(3.239.33.139) 您好!臺灣時間:2021/03/05 18:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳玟卉
研究生(外文):Wen-Hui Chen
論文名稱:以三種反應剖面與不同曲線擬合方式探討主導動力學曲線模型之普適性
論文名稱(外文):A Study on the Universality of the Master Kinetics Curve Model: Using Three Types of Reaction Profiles and Different Curve Fitting Methods
指導教授:鄧茂華鄧茂華引用關係
指導教授(外文):Mao-Hua Teng
口試委員:劉雅瑄王玉瑞郭力維
口試委員(外文):Ya-Hsuan LiouYuh-Ruey WangLi-Wei Kuo
口試日期:2018-12-17
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:地質科學研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:90
中文關鍵詞:反應動力學主導動力學曲線模型反應剖面曲線擬合水鎂石熱分解反應
DOI:10.6342/NTU201804290
相關次數:
  • 被引用被引用:0
  • 點閱點閱:44
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
主導動力學曲線(Master Kinetics Curve, MKC)模型是以一般化學反應速率方程式為基礎推導的動力學模型,其具有使用方便、預測準確、應用範圍廣三個主要優點。前人研究中已將此模型成功應用在熱分解反應、相變反應、燒結反應與油母質生油反應,說明主導動力學曲線模型有可能是一種具普適性之動力學模型。所有化學反應皆可以原始資料反應剖面曲線型態分為三型,S型、減速型與加速型。然而,上述已成功應用之反應的反應剖面曲線型態皆為S型,其他曲線型態則尚未有系統的測試其主導動力學曲線模型之適用性與限制。故本研究以水鎂石熱分解反應探討減速型原始資料反應剖面的模型適用性,擬合數據包含熱重分析實驗數據、熱膨脹分析實驗數據、理論合成數據與文獻數據。主導動力學曲線模型分析結果顯示,除了熱膨脹分析實驗數據外,此模型可用於減速型反應,並得到擬合良好之S型預測曲線與視活化能,其視活化能分別為117.5 kJ/mol、135.0 kJ/mol、153.2 kJ/mol、147.0 kJ/mol。在熱膨脹實驗中,坯體長度變化綜合了坯體熱膨脹與熱分解反應造成之收縮,而總收縮量卻只有1.6%,使熱膨脹的影響無法被忽略,也造成主導動力學曲線之擬合不佳。加速型原始資料反應剖面方面則以焦碳氧化反應文獻數據與power-law理論合成數據進行分析討論,兩種數據皆可以得到擬合良好之主導動力學曲線,而且其曲線型態為指數型。綜合減速型與加速型反應剖面的結果顯示,主導動力學曲線模型適用性與原始資料反應剖面之曲線型態無關,且其應用限制只與一般化學反應速率方程式相關。只要反應為單步驟反應或為有速率決定步驟之多步驟反應,即可以利用主導動力學曲線模型進行動力學分析。另外,主導動力學曲線模型並未限制擬合曲線之型態,故本研究嘗試以五種不同曲線擬合方程式討論S型與指數型主導動力學曲線的擬合情況,擬合結果顯示本研究目前使用的S型曲線擬合方程式為最佳擬合方式,其擬合結果佳且適用於各種曲線型態。由於三種不同反應剖面之原始資料包含所有反應機制之反應,故本研究顯示主導動力學曲線模型為具有普適性之動力學模型且拓展了模型的應用範圍。
The Master Kinetics Curve (MKC) model is developed from a general reaction rate equation. The MKC model has three advantages easy to use, accurate predictions and wide applications. In previous studies, researchers had already applied the model to thermal decomposition, phase transformation, sintering reaction, and kerogen-to-oil conversion to show the possibility of the MKC model serving as a universal kinetic model. However, the reaction profile of the reaction mentioned above is S-shaped. Reactions with different reaction profiles (i.e. accelerating-type and decelerating-type) have not yet been tested.
In this study, the thermogravimetric analysis data, dilatometric analysis data, theoretical synthetic data, and literature data on brucite thermal decomposition have been applied to the MKC model to explore whether the reactions in which the reaction profile is the decelerating-type, can be applied to the MKC model. The results show that the MKC model can be used to analyze and predict the decomposition reaction of brucite except for the dilatometric analysis data. The apparent activation energies of the thermogravimetric analysis data, dilatometric analysis data, theoretical synthetic data, and literature data were 135.0 kJ/mol, 153.2 kJ/mol, 147.0 kJ/mol, respectively. In the dilatometric experiment, the length change of green compact combines the shrinkage caused by the thermal decomposition and thermal expansion of the green compact. Since the shrinkage of the thermal decomposition reaction is only 1.6%, the effect of thermal expansion cannot be ignored. This situation caused the bad fitting of the MKC, because the MKC model cannot use single MKC to describe the reaction process with multiple reactions combined. To explore whether the reactions in which the reaction profile is accelerating-type can be applied to the MKC, theoretical synthetic data and literature data on coke oxidation reaction have been applied to the MKC model. The MKC results show that good fitting prediction curves and apparent activation energies can be obtained. The applicability of the MKC model is independent of the reaction profile. The application limits of the MKC model are only related to the general chemical reaction rate equation. If the reaction is a one-step or multi-step reaction with a rate-determining step, the kinetic study can be conducted using the MKC model.
The MKC model does not limit the curve fitting method. Therefore, this study uses five different curve fitting equations to discuss the fittings of the S-type and accelerating-type MKCs. The fitting results show that the S-type fitting equation, which is currently used in this study, is the best fitting method. The S-type fitting equation has great fitting goodness and is suitable for various curves. This study proves that reactions with three types of reaction profiles can be applied to the MKC model, which indicates that reactions with all reaction models can be applied. Therefore, the MKCmodel is a universal kinetic model.
致謝 i
中文摘要 ii
Abstract iii
目錄 v
圖目錄 viii
表目錄 x
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究方法 3
1.3 各章內容簡介 4
第二章 文獻回顧 5
2.1 反應動力學 6
2.1.1 反應動力學模型簡介 6
2.1.2 主導燒結曲線模型 9
2.1.3 主導動力學曲線模型 11
2.2 主導動力學曲線模型之文獻整理 13
2.2.1 主導動力學曲線模型之普適性 15
2.2.2 主導動力學曲線模型之限制 18
2.3 水鎂石之熱分解反應 21
2.3.1 水鎂石簡介 21
2.3.2 水鎂石之應用與未來潛力 22
2.3.3 水鎂石熱分解反應 22
第三章 實驗方法 25
3.1 研究步驟與流程 25
3.1.1 實驗流程圖 25
3.1.2 實驗步驟 28
3.2 實驗分析儀器 34
3.2.1 單軸壓片機與模具 34
3.2.2 熱重分析儀 36
3.2.3 箱型高溫爐 37
3.2.4 熱膨脹儀 38
3.2.5 X光粉末繞射分析儀 39
3.2.6 比表面積分析儀 41
3.3 主導動力學曲線模型之使用 42
第四章 實驗結果與討論 45
4.1 水鎂石之定性與定量分析結果 45
4.1.1 X光粉末繞射儀分析結果 45
4.1.2 比表面積儀分析結果 46
4.2 水鎂石熱分解反應實驗結果與討論 47
4.2.1 熱重分析結果與討論 47
4.2.2 熱膨脹分析結果與討論 48
4.2.3 熱分解反應後晶相與粒徑討論 51
4.3 水鎂石熱分解反應主導動力學曲線模型分析結果 55
4.3.1 水鎂石熱分解反應之主導動力學曲線 55
4.3.2 視活化能 59
4.3.3 預測曲線 60
4.4 加速型原始資料反應剖面主導動力學曲線模型分析結果 63
4.5 不同曲線擬合方式對主導動力學曲線之影響 66
4.5.1 擬合資料 66
4.5.2 曲線擬合方程式 67
4.5.3 主導動力學曲線模型分析結果 68
4.6 第四章重點整理 71
第五章 結論與建議 74
參考文獻 76
附錄A 實驗數據 81
[1]S. Vyazovkin, A. K. Burnham, J. M. Criado, L. A. Pérez-Maqueda, C. Popescu and N. Sbirrazzuoli (2011) “ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data”, Thermochimica acta, 520(1-2), 1-19.
[2]H. L. Friedman (1964) “Kinetics of thermal degradation of char‐forming plastics from thermogravimetry. Application to a phenolic plastic”, Journal of Polymer Science Part C: Polymer Symposia, Vol. 6, No. 1, 183-195.
[3]T. Ozawa (1965) “A new method of analyzing thermogravimetric data”, Bulletin of the chemical society of Japan, 38(11), 1881-1886.
[4]J. H. Flynn and L. A. Wall (1966) “General treatment of the thermogravimetry of polymers”, J Res Nat Bur Stand, 70(6), 487-523.
[5]J. Flynn (1983) “The isoconversional method for determination of energy of activation at constant heating rates: corrections for the Doyle approximation”, Journal of Thermal Analysis and Calorimetry, 27(1), 95-102.
[6]H. E. Kissinger (1957) “Reaction kinetics in differential thermal analysis”, Analytical chemistry, 29(11), 1702-1706.
[7]S. Y. Wang and M. H. Teng (2010) “Why a master sintering curve model can be applied to the sintering of nano-sized particles?”, Journal of Alloys and Compounds, 504, S336-S339.
[8]H. Su and D. L. Johnson (1996) “Master sintering curve: a practical approach to sintering”, Journal of the American Ceramic Society, 79(12), 3211-3217.
[9]H. Su and D. L. Johnson (1997) “A Practical Approach to Sintering”, The American Ceramic Society Bulletin, 76(2), 72-76.
[10]M. H. Teng, C. H. Liang, Y. T. Chen and C. F. Wu (2002) “Surprising applications of master sintering curve model”, The Chinese Journal of Process Engineering, 2, 195-198.
[11]吳慶豐(1999) “氧化鋁陶瓷之主導燒結曲線研究”,國立台灣大學地質科學系碩士論文。
[12]陳英田(2000) “數種常見氧化物陶瓷之主導燒結曲線以及其應用,國立台灣大學地質科學系碩士論文。
[13]陳鴻文(2001) “碳酸鈣的燒結行為與顏色成因的初步研究”,國立台灣大學地質科學系碩士論文。
[14]梁家豪(2003) “三種分析反應動力學及燒結資料的新方法”,國立台灣大學地質科學系碩士論文。
[15]陳孟霞(2004) “主導曲線模型運用在奈米氧化鋁和奈米二氧化鈦陶瓷粉末燒結之研究”,台灣大學地質科學系碩士論文。
[16]鄧茂華,陳孟霞(2004) “奈米α-氧化鋁之燒結主導曲線”,過程工程學報,vol. 4 suppl. No.2, p.521-526。
[17]張育維(2007) “奈米二氧化鈦之視燒結活化能與相變研究”,國立台灣大學地質科學系碩士論文。
[18]王紹宇(2011) “主導動力學曲線與三種不同動力學模型之比較研究”,國立台灣大學地質科學系碩士論文。
[19]林書弘(2007) “蒸發岩礦物熱分解動力學之研究方法與應用探討”,國立台灣大學地質科學系碩士論文。
[20]林書弘,鄧茂華(2007) “微米方解石熱分解反應的主導曲線”,過程工程學報,vol. 9 suppl. No.2, p.131-134。
[21]陳俐穎(2009) “探討奈米至微米尺度之鑽石氧化反應動力學機制”,國立台灣大學地質科學系碩士論文。
[22]吳尚庭(2012) “藍晶石熱分解反應微結構變化與動力學探討”,國立台灣大學地質科學系碩士論文。
[23]郭迦豪(2015) “利用熱膨脹一探討氫氧基磷灰石之熱分解反應與反應動力學”,國立台灣大學地質科學系碩士論文。
[24]劉羽珊(2018) “利用熱膨脹儀與兩階段燒結法探討氫氧基磷灰石相變溫度範圍及反應動力學”,國立台灣大學地質科學系碩士論文。
[25]連維帆(2010) “銳鈦礦-金紅石與霰石-方解石相變反應之主導動力學研究”,國立台灣大學地質科學系碩士論文。
[26]D. P. Butt, K. S. Lackner, C. H. Wendt, S. D. Conzone, H. Kung, Y. C. Lu and J. K. Bremser (1996) “Kinetics of thermal dehydroxylation and carbonation of magnesium hydroxide”, Journal of the American Ceramic Society, 79(7), 1892-1898.
[27]C. A. Querini and S. C. Fung (1994) “Temperature-programmed oxidation technique: kinetics of coke-O2 reaction on supported metal catalysts”, Applied Catalysis A: General, 117(1), 53-74.
[28]J. D. Hansen, R.P. Rusin, M. H. Teng and D. L. Johnson (1992) “Combined Stage Sintering Model”, Journal of the American Ceramic Society, 75[5], p.1129-35
[29]M. Y. Chu, M. N. Rahaman, L. C. De Jonghe and R. J. Brook (1991) “Effect of heating rate on sintering and coarsening”, Journal of the American Ceramic Society, 74(6), 1217-1225.
[30]R. B. Cook (2001) “Handbook of Mineralogy”, Rocks and Minerals, 76(4), 278.
[31]P. T. Jochym, A. M. Oleś, K. Parlinski, J. Łażewski, P. Piekarz and M. Sternik (2010) “Structure and elastic properties of Mg(OH)2 from density functional theory”, Journal of Physics: Condensed Matter, 22(44), 445403.
[32]S.A. Khan, K. Ali and S. J. Alam (1971) “Brucite deposits of Hindubagh (West Pakistan)”, Pakistan Journal of Scientific and Industrial Research, 14(6), p. 542-545.
[33]Z.D. Hora (1998) “Ultramafic-hosted Chryssotile Asbestos, in Geological Fieldwork 1997”, British Columbia Ministry of Employment and Investment, 1998(1), p. 24K-1- 24K-4.
[34]W. J. Lee, M.F. Fanelli, N. Cava and P.J. Wyllie (2000) “Calciocarbonatite and magnesiocarbonatite rocks and magmas represented in the system CaO-MgO-CO2-H2O at 0.2 GPa”, Mineralogy and Petrology, 68, p. 225-256.
[35]G. J. Simandl, S. Paradis and M. Irvine (2007) “Brucite-industrial mineral with a future”, Geoscience Canada, 34(2), p.57-64
[36]K. Liu, H. Cheng and J. Zhow (2004) “Investigation of brucite-fiber-reinforced concrete”, Cement and Concrete Research, 34(11), p.1981-1986.
[37]J. Kus and J. Mavis (2001) “Britannia mitigation program – interim treatment, Britannia Mine Remediation Project”, Corporate Land and Resource Governance. Ministry of Sustainable Resource Management, 2 p.
[38]R. N. Rothon and P. R. Hornsby (1996) “Flame retardant effects of magnesium hydroxide”, Polymer Degradation and Stability, 54(2-3), p.383-385.
[39]M. A. Shand (2006) “Calcination of Magnesium Hydroxide and Carbonate”, The Chemistry and Technology of Magnesia, p.83-96.
[40]J. F. Goodman (1958) “The decomposition of magnesium hydroxide in an electron microscope”, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 247, p. 346-352.
[41]M. C. Ball and H. F. W. Taylor (1961) “The dehydration of brucite”, Mineralogical Magazine, 32(253), p.754-766.
[42]G. W. Brindley (1963) “Crystallographic aspects of some decomposition and recrystallization reactions”, Progress in Ceramic Science, 3, p.3-55.
[43]J. D. Hancock and J. H. Sharp (1972) “Method of comparing solid‐state kinetic data and its application to the decomposition of kaolinite, brucite, and BaCO3”, Journal of the American Ceramic Society, 55(2), 74-77.
[44]J. H. Sharp, G. W. Brindley and B. N. Achar (1966) “Numerical data for some commonly used solid state reaction equations”, Journal of the American Ceramic Society, 49(7), 379-382.
[45]汪建民(2014) “材料分析”,第二版,中國材料科學學會。
[46]B. D. Cullity and S. R. Stock (2001) “Elements of X-ray Diffraction (3 rdedition)”, New Jersey, U.S.A.: Prentice Hall.
[47]J.I. Langford and A.J.C. Wilson (1978) “Scherrer after sixty years: a survey and some new results in the determination of crystallite size”, J. Appl. Crystallogr., 11(2), 102-113.
[48]王明光(2003) “實用儀器分析”,合記圖書出版社。
[49]S. Redfern and B. Wood (1992) “Thermal expansion of brucite, Mg(OH)2”, American Mineralogist, 77(9-10), 1129-1132.
[50]陳佩汝(2012) “氧化鎂粉末之早期燒結與水中脈衝雷射碎化”,國立中山大學材料與光電科學學系碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔