|
1.Günes, S., Neugebauer, H. & Sariciftci, N. S. Conjugated Polymer-Based Organic Solar Cells. Chem. Rev. 107, 1324–1338 (2007). 2.Kulkarni, A. P., Tonzola, C. J., Babel, A. & Jenekhe, S. A. Electron Transport Materials for Organic Light-Emitting Diodes. Chem. Mater. 16, 4556–4573 (2004). 3.Zaumseil, J. & Sirringhaus, H. Electron and Ambipolar Transport in Organic Field-Effect Transistors. Chem. Rev. 107, 1296–1323 (2007). 4.Lange, U., Roznyatovskaya, N. V. & Mirsky, V. M. Conducting polymers in chemical sensors and arrays. Anal. Chim. Acta 614, 1–26 (2008). 5.MUHAMMAD MUMTAZ. Synthesis of poly(3,4-ethylenedioxythiophene), polyaniline and their metal-composite nanoobjects by dispersion polymerization. L’Université bordeaux-1 école doctorale des sciences chimiques Docteur Thèse (2009). 6.Heywang, G. & Jonas, F. Poly(alkylenedioxythiophene)s—new, very stable conducting polymers. Advanced Materials 4, 116–118 (1992). 7.Ahonen, H. J., Lukkari, J. & Kankare, J. n- and p-Doped Poly(3,4-ethylenedioxythiophene): Two Electronically Conducting States of the Polymer. Macromolecules 33, 6787–6793 (2000). 8.Reynolds, J. R. et al. Unique variable-gap polyheterocycles for high-contrast dual polymer electrochromic devices. Synthetic Metals 85, 1295–1298 (1997). 9.Cornil, J., Dos Santos, D. A., Beljonne, D. & Bredas, J. L. Electronic Structure of Phenylene Vinylene Oligomers: Influence of Donor/Acceptor Substitutions. J. Phys. Chem. 99, 5604–5611 (1995). 10.Aleshin, A. N., Kiebooms, R. & Heeger, A. J. Metallic conductivity of highly doped poly(3,4-ethylenedioxythiophene). Synthetic Metals 101, 369–370 (1999). 11.Andersson, P. et al. Active Matrix Displays Based on All-Organic Electrochemical Smart Pixels Printed on Paper. Advanced Materials 14, 1460–1464 (2002). 12.Ashizawa, S., Shinohara, Y., Shindo, H., Watanabe, Y. & Okuzaki, H. Polymer FET with a conducting channel. Synthetic Metals 153, 41–44 (2005). 13.Elschner, A. et al. PEDT/PSS for efficient hole-injection in hybrid organic light-emitting diodes. Synthetic Metals 111–112, 139–143 (2000). 14.Carter, S. A., Angelopoulos, M., Karg, S., Brock, P. J. & Scott, J. C. Polymeric anodes for improved polymer light-emitting diode performance. Appl. Phys. Lett. 70, 2067–2069 (1997). 15.Aernouts, T. et al. Printable anodes for flexible organic solar cell modules. Thin Solid Films 451–452, 22–25 (2004). 16.Dietrich, M., Heinze, J., Heywang, G. & Jonas, F. Electrochemical and spectroscopic characterization of polyalkylenedioxythiophenes. Journal of Electroanalytical Chemistry 369, 87–92 (1994). 17.Jonas, F. & Morrison, J. T. 3,4-polyethylenedioxythiophene (PEDT): Conductive coatings technical applications and properties. Synthetic Metals 85, 1397–1398 (1997). 18.Sakmeche, N. et al. Anionic micelles; a new aqueous medium for electropolymerization of poly(3,4-ethylenedioxythiophene) films on Pt electrodes. Chemical Communications 0, 2723–2724 (1996). 19.Sakmeche, N. et al. Application of sodium dodecylsulfate (SDS) micellar solution as an organized medium for electropolymerization of thiophene derivatives in water. Synthetic Metals 84, 191–192 (1997). 20.Yamato, H. et al. Synthesis of free-standing poly(3,4-ethylenedioxythiophene) conducting polymer films on a pilot scale. Synthetic Metals 83, 125–130 (1996). 21.Gustafsson, J. C., Liedberg, B. & Inganäs, O. In situ spectroscopic investigations of electrochromism and ion transport in a poly (3,4-ethylenedioxythiophene) electrode in a solid state electrochemical cell. Solid State Ionics 69, 145–152 (1994). 22.Sakmeche, N. et al. Improvement of the Electrosynthesis and Physicochemical Properties of Poly(3,4-ethylenedioxythiophene) Using a Sodium Dodecyl Sulfate Micellar Aqueous Medium. Langmuir 15, 2566–2574 (1999). 23.Cui, X. & Martin, D. C. Electrochemical deposition and characterization of poly(3,4-ethylenedioxythiophene) on neural microelectrode arrays. Sensors and Actuators B: Chemical 89, 92–102 (2003). 24.Jonas, F., Krafft, W. & Muys, B. Poly(3, 4-ethylenedioxythiophene): Conductive coatings, technical applications and properties. Macromolecular Symposia 100, 169–173 (1995). 25.Pei, Q., Zuccarello, G., Ahlskog, M. & Inganäs, O. Electrochromic and highly stable poly(3,4-ethylenedioxythiophene) switches between opaque blue-black and transparent sky blue. Polymer 35, 1347–1351 (1994). 26.Kudoh, Y., Akami, K. & Matsuya, Y. Properties of chemically prepared polypyrrole with an aqueous solution containing Fe2(SO4)3, a sulfonic surfactant and a phenol derivative. Synthetic Metals 95, 191–196 (1998). 27.de Leeuw, D. M., Kraakman, P. A., Bongaerts, P. F. G., Mutsaers, C. M. J. & Klaassen, D. B. M. Electroplating of conductive polymers for the metallization of insulators. Synthetic Metals 66, 263–273 (1994). 28.Skotheim, T. A., Reynolds, J. & Reynolds, J. Conjugated Polymers : Processing and Applications. (CRC Press, 2006). doi:10.1201/b10739 29.Im, S. G. & Gleason, K. K. Systematic Control of the Electrical Conductivity of Poly(3,4-ethylenedioxythiophene) via Oxidative Chemical Vapor Deposition. Macromolecules 40, 6552–6556 (2007). 30.Bhattacharyya, D., Howden, R. M., Borrelli, D. C. & Gleason, K. K. Vapor phase oxidative synthesis of conjugated polymers and applications. Journal of Polymer Science Part B: Polymer Physics 50, 1329–1351 (2012). 31.Ali, M. A., Kim, H. H., Lee, C. Y., Soh, H. S. & Lee, J. G. Effects of the FeCl3 concentration on the polymerization of conductive poly(3,4-ethylenedioxythiophene) thin films on (3-aminopropyl) trimethoxysilane monolayer-coated SiO2 surfaces. Met. Mater. Int. 15, 977–981 (2009). 32.Winther-Jensen, B., Chen, J., West, K. & Wallace, G. Vapor Phase Polymerization of Pyrrole and Thiophene Using Iron(III) Sulfonates as Oxidizing Agents. Macromolecules 37, 5930–5935 (2004). 33.Subramanian, P., Clark, N., Winther-Jensen, B., MacFarlane, D. & Spiccia, L. Vapour-Phase Polymerization of Pyrrole and 3,4-Ethylenedioxythiophene Using Iron(iii) 2,4,6-Trimethylbenzenesulfonate. Aust. J. Chem. 62, 133–139 (2009). 34.Subramanian, P. et al. Vapour phase polymerisation of pyrrole induced by iron(III) alkylbenzenesulfonate salt oxidising agents. Synthetic Metals 158, 704–711 (2008). 35.Lock, J. P., Im, S. G. & Gleason, K. K. Oxidative Chemical Vapor Deposition of Electrically Conducting Poly(3,4-ethylenedioxythiophene) Films. Macromolecules 39, 5326–5329 (2006). 36.Winther-Jensen, B., Breiby, D. W. & West, K. Base inhibited oxidative polymerization of 3,4-ethylenedioxythiophene with iron(III)tosylate. Synthetic Metals 152, 1–4 (2005). 37.Fabretto, M., Müller, M., Zuber, K. & Murphy, P. Influence of PEG-ran-PPG Surfactant on Vapour Phase Polymerised PEDOT Thin Films. Macromolecular Rapid Communications 30, 1846–1851 (2009). 38.Fabretto, M. et al. High conductivity PEDOT resulting from glycol/oxidant complex and glycol/polymer intercalation during vacuum vapour phase polymerisation. Polymer 52, 1725–1730 (2011). 39.Brooke, R. et al. Recent advances in the synthesis of conducting polymers from the vapour phase. Progress in Materials Science 86, 127–146 (2017). 40.Coclite, A. M. et al. 25th anniversary article: CVD polymers: a new paradigm for surface modification and device fabrication. Adv. Mater. Weinheim 25, 5392–5423 (2013). 41.Heydari Gharahcheshmeh, M. & Gleason, K. K. Device Fabrication Based on Oxidative Chemical Vapor Deposition (oCVD) Synthesis of Conducting Polymers and Related Conjugated Organic Materials. Advanced Materials Interfaces 6, 1801564 (2019). 42.Castro‐Carranza, A. et al. Effects of FeCl3 as oxidizing agent on the conduction mechanisms in polypyrrole (PPy)/pc–ZnO hybrid heterojunctions grown by oxidative chemical vapor deposition. Journal of Polymer Science Part B: Polymer Physics 54, 1537–1544 (2016). 43.M. Howden, R., D. McVay, E. & K. Gleason, K. oCVD poly(3,4-ethylenedioxythiophene) conductivity and lifetime enhancement via acid rinse dopant exchange. Journal of Materials Chemistry A 1, 1334–1340 (2013). 44.Chelawat, H., Vaddiraju, S. & Gleason, K. Conformal, Conducting Poly(3,4-ethylenedioxythiophene) Thin Films Deposited Using Bromine as the Oxidant in a Completely Dry Oxidative Chemical Vapor Deposition Process. Chem. Mater. 22, 2864–2868 (2010). 45.Kaviani, S., Mohammadi Ghaleni, M., Tavakoli, E. & Nejati, S. Electroactive and Conformal Coatings of Oxidative Chemical Vapor Deposition Polymers for Oxygen Electroreduction. ACS Appl. Polym. Mater. 1, 552–560 (2019). 46.Atanasov, S. E. et al. Highly Conductive and Conformal Poly(3,4-ethylenedioxythiophene) (PEDOT) Thin Films via Oxidative Molecular Layer Deposition. Chem. Mater. 26, 3471–3478 (2014). 47.Kim, D. H., Atanasov, S. E., Lemaire, P., Lee, K. & Parsons, G. N. Platinum-Free Cathode for Dye-Sensitized Solar Cells Using Poly(3,4-ethylenedioxythiophene) (PEDOT) Formed via Oxidative Molecular Layer Deposition. ACS Appl. Mater. Interfaces 7, 3866–3870 (2015). 48.Knez, M., Nielsch, K. & Niinistö, L. Synthesis and Surface Engineering of Complex Nanostructures by Atomic Layer Deposition. Advanced Materials 19, 3425–3438 (2007). 49.Wang, W. et al. Conductive Polymer–Inorganic Hybrid Materials through Synergistic Mutual Doping of the Constituents. ACS Appl. Mater. Interfaces 9, 27964–27971 (2017). 50.Wang, W. Vapor Phase Infiltration (VPI) and Doping of Conducting Polymers. (2017). 51.Wang, W. et al. Tuning the Conductivity of Polyaniline through Doping by Means of Single Precursor Vapor Phase Infiltration. Advanced Materials Interfaces 4, 1600806 (2017). 52.Wang, W. et al. Efficient and controllable vapor to solid doping of the polythiophene P3HT by low temperature vapor phase infiltration. J. Mater. Chem. C 5, 2686–2694 (2017). 53.Huang, J. & Kaner, R. B. Nanofiber formation in the chemical polymerization of aniline: a mechanistic study. Angew. Chem. Int. Ed. Engl. 43, 5817–5821 (2004). 54.Lee, S.-H., Lee, D.-H., Lee, K. & Lee, C.-W. High-Performance Polyaniline Prepared via Polymerization in a Self-Stabilized Dispersion. Advanced Functional Materials 15, 1495–1500 (2005). 55.Das, D., Datta, A. & Contractor, A. Q. Doping of polyaniline with 6-cyano-2-naphthol. J Phys Chem B 118, 12993–13001 (2014). 56.Stejskal, J., Sapurina, I., Trchová, M. & Prokeš, J. Protonation of Polyaniline with 3-Nitro-1,2,4-triazol-5-one. Chem. Mater. 14, 3602–3606 (2002). 57.Ryu, K. S., Moon, B. W., Joo, J. & Chang, S. H. Characterization of highly conducting lithium salt doped polyaniline films prepared from polymer solution. polymer 42, 9355–9360 (2001). 58.Chen, S.-A. & Lin, L.-C. Polyaniline Doped by the New Class of Dopant, Ionic Salt: Structure and Properties. Macromolecules 28, 1239–1245 (1995). 59.Chaudhuri, D., Kumar, A., Rudra, I. & Sarma, D. D. Synthesis and Spectroscopic Characterization of Highly Conducting BF3-Doped Polyaniline. Advanced Materials 13, 1548–1551 (2001). 60.Kulszewicz-Bajer, I. et al. Lewis Acid Doped Polyaniline: Preparation and Spectroscopic Characterization. Chem. Mater. 11, 552–556 (1999). 61.Dimitriev, O. P. Doping of Polyaniline by Transition-Metal Salts. Macromolecules 37, 3388–3395 (2004). 62.Izumi, C. M. S., Ferreira, A. M. D. C., Constantino, V. R. L. & Temperini, M. L. A. Studies on the Interaction of Emeraldine Base Polyaniline with Cu(II), Fe(III), and Zn(II) Ions in Solutions and Films. Macromolecules 40, 3204–3212 (2007). 63.Gregorczyk, K. & Knez, M. Hybrid nanomaterials through molecular and atomic layer deposition: Top down, bottom up, and in-between approaches to new materials. Progress in Materials Science 75, 1–37 (2016). 64.Wang, X. et al. High electrical conductivity and carrier mobility in oCVD PEDOT thin films by engineered crystallization and acid treatment. Science Advances 4, eaat5780 (2018). 65.Zhao, Q., Jamal, R., Zhang, L., Wang, M. & Abdiryim, T. The structure and properties of PEDOT synthesized by template-free solution method. Nanoscale Res Lett 9, 557 (2014). 66.Aasmundtveit, K. E. et al. Structure of thin films of poly(3,4-ethylenedioxythiophene). Synthetic Metals 101, 561–564 (1999). 67.Mitraka, E. et al. Oxygen-induced doping on reduced PEDOT. J. Mater. Chem. A 5, 4404–4412 (2017). 68.Terzi, F. et al. New Insights on the Interaction between Thiophene Derivatives and Au Surfaces. The Case of 3,4-Ethylenedioxythiophene and the Relevant Polymer. J. Phys. Chem. C 115, 17836–17844 (2011). 69.C.D. Wagner, A.V. Naumkin, A. Kraut-Vass, J.W. Allison, C.J. Powell, J.R.Jr. Rumble. Standard Reference Database 20, Version 3.4 (web version). (2003). 70.Brokken-Zijp, J. C. M., van Asselen, O. L. J., Kleinjan, W. E., van de Belt, R. & de With, G. Photocatalytic Properties of Tin Oxide and Antimony-Doped Tin Oxide Nanoparticles. Journal of Nanotechnology (2011). doi:10.1155/2011/106254 71.Nie, T., Zhang, K., Xu, J., Lu, L. & Bai, L. A facile one-pot strategy for the electrochemical synthesis of poly(3,4-ethylenedioxythiophene)/Zirconia nanocomposite as an effective sensing platform for vitamins B2, B6 and C. Journal of Electroanalytical Chemistry 717–718, 1–9 (2014). 72.Kim, J., Kim, E., Won, Y., Lee, H. & Suh, K. The preparation and characteristics of conductive poly(3,4-ethylenedioxythiophene) thin film by vapor-phase polymerization. Synthetic Metals 139, 485–489 (2003). 73.Hohnholz, D., MacDiarmid, A. G., Sarno, D. M. & Wayne E. Jones, J. Uniform thin films of poly-3,4-ethylenedioxythiophene (PEDOT) prepared by in-situ deposition. Chem. Commun. 2444–2445 (2001). doi:10.1039/B107130K 74.Ahonen, H. J., Lukkari, J. & Kankare, J. n- and p-Doped Poly(3,4-ethylenedioxythiophene): Two Electronically Conducting States of the Polymer. Macromolecules 33, 6787–6793 (2000). 75.Cho, M. S., Kim, S. Y., Nam, J. D. & Lee, Y. Preparation of PEDOT/Cu composite film by in situ redox reaction between EDOT and copper(II) chloride. Synthetic Metals 158, 865–869 (2008). 76.Ng, C. A. & Camacho, D. H. Polymer electrolyte system based on carrageenan-poly(3,4- ethylenedioxythiophene) (PEDOT) composite for dye sensitized solar cell. IOP Conf. Ser.: Mater. Sci. Eng. 79, 012020 (2015). 77.Department of Physics, Institute of Science, Civil Lines, Nagpur – 440 001, India, Kelkar, D., Chourasia, A. & Electronic Science Department, H.P.T.Arts &R.Y.K.Science College, Nasik, India. Structural, Thermal and Electrical Properties of Doped Poly(3,4 ethylenedioxythiophene). ChChT 10, 395–400 (2016).
|