(3.231.29.122) 您好!臺灣時間:2021/02/25 22:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張琬柔
研究生(外文):Wan-Jou Chang
論文名稱:探討不同時間尺度下奈米零價鐵在水溶液中對砷的降解機制
論文名稱(外文):Unravelling Degradation Pathways of Arsenic by Nanoscale Zero-valent Iron in Aqueous Solution at Different Time Scales
指導教授:劉雅瑄
指導教授(外文):Ya-Hsuan Liou
口試委員:林進榮林居慶侯嘉洪陳啟亮
口試日期:2019-07-19
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:地質科學研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:103
中文關鍵詞:奈米零價鐵原位X光吸收光譜降解機制
DOI:10.6342/NTU201903972
相關次數:
  • 被引用被引用:0
  • 點閱點閱:43
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  奈米級零價鐵(nanoscale Zero-Valent Iron, nZVI)是目前用於地下水與土壤修復最廣泛應用的奈米材料之一,對水中污染物具有轉化與固定化作用,為學界與業界矚目的地下水中重金屬降解技術。本研究利用奈米零價鐵與水溶液中砷污染物進行不同變因之批次實驗,透過不同分析儀器分析不同反應時間長度之固體樣品,及不同時間解析度之X光吸收光譜分析不同時間尺度之反應溶液以得知反應過程中砷鐵變化,包含砷鐵反應初始之以秒為單位的極短時間尺度、水溶液中主要砷移除以小時為單位之中時間尺度,以及砷從水溶液中被移除後和鐵的鍵結關係轉化之以天為單位的長時間尺度分析。
  以還原法製備奈米零價鐵,其顆粒大小範圍為20-50 nm,型態為核殼結構之球狀材料。批次實驗結果顯示,劑量與其降解砷溶液能力成正比,0.1 g/L之奈米零價鐵降解100 ppm三價砷溶液於24小時降解率為60%,劑量0.5 g/L以上則降解率超過95%;奈米零價鐵對三價砷之反應性較等量之五價砷佳;奈米零價鐵在無氧環境下可維持奈米零價鐵之核殼結構特性,故降解之效率較含氧環境佳;長時間反應下,砷並無脫附現象發生,且氧化還原反應持續進行;pH值於中性環境下時,劑量0.5 g/L奈米零價鐵於30分鐘即達到90%的砷移除率。SEM與TEM影像分析結果顯示,部分核殼結構之奈米零價鐵與砷溶液反應後,會形成其他二次礦物而產生片狀、針狀、花簇狀型態之氧化鐵。
  原位X光吸收光譜實驗結果顯示,三價砷溶液與奈米零價鐵反應後會氧化為五價砷;奈米零價鐵之零價訊號隨時間增加而降低,二、三價訊號增強。當反應時間越長,固體樣品中氧化情形越明顯、砷-氧鍵結數量越多;乾燥反應物會使砷-氧、砷-鐵鍵長變短,不影響其氧化情形。於快速掃描X光吸收光譜原位實驗下,奈米零價鐵上的As(III)在極短時間內會被還原,其趨勢和批次實驗之結果相同,由此可知奈米零價鐵的還原能力對移除水溶液中的砷有正向的影響,且其能力與劑量成正比,若劑量越高,還原能力越強。
  本研究結果指出,奈米零價鐵降解水溶液中的砷為一複雜之反應,包含氧化、還原、吸附、共沉澱、螯合等。可分為三個階段,第一階段奈米零價鐵快速將水溶液中砷移除,且瞬間與水反應產生還原性物質,提供強大的還原能力;第二階段奈米零價鐵及其氧化層影響固、液相上砷的轉化(transform),同時鐵砷之間鍵結型態轉變;第三階段為奈米零價鐵與砷之型態持續緩慢地轉變,奈米零價鐵進而有效地將水溶液中的砷固定化(immobilize)於其顆粒上不再釋出至水中。
High levels of arsenic in groundwater influence millions of human health around the world. Nanoscale zero-valent iron (nZVI) has the function of transforming and immobilizing pollutants in aqueous solution, it’s widely recognized as a material with a high potential agent for environmental friendly treatment of groundwater. In this study, the batch experiments of different variables and in-situ experiments were carried out to explore the reaction mechanism between arsenic and nZVI in aqueous solution.
Nano Zero-Valent Iron (nZVI) was syntesized by the reduction of ferric chloride with sodium borohydride, and which particle size ranges from 20 to 50 nm. nZVI is a spherical material having a core-shell structure. The batch experiment results show that the dosage is proportional to its ability to degrade arsenic solution. 0.1 g/L nZVI degrades 100 ppm As(III) solution at a removal efficiency of 60% at 24 hours, and the dosage of 0.5 g/L or more is better than 95%. nZVI is more reactive to As(III) than As(V). The efficiency of nZVI degradation in an anaerobic condition is better than that of aerobic condition due to the maintaince of core-shell structure of nZVI. 0.5 g/L nZVI reaches 90% degeadation in 30 minutes when the pH is in a neutral condition. The SEM and TEM images showed that some of the core-shell structure of nZVI reacting with arsenic solution were transformed to flakes, needles and clusters forms.
In situ X-ray absorption spectroscopy results showed that the As(III) solution reacted with nZVI would oxidize to As(V). The Fe(0) signal of nZVI decreases with time, and the Fe(II) and Fe(III) signals are enhanced. The longer the reaction time, the more obvious the oxidation situation in the solid sample and the more the arsenic-oxygen bond number. Under the quick XAS analysis, As(III) on nZVI will be reduced to lower valence state in a very short time, which is in accordance with the results of batch experiments. It can be speculated that the excellent degradation efficiency is contributed to reduction ability. The higher the dosage, the stronger the reducing ability, and the better the degradation efficiency.
The results of this study indicate that nZVI degrades arsenic in aqueous solution as a complex reaction involving oxidation, reduction, adsorption, coprecipitation, and chelation. It can be divided into three stages. The first stage, nZVI quickly removed arsenic from the aqueous solution and reacted with water to produce a reducing species in a very short time, which providing a powerful reducing ability. The second stage is that nZVI and its oxidate layer affected the transformation of arsenic both in the solid and liquid phases. The third stage was continuous slowly transform between nZVI and arsenic, nZVI was effectively immobilized arsenic in the aqueous solution on its particles and no longer released into the water.
摘要 I
Abstract III
目錄 V
圖目錄 VIII
表目錄 XII
第一章 緒論 1
1-1 研究緣起 1
1-2 研究目的與內容 2
第二章 文獻回顧 3
2-1 砷之簡介 3
2-1-1砷的來源及分布 3
2-1-2環境中砷之水化特性 5
2-1-3砷的危害 7
2-2 奈米零價鐵之簡介 9
2-2-1奈米零價鐵之製備方法 9
2-2-2奈米零價鐵之性質 11
2-2-3奈米零價鐵處理技術之源起 12
2-3 奈米零價鐵移除砷污染物技術發展和研究現況 14
2-3-1奈米零價鐵於地下水整治中之應用 14
2-3-2零價鐵移除砷機制之研究探討 16
第三章 實驗方法及設備 21
3-1研究架構與內容 21
3-2材料製備與實驗藥品 22
3-2-1 實驗藥品 22
3-2-2 奈米零價鐵製備 23
3-3奈米零價鐵氧化實驗 24
3-4批次實驗 24
3-5 X光吸收光譜(XAS)理論及原位實驗方法 26
3-5-1 X光吸收光譜原理 26
3-5-2 同步輻射實驗設備及光譜測量方式 30
3-5-3 快速掃描X光吸收光譜實驗設施 32
3-5-4 原位實驗方法及設置 33
3-6 材料物化特性分析 35
3-6-1 X-射線繞射光譜儀 35
3-6-2 感應耦合電漿原子放射光譜儀 35
3-6-3穿透式電子顯微鏡 36
3-6-4 場發射掃描式電子顯微鏡暨能量散佈分析儀 36
3-6-5 X射線光電子能譜分析儀 37
第四章 結果與討論 38
4-1 奈米零價鐵基本性質分析及特性變化 38
4-1-1奈米零價鐵基本性質 38
4-1-2奈米零價鐵氧化實驗 43
4-2 批次實驗與反應物特性分析 50
4-2-1 劑量對奈米零價鐵移除砷之影響 50
4-2-2 pH值對奈米零價鐵移除砷之影響 59
4-2-3含氧量對奈米零價鐵移除砷之影響 62
4-2-4反應時間對奈米零價鐵移除砷之影響 64
4-2-5鐵種類移除砷之影響 69
4-3 原位(in-situ)X光吸收光譜實驗 70
4-3-1不同劑量之原位實驗 70
4-3-2反應時間及乾燥與否對機制之影響 77
4-3-3快速掃描 X 光吸收光譜原位實驗 80
4-4反應機制探討 88
第五章 結論與建議 91
5-1 結論 91
5-2 建議 92
參考文獻 93
Akter, K. F., Owens, G., Davey, D. E., & Naidu, R. (2005). Arsenic speciation and toxicity in biological systems. In Reviews of environmental contamination and toxicology, 97-149
Amstaetter, K., Borch, T., Larese-Casanova, P., & Kappler, A. (2009). Redox transformation of arsenic by Fe (II)-activated goethite (α-FeOOH). Environmental Science & Technology, 44, 102-108.
Anders, E., & Ebihara, M. (1982). Solar-system abundances of the elements. Geochimica et Cosmochimica Acta, 46, 2363-2380.
Baer, D. R., Gaspar, D. J., Nachimuthu, P., Techane, S. D., & Castner, D. G. (2010). Application of surface chemical analysis tools for characterization of nanoparticles. Analytical and bioanalytical chemistry, 396(3), 983-1002.
Bang, S., Johnson, M. D., Korfiatis, G. P., & Meng, X. (2005). Chemical reactions between arsenic and zero-valent iron in water. Water Research, 39(5), 763-770.
Bhowmick, S., Chakraborty, S., Mondal, P., Van Renterghem, W., Van den Berghe, S., Roman-Ross, G., Chatterjee, D. and Iglesias, M. (2014). Montmorillonite-supported nanoscale zero-valent iron for removal of arsenic from aqueous solution: Kinetics and mechanism. Chemical Engineering Journal, 243, 14-23.
Boyle, R. W., & Jonasson, I. R. (1973). The geochemistry of arsenic and its use as an indicator element in geochemical prospecting. Journal of Geochemical Exploration, 2(3), 251-296.
Braman, R. S., & Foreback, C. C. (1973). Methylated forms of arsenic in the environment. Science, 182(4118), 1247-1249.
Bui, T. H., Kim, C., Hong, S. P., & Yoon, J. (2017). Effective adsorbent for arsenic removal: core/shell structural nano zero-valent iron/manganese oxide. Environmental Science and Pollution Research, 24(31), 24235-24242.
Cao, J., Elliott, D., & Zhang, W. X. (2005). Perchlorate reduction by nanoscale iron particles. Journal of Nanoparticle Research, 7(4-5), 499-506.
Chen, C. J., Chen, C. W., Wu, M. M., & Kuo, T. L. (1992). Cancer potential in liver, lung, bladder and kidney due to ingested inorganic arsenic in drinking water. British journal of cancer, 66(5), 888.
Chen, C. J., Chuang, Y. C., Lin, T. M., & Wu, H. Y. (1985). Malignant neoplasms among residents of a blackfoot disease-endemic area in Taiwan: high-arsenic artesian well water and cancers. Cancer research, 45, 5895-5899.
Chen, K. L., & Wu, H. Y. (1962). Epidemiologic studies on blackfoot disease. 2. A study of source of drinking water in relation to the disease. Taiwan yi xue hui za zhi. Journal of the Formosan Medical Association, 61, 611-618.
Chen, K. P. (1962). Epidemiological studies on Blackfoot disease in Taiwan. 3. Physiochemical characteristics of drinking water in endemic Blackfoot disease area. Memoirs College of Medicine the National Taiwan University, 8, 115-129.
Chen, K. P., & Wu, H. Y. (1969). Epidemiologic studies on blackfoot disease in Taiwan, China. 6. Effect of the piped water supply on occurrence and disease progress of blackfoot disease. Taiwan yi xue hui za zhi. Journal of the Formosan Medical Association, 68(6), 291.
Chen, S. L., Dzeng, S. R., Yang, M. H., Chiu, K. H., Shieh, G. M., & Wai, C. M. (1994). Arsenic species in groundwaters of the blackfoot disease area, Taiwan. Environmental Science & Technology, 28(5), 877-881.
Crane, R. A., & Scott, T. B. (2012). Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. Journal of hazardous materials, 211, 112-125.
Cullen, W. R., & Reimer, K. J. (1989). Arsenic speciation in the environment. Chemical reviews, 89(4), 713-764.
Deuel, L. E., & Swoboda, A. R. (1972). Arsenic Solubility in a Reduced Environment 1. Soil Science Society of America Journal, 36(2), 276-278.
Filip, J., Karlický, F., Marušák, Z., Lazar, P., Černík, M., Otyepka, M., & Zbořil, R. (2014). Anaerobic reaction of nanoscale zerovalent iron with water: mechanism and kinetics. The Journal of Physical Chemistry C, 118(25), 13817-13825.
Furukawa, Y., Kim, J. W., Watkins, J., & Wilkin, R. T. (2002). Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron. Environmental Science & Technology, 36(24), 5469-5475.
Giasuddin, A. B., Kanel, S. R., & Choi, H. (2007). Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal. Environmental Science & Technology, 41(6), 2022-2027.
Gillham, R. W., & O''Hannesin, S. F. (1994). Enhanced degradation of halogenated aliphatics by zero‐valent iron. Groundwater, 32(6), 958-967.
Grosvenor, A. P., Kobe, B. A., Biesinger, M. C., & McIntyre, N. S. (2004). Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surface and Interface Analysis, 36(12), 1564-1574.
Harvey, D. T., & Linton, R. W. (1981). Chemical characterization of hydrous ferric oxides by X-ray photoelectron spectroscopy. Analytical Chemistry, 53(11), 1684-1688.
Hoag, G. E., Collins, J. B., Holcomb, J. L., Hoag, J. R., Nadagouda, M. N., & Varma, R. S. (2009). Degradation of bromothymol blue by ‘greener’nano-scale zero-valent iron synthesized using tea polyphenols. Journal of Materials Chemistry, 19(45), 8671-8677.
Huang, Y. H., & Zhang, T. C. (2005). Effects of dissolved oxygen on formation of corrosion products and concomitant oxygen and nitrate reduction in zero-valent iron systems with or without aqueous Fe2+. Water Research, 39(9), 1751-1760.
Hughes, M. F. (2002). Arsenic toxicity and potential mechanisms of action. Toxicology letters, 133(1), 1-16.
Hwang, Y. H., Kim, D. G., & Shin, H. S. (2011). Mechanism study of nitrate reduction by nano zero valent iron. Journal of Hazardous Materials, 185(2-3), 1513-1521.
Jain, A., Raven, K. P., & Loeppert, R. H. (1999). Arsenite and arsenate adsorption on ferrihydrite: surface charge reduction and net OH-release stoichiometry. Environmental Science & Technology, 33(8), 1179-1184.
Kanel, S. R., Greneche, J. M., & Choi, H. (2006). Arsenic (V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environmental Science & Technology, 40(6), 2045-2050.
Kanel, S. R., Manning, B., Charlet, L., & Choi, H. (2005). Removal of arsenic (III) from groundwater by nanoscale zero-valent iron. Environmental Science & Technology, 39(5), 1291-1298.
Katsoyiannis, I. A., Ruettimann, T., & Hug, S. J. (2008). pH dependence of Fenton reagent generation and As (III) oxidation and removal by corrosion of zero valent iron in aerated water. Environmental Science & Technology, 42(19), 7424-7430.
Katsoyiannis, I. A., Voegelin, A., Zouboulis, A. I., & Hug, S. J. (2015). Enhanced As (III) oxidation and removal by combined use of zero valent iron and hydrogen peroxide in aerated waters at neutral pH values. Journal of hazardous materials, 297, 1-7.
Kuo, T. L. (1964). Arsenic content of artesian well water in an endemic area of chronic arsenic poisoning. Rep. Inst. Pathol., Natl. Taiwan Univ., 20, 7-13.
Legeleux, F., Reyss, J. L., Bonte, P., & Organo, C. (1994). Concomitant enrichments of uranium, molybdenum and arsenic in suboxic continental margin sediments. Oceanologica Acta, 17(4), 417-429.
Li, S., Yan, W., & Zhang, W. X. (2009). Solvent-free production of nanoscale zero-valent iron (nZVI) with precision milling. Green Chemistry, 11(10), 1618-1626.
Li, X. Q., & Zhang, W. X. (2006). Iron nanoparticles: The core− shell structure and unique properties for Ni (II) sequestration. Langmuir, 22(10), 4638-4642.
Li, X. Q., Elliott, D. W., & Zhang, W. X. (2006). Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Critical reviews in solid state and materials sciences, 31(4), 111-122.
Lien, H. L., & Zhang, W. X. (1999). Transformation of chlorinated methanes by nanoscale iron particles. Journal of Environmental Engineering, 125(11), 1042-1047.
Ling, L., & Zhang, W. X. (2014). Sequestration of arsenate in zero-valent iron nanoparticles: visualization of intraparticle reactions at angstrom resolution. Environmental Science & Technology Letters, 1(7), 305-309.
Ling, L., & Zhang, W. X. (2017). Visualizing arsenate reactions and encapsulation in a single zero-valent iron nanoparticle. Environmental Science & Technology, 51(4), 2288-2294.
Ling, L., Huang, X., Li, M., & Zhang, W. X. (2017). Mapping the reactions in a single zero-valent iron nanoparticle. Environmental Science & Technology, 51(24), 14293-14300.
Liu, Y., Choi, H., Dionysiou, D., & Lowry, G. V. (2005). Trichloroethene hydrodechlorination in water by highly disordered monometallic nanoiron. Chemistry of Materials, 17(21), 5315-5322.
Liu, Y., Majetich, S. A., Tilton, R. D., Sholl, D. S., & Lowry, G. V. (2005). TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environmental Science & Technology, 39(5), 1338-1345.
Mandal, B. K., & Suzuki, K. T. (2002). Arsenic round the world: a review. Talanta, 58(1), 201-235.
Manning, B. A., Hunt, M. L., Amrhein, C., & Yarmoff, J. A. (2002). Arsenic (III) and arsenic (V) reactions with zerovalent iron corrosion products. Environmental Science & Technology, 36(24), 5455-5461.
Masscheleyn, P. H., Delaune, R. D., & Patrick Jr, W. H. (1991). Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environmental Science & Technology, 25(8), 1414-1419.
McGeehan, S. L. (1996). Arsenic sorption and redox reactions: Relevance to transport and remediation. Journal of Environmental Science & Health Part A, 31(9), 2319-2336.
Moore, J. J., Perez, R., Gangopadhyay, A., & Eggert, J. F. (1988). Factors affecting wear in tumbling mills: influence of composition and microstructure. International Journal of Mineral Processing, 22(1-4), 313-343.
Mueller, N. C., Braun, J., Bruns, J., Černík, M., Rissing, P., Rickerby, D., & Nowack, B. (2012). Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environmental Science and Pollution Research, 19(2), 550-558.
Muhammad, S., Kim, H., & Yoon, W. S. (2017). Synchrotron Radiation-Based X-Ray Study on Energy Storage Materials. In X-ray Characterization of Nanostructured Energy Materials by Synchrotron Radiation. IntechOpen.
Nikolaidis, N. P., Dobbs, G. M., & Lackovic, J. A. (2003). Arsenic removal by zero-valent iron: field, laboratory and modeling studies. Water research, 37(6), 1417-1425.
Nurmi, J. T., Tratnyek, P. G., Sarathy, V., Baer, D. R., Amonette, J. E., Pecher, K., ... & Driessen, M. D. (2005). Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environmental Science & Technology, 39(5), 1221-1230.
Ona-Nguema, G., Morin, G., Wang, Y., Foster, A. L., Juillot, F., Calas, G., & Brown Jr, G. E. (2010). XANES evidence for rapid arsenic (III) oxidation at magnetite and ferrihydrite surfaces by dissolved O2 via Fe2+-mediated reactions. Environmental Science & Technology, 44(14), 5416-5422.
Pang, S. Y., Jiang, J., & Ma, J. (2010). Oxidation of sulfoxides and arsenic (III) in corrosion of nanoscale zero valent iron by oxygen: evidence against ferryl ions (Fe (IV)) as active intermediates in Fenton reaction. Environmental Science & Technology, 45(1), 307-312.
Pedersen, H. D., Postma, D., Jakobsen, R., & Larsen, O. (2005). Fast transformation of iron oxyhydroxides by the catalytic action of aqueous Fe (II). Geochimica et Cosmochimica Acta, 69(16), 3967-3977.
Ponder, S. M., Darab, J. G., & Mallouk, T. E. (2000). Remediation of Cr (VI) and Pb (II) aqueous solutions using supported, nanoscale zero-valent iron. Environmental Science & Technology, 34(12), 2564-2569.
Ramos, M. A., Yan, W., Li, X. Q., Koel, B. E., & Zhang, W. X. (2009). Simultaneous oxidation and reduction of arsenic by zero-valent iron nanoparticles: understanding the significance of the core− shell structure. The Journal of Physical Chemistry C, 113(33), 14591-14594.
Reynolds, J. G., Naylor, D. V., & Fendorf, S. E. (1999). Arsenic sorption in phosphate-amended soils during flooding and subsequent aeration. Soil Science Society of America Journal, 63(5), 1149-1156.
Signorini, L., Pasquini, L., Savini, L., Carboni, R., Boscherini, F., Bonetti, E., Giglia, A., Pedio, M., Mahne, N. and Nannarone, S. (2003). Size-dependent oxidation in iron/iron oxide core-shell nanoparticles. Physical Review B, 68(19), 195423.
Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied geochemistry, 17(5), 517-568.
Su, C., & Puls, R. W. (2001). Arsenate and arsenite removal by zerovalent iron: kinetics, redox transformation, and implications for in situ groundwater remediation. Environmental Science & Technology, 35(7), 1487-1492.
Su, C., & Wilkin, R. T. (2005). Arsenate and arsenite sorption on and arsenite oxidation by iron (II, III) hydroxycarbonate green rust. In ACS symposium series (Vol. 915, pp. 25-40). Oxford University Press.
Sun, F., Osseo-Asare, K. A., Chen, Y., & Dempsey, B. A. (2011). Reduction of As (V) to As (III) by commercial ZVI or As (0) with acid-treated ZVI. Journal of hazardous materials, 196, 311-317.
Sun, Y. P., Li, X. Q., Cao, J., Zhang, W. X., & Wang, H. P. (2006). Characterization of zero-valent iron nanoparticles. Advances in colloid and interface science, 120(1-3), 47-56.
Sun, Y., Guan, X., Wang, J., Meng, X., Xu, C., & Zhou, G. (2014). Effect of weak magnetic field on arsenate and arsenite removal from water by zerovalent iron: an XAFS investigation. Environmental Science & Technology, 48(12), 6850-6858.
Tanboonchuy, V., Hsu, J. C., Grisdanurak, N., & Liao, C. H. (2011). Gas-bubbled nano zero-valent iron process for high concentration arsenate removal. Journal of hazardous materials, 186(2-3), 2123-2128.
Thoral, S., Rose, J., Garnier, J. M., Van Geen, A., Refait, P., Traverse, A., Fonda, E., Nahon, D. and Bottero, J.Y. (2005). XAS study of iron and arsenic speciation during Fe (II) oxidation in the presence of As (III). Environmental Science & Technology, 39(24), 9478-9485.
Triszcz, J. M., Porta, A., & Einschlag, F. S. G. (2009). Effect of operating conditions on iron corrosion rates in zero-valent iron systems for arsenic removal. Chemical Engineering Journal, 150(2-3), 431-439.
Tseng, W. P., Chu, H., How, S. W., Fong, J. M., Lin, C. S., & Yeh, S. H. U. (1968). Prevalence of skin cancer in an endemic area of chronic arsenicism in Taiwan. Journal of the national Cancer institute, 40(3), 453-463.
Tuček, J., Prucek, R., Kolařík, J., Zoppellaro, G., Petr, M., Filip, J., Sharma, V.K. and Zbořil, R. (2017). Zero-valent iron nanoparticles reduce arsenites and arsenates to As (0) firmly embedded in Core–Shell superstructure: Challenging strategy of arsenic treatment under anoxic conditions. ACS Sustainable Chemistry & Engineering, 5(4), 3027-3038.
Ure, A. M., & Berrow, M. L. (1982). The elemental constituents of soils. Environmental chemistry, 2, 94-204.
Vinogradov, A. P. (1959). Geochemistry of rare and dispersed chemical elements in soils.
Wang, C. B., & Zhang, W. X. (1997). Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environmental Science & Technology, 31(7), 2154-2156.
Wang, C., Baer, D. R., Amonette, J. E., Engelhard, M. H., Antony, J., & Qiang, Y. (2009). Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles. Journal of the American Chemical Society, 131(25), 8824-8832.
Watanabe, T., Murata, Y., Nakamura, T., Sakai, Y., & Osaki, M. (2009). Effect of zero-valent iron application on cadmium uptake in rice plants grown in cadmium-contaminated soils. Journal of plant nutrition, 32(7), 1164-1172.
Webb, S. M., Gaillard, J. F., Ma, L. Q., & Tu, C. (2003). XAS speciation of arsenic in a hyper-accumulating fern. Environmental Science & Technology, 37(4), 754-760.
Webster, J. G., Marshall, C. P., & Fairbridge, R. W. (1999). Encyclopaedia of geochemistry. Chapman Hall, London, 21-22.
Wei, Y. T., Wu, S. C., Yang, S. W., Che, C. H., Lien, H. L., & Huang, D. H. (2012). Biodegradable surfactant stabilized nanoscale zero-valent iron for in situ treatment of vinyl chloride and 1, 2-dichloroethane. Journal of hazardous materials, 211, 373-380.
World Health Organization, Environment Health Critertia: Arsenic ,1987.
Yan, W., Herzing, A. A., Kiely, C. J., & Zhang, W. X. (2010). Nanoscale zero-valent iron (nZVI): aspects of the core-shell structure and reactions with inorganic species in water. Journal of Contaminant Hydrology, 118(3-4), 96-104.
Yan, W., Lien, H. L., Koel, B. E., & Zhang, W. X. (2013). Iron nanoparticles for environmental clean-up: recent developments and future outlook. Environmental Science: Processes & Impacts, 15(1), 63-77.
Yan, W., Ramos, M. A., Koel, B. E., & Zhang, W. X. (2012). As (III) sequestration by iron nanoparticles: study of solid-phase redox transformations with X-ray photoelectron spectroscopy. The Journal of Physical Chemistry C, 116(9), 5303-5311.
Yan, W., Vasic, R., Frenkel, A. I., & Koel, B. E. (2012). Intraparticle reduction of arsenite (As (III)) by nanoscale zerovalent iron (nZVI) investigated with in situ X-ray absorption spectroscopy. Environmental Science & Technology, 46(13), 7018-7026.
Zhang, W. X. (2003). Nanoscale iron particles for environmental remediation: an overview. Journal of nanoparticle Research, 5(3-4), 323-332.
Zhang, W. X., & Elliott, D. W. (2006). Applications of iron nanoparticles for groundwater remediation. Remediation Journal: The Journal of Environmental Cleanup Costs, Technologies & Techniques, 16(2), 7-21.
國家同步輻射研究中心同步加速器光源簡介。檢自 https://www.nsrrc.org.tw/chinese/lightsource.aspx
畢如蓮(民84)。台灣嘉南平原地下水砷生成途徑與地質環境之初步探討。國立台灣大學地質學研究所碩士論文,77頁。
連興隆、張偉賢(民93)。環境奈米技術在地下環境應用之回顧與展望。環境工程會刊,第15卷,第3期,頁22-29。
陳文福、呂學諭、劉聰桂(民99)。台灣地下水之氧化還原狀態與砷濃度。農業工程學報,第56期,第2卷,頁57-70。
劉宇杰(2006)。表面改質之奈米零價鐵及其在處理含鉻污染地下水體之研究。元智大學化學工程與材料科學學系學位論文,201頁。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔