ramos, M. A., Yan, W., Li, X. Q., Koel, B. E., & Zhang, W. X. (2009). Simultaneous oxidation and reduction of arsenic by zero-valent iron nanoparticles: understanding the significance of the core− shell structure. The Journal of Physical Chemistry C, 113(33), 14591-14594.
Reynolds, J. G., Naylor, D. V., & Fendorf, S. E. (1999). Arsenic sorption in phosphate-amended soils during flooding and subsequent aeration. Soil Science Society of America Journal, 63(5), 1149-1156.
Signorini, L., Pasquini, L., Savini, L., Carboni, R., Boscherini, F., Bonetti, E., Giglia, A., Pedio, M., Mahne, N. and Nannarone, S. (2003). Size-dependent oxidation in iron/iron oxide core-shell nanoparticles. Physical Review B, 68(19), 195423.
Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied geochemistry, 17(5), 517-568.
Su, C., & Puls, R. W. (2001). Arsenate and arsenite removal by zerovalent iron: kinetics, redox transformation, and implications for in situ groundwater remediation. Environmental Science & Technology, 35(7), 1487-1492.
Su, C., & Wilkin, R. T. (2005). Arsenate and arsenite sorption on and arsenite oxidation by iron (II, III) hydroxycarbonate green rust. In ACS symposium series (Vol. 915, pp. 25-40). Oxford University Press.
Sun, F., Osseo-Asare, K. A., Chen, Y., & Dempsey, B. A. (2011). Reduction of As (V) to As (III) by commercial ZVI or As (0) with acid-treated ZVI. Journal of hazardous materials, 196, 311-317.
Sun, Y. P., Li, X. Q., Cao, J., Zhang, W. X., & Wang, H. P. (2006). Characterization of zero-valent iron nanoparticles. Advances in colloid and interface science, 120(1-3), 47-56.
Sun, Y., Guan, X., Wang, J., Meng, X., Xu, C., & Zhou, G. (2014). Effect of weak magnetic field on arsenate and arsenite removal from water by zerovalent iron: an XAFS investigation. Environmental Science & Technology, 48(12), 6850-6858.
Tanboonchuy, V., Hsu, J. C., Grisdanurak, N., & Liao, C. H. (2011). Gas-bubbled nano zero-valent iron process for high concentration arsenate removal. Journal of hazardous materials, 186(2-3), 2123-2128.
Thoral, S., Rose, J., Garnier, J. M., Van Geen, A., Refait, P., Traverse, A., Fonda, E., Nahon, D. and Bottero, J.Y. (2005). XAS study of iron and arsenic speciation during Fe (II) oxidation in the presence of As (III). Environmental Science & Technology, 39(24), 9478-9485.
Triszcz, J. M., Porta, A., & Einschlag, F. S. G. (2009). Effect of operating conditions on iron corrosion rates in zero-valent iron systems for arsenic removal. Chemical Engineering Journal, 150(2-3), 431-439.
Tseng, W. P., Chu, H., How, S. W., Fong, J. M., Lin, C. S., & Yeh, S. H. U. (1968). Prevalence of skin cancer in an endemic area of chronic arsenicism in Taiwan. Journal of the national Cancer institute, 40(3), 453-463.
Tuček, J., Prucek, R., Kolařík, J., Zoppellaro, G., Petr, M., Filip, J., Sharma, V.K. and Zbořil, R. (2017). Zero-valent iron nanoparticles reduce arsenites and arsenates to As (0) firmly embedded in Core–Shell superstructure: Challenging strategy of arsenic treatment under anoxic conditions. ACS Sustainable Chemistry & Engineering, 5(4), 3027-3038.
Ure, A. M., & Berrow, M. L. (1982). The elemental constituents of soils. Environmental chemistry, 2, 94-204.
Vinogradov, A. P. (1959). Geochemistry of rare and dispersed chemical elements in soils.
Wang, C. B., & Zhang, W. X. (1997). Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environmental Science & Technology, 31(7), 2154-2156.
Wang, C., Baer, D. R., Amonette, J. E., Engelhard, M. H., Antony, J., & Qiang, Y. (2009). Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles. Journal of the American Chemical Society, 131(25), 8824-8832.
Watanabe, T., Murata, Y., Nakamura, T., Sakai, Y., & Osaki, M. (2009). Effect of zero-valent iron application on cadmium uptake in rice plants grown in cadmium-contaminated soils. Journal of plant nutrition, 32(7), 1164-1172.
Webb, S. M., Gaillard, J. F., Ma, L. Q., & Tu, C. (2003). XAS speciation of arsenic in a hyper-accumulating fern. Environmental Science & Technology, 37(4), 754-760.
Webster, J. G., Marshall, C. P., & Fairbridge, R. W. (1999). Encyclopaedia of geochemistry. Chapman Hall, London, 21-22.
Wei, Y. T., Wu, S. C., Yang, S. W., Che, C. H., Lien, H. L., & Huang, D. H. (2012). Biodegradable surfactant stabilized nanoscale zero-valent iron for in situ treatment of vinyl chloride and 1, 2-dichloroethane. Journal of hazardous materials, 211, 373-380.
World Health Organization, Environment Health Critertia: Arsenic ,1987.
Yan, W., Herzing, A. A., Kiely, C. J., & Zhang, W. X. (2010). Nanoscale zero-valent iron (nZVI): aspects of the core-shell structure and reactions with inorganic species in water. Journal of Contaminant Hydrology, 118(3-4), 96-104.
Yan, W., Lien, H. L., Koel, B. E., & Zhang, W. X. (2013). Iron nanoparticles for environmental clean-up: recent developments and future outlook. Environmental Science: Processes & Impacts, 15(1), 63-77.
Yan, W., Ramos, M. A., Koel, B. E., & Zhang, W. X. (2012). As (III) sequestration by iron nanoparticles: study of solid-phase redox transformations with X-ray photoelectron spectroscopy. The Journal of Physical Chemistry C, 116(9), 5303-5311.
Yan, W., Vasic, R., Frenkel, A. I., & Koel, B. E. (2012). Intraparticle reduction of arsenite (As (III)) by nanoscale zerovalent iron (nZVI) investigated with in situ X-ray absorption spectroscopy. Environmental Science & Technology, 46(13), 7018-7026.
Zhang, W. X. (2003). Nanoscale iron particles for environmental remediation: an overview. Journal of nanoparticle Research, 5(3-4), 323-332.
Zhang, W. X., & Elliott, D. W. (2006). Applications of iron nanoparticles for groundwater remediation. Remediation Journal: The Journal of Environmental Cleanup Costs, Technologies & Techniques, 16(2), 7-21.
國家同步輻射研究中心同步加速器光源簡介。檢自 https://www.nsrrc.org.tw/chinese/lightsource.aspx
畢如蓮(民84)。台灣嘉南平原地下水砷生成途徑與地質環境之初步探討。國立台灣大學地質學研究所碩士論文,77頁。連興隆、張偉賢(民93)。環境奈米技術在地下環境應用之回顧與展望。環境工程會刊,第15卷,第3期,頁22-29。
陳文福、呂學諭、劉聰桂(民99)。台灣地下水之氧化還原狀態與砷濃度。農業工程學報,第56期,第2卷,頁57-70。
劉宇杰(2006)。表面改質之奈米零價鐵及其在處理含鉻污染地下水體之研究。元智大學化學工程與材料科學學系學位論文,201頁。