跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/09 17:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:衛怡揚
研究生(外文):Yi-Yang Wei
論文名稱:以五氯化銻為氧化劑進行聚(3,4-乙烯基二氧噻吩)分子層沉積研究
論文名稱(外文):Molecular layer deposition of poly(3,4-ethylenedioxythiophene) with SbCl5 as an oxidant
指導教授:蔡豐羽
指導教授(外文):Feng-Yu Tsai
口試委員:林唯芳童世煌
口試委員(外文):Wei-Fang SuShih-Huang Tung
口試日期:2019-07-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:86
中文關鍵詞:導電高分子34-乙烯基二氧噻吩原子層沉積技術分子層沉積技術氣相聚合五氯化銻
DOI:10.6342/NTU201903941
相關次數:
  • 被引用被引用:0
  • 點閱點閱:187
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究首次以五氯化銻作為氧化劑,藉由分子層沉積技術進行3,4-乙烯基二氧噻吩之氣相聚合以生長聚(3,4-乙烯基二氧噻吩)薄膜,並探討其製程及後處理對薄膜特性之影響。五氯化銻因具有高揮發性,相較其他低揮發性氧化劑更適合應用在低溫沉積技術中。研究結果顯示,在150℃和90℃溫度下分子層沉積之聚(3,4-乙烯基二氧噻吩)膜可分別獲得424和243S / cm的高導電率。我們探討沉積溫度和五氯化銻劑量對薄膜性質的影響,發現:(1)相比於90℃,在150℃沉積時五氯化銻的物理吸附量較低,使其對聚(3,4-乙烯基二氧噻吩)過氧化影響較小,同時單體的遷移率上升,因此薄膜的結晶度更高,並擁有更佳的導電率; (2)對於在150℃下大於 20毫托和在90℃下大於13毫托的五氯化銻劑量下,由於過量的五氯化銻物理吸附導致高分子鏈過度氧化並干擾其結晶,致使導電率降低。另外數種後處理,包含去離子水清洗、熱處理及以多種氣體進行氣相浸潤皆會使高分子的摻雜程度下降,並降低導電率。其可能原因為後處理過程中五氯化銻作為摻雜物被去除所致。
This work investigated the processing, post-processing, and properties of poly(3,4-ethylenedioxythiophene) (PEDOT) thin films fabricated by molecular layer deposition (MLD) through vapor phase polymerization of ethylene dioxythiophene (EDOT) with SbCl5 as an oxidant for the first time, taking advantages of the high volatility of SbCl5 to realize low-temperature deposition. High conductivity of 424 and 243 S/cm was obtained from the MLD PEDOT film deposited at 150 and 90 °C, respectively. Effects of the deposition temperature and SbCl5 dose were as follows: (1) Compared with 90 °C, 150 °C reduced physisorbed SbCl5 while increasing the mobility of the depositing monomers, resulting in higher crystallinity and less over-oxidation by SbCl5 in the PEDOT film, which consequently showed higher conductivity; (2) For SbCl5 doses > 20 mTorr at 150 °C and >13 mTorr at 90 °C, the PEDOT film exhibited reduced conductivity due to excessive physisorbed SbCl5 causing over-oxidation and interfering with the crystallization of PEDOT. Post-processing treatments—including thermal annealing under vacuum, rinse with water, and vapor phase infiltration (VPI) with several precursors—to the PEDOT films decreased the conductivity, likely due to their removal of the residual SbCl5 serving as dopants.
口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract iv
List of Figures ix
List of Tables xiii
Chapter 1 Introduction 1
1.1 Overview of conductive polymer 1
1.2 Introduction and advantages of PEDOT 4
1.3 Development of PEDOT polymerization process 6
1.3.1 Solution process 7
1.3.2 Vapor phase process 10
1.4 Vapor-based layer by layer deposition of polymer films 16
1.4.1 Introduction of atomic layer deposition (ALD) 16
1.4.2 Molecular layer deposition (MLD) of polymer films 19
1.4.3 Vapor phase infiltration (VPI) for post treatment of polymerization 22
1.5 Current progresses 24
1.5.1 PEDOT synthesized with MLD process 24
1.5.2 Doping of Conductive polymer by VPI post treatment 25
1.6 Motivation and objectives statements 27
Chapter 2 Experimental method 29
2.1 Equipment and experiment details 29
2.1.1 MLD deposition system 29
2.1.2 Fabrication of MLD PEDOT thin film 29
2.1.3 DI water and acid rinse for post treatment 31
2.1.4 VPI process 31
2.2 Thin film characteristic analysis 32
2.2.1 Measurements of electrical conductivity 32
2.2.2 Measurement of thickness (Alpha-step) 33
2.2.3 Fourier transform infrared spectroscopy (FTIR) 33
2.2.4 Raman spectroscopy 33
2.2.5 Grazing incidence X-ray diffraction (GIXRD) 34
2.2.6 X-ray photoelectron spectroscopy (XPS) 34
2.2.7 UV-Visible spectrum 35
Chapter 3 Results and discussion 36
3.1 Growth Characteristic of MLD PEDOT 36
3.2 Effect of growth condition on the conductivity of PEDOT 39
3.2.1 Dose of SbCl5 vapor 39
3.2.2 Deposition temperature 40
3.2.3 Thickness dependence of the conductivity of PEDOT films 42
3.3 Other properties analysis 43
3.3.1 Chemical structure analysis 43
3.3.2 Crystalline structure 48
3.3.3 Elemental analysis 53
3.3.4 Optical property 56
3.4 Influence of post treatment on the properties of MLD PEDOT films 59
3.4.1 Effect of DI water rinse 59
3.4.2 Effect of VPI process 63
Chapter 4 Conclusion 67
References 69
Appendix 81
1.Günes, S., Neugebauer, H. & Sariciftci, N. S. Conjugated Polymer-Based Organic Solar Cells. Chem. Rev. 107, 1324–1338 (2007).
2.Kulkarni, A. P., Tonzola, C. J., Babel, A. & Jenekhe, S. A. Electron Transport Materials for Organic Light-Emitting Diodes. Chem. Mater. 16, 4556–4573 (2004).
3.Zaumseil, J. & Sirringhaus, H. Electron and Ambipolar Transport in Organic Field-Effect Transistors. Chem. Rev. 107, 1296–1323 (2007).
4.Lange, U., Roznyatovskaya, N. V. & Mirsky, V. M. Conducting polymers in chemical sensors and arrays. Anal. Chim. Acta 614, 1–26 (2008).
5.MUHAMMAD MUMTAZ. Synthesis of poly(3,4-ethylenedioxythiophene), polyaniline and their metal-composite nanoobjects by dispersion polymerization. L’Université bordeaux-1 école doctorale des sciences chimiques Docteur Thèse (2009).
6.Heywang, G. & Jonas, F. Poly(alkylenedioxythiophene)s—new, very stable conducting polymers. Advanced Materials 4, 116–118 (1992).
7.Ahonen, H. J., Lukkari, J. & Kankare, J. n- and p-Doped Poly(3,4-ethylenedioxythiophene):  Two Electronically Conducting States of the Polymer. Macromolecules 33, 6787–6793 (2000).
8.Reynolds, J. R. et al. Unique variable-gap polyheterocycles for high-contrast dual polymer electrochromic devices. Synthetic Metals 85, 1295–1298 (1997).
9.Cornil, J., Dos Santos, D. A., Beljonne, D. & Bredas, J. L. Electronic Structure of Phenylene Vinylene Oligomers: Influence of Donor/Acceptor Substitutions. J. Phys. Chem. 99, 5604–5611 (1995).
10.Aleshin, A. N., Kiebooms, R. & Heeger, A. J. Metallic conductivity of highly doped poly(3,4-ethylenedioxythiophene). Synthetic Metals 101, 369–370 (1999).
11.Andersson, P. et al. Active Matrix Displays Based on All-Organic Electrochemical Smart Pixels Printed on Paper. Advanced Materials 14, 1460–1464 (2002).
12.Ashizawa, S., Shinohara, Y., Shindo, H., Watanabe, Y. & Okuzaki, H. Polymer FET with a conducting channel. Synthetic Metals 153, 41–44 (2005).
13.Elschner, A. et al. PEDT/PSS for efficient hole-injection in hybrid organic light-emitting diodes. Synthetic Metals 111–112, 139–143 (2000).
14.Carter, S. A., Angelopoulos, M., Karg, S., Brock, P. J. & Scott, J. C. Polymeric anodes for improved polymer light-emitting diode performance. Appl. Phys. Lett. 70, 2067–2069 (1997).
15.Aernouts, T. et al. Printable anodes for flexible organic solar cell modules. Thin Solid Films 451–452, 22–25 (2004).
16.Dietrich, M., Heinze, J., Heywang, G. & Jonas, F. Electrochemical and spectroscopic characterization of polyalkylenedioxythiophenes. Journal of Electroanalytical Chemistry 369, 87–92 (1994).
17.Jonas, F. & Morrison, J. T. 3,4-polyethylenedioxythiophene (PEDT): Conductive coatings technical applications and properties. Synthetic Metals 85, 1397–1398 (1997).
18.Sakmeche, N. et al. Anionic micelles; a new aqueous medium for electropolymerization of poly(3,4-ethylenedioxythiophene) films on Pt electrodes. Chemical Communications 0, 2723–2724 (1996).
19.Sakmeche, N. et al. Application of sodium dodecylsulfate (SDS) micellar solution as an organized medium for electropolymerization of thiophene derivatives in water. Synthetic Metals 84, 191–192 (1997).
20.Yamato, H. et al. Synthesis of free-standing poly(3,4-ethylenedioxythiophene) conducting polymer films on a pilot scale. Synthetic Metals 83, 125–130 (1996).
21.Gustafsson, J. C., Liedberg, B. & Inganäs, O. In situ spectroscopic investigations of electrochromism and ion transport in a poly (3,4-ethylenedioxythiophene) electrode in a solid state electrochemical cell. Solid State Ionics 69, 145–152 (1994).
22.Sakmeche, N. et al. Improvement of the Electrosynthesis and Physicochemical Properties of Poly(3,4-ethylenedioxythiophene) Using a Sodium Dodecyl Sulfate Micellar Aqueous Medium. Langmuir 15, 2566–2574 (1999).
23.Cui, X. & Martin, D. C. Electrochemical deposition and characterization of poly(3,4-ethylenedioxythiophene) on neural microelectrode arrays. Sensors and Actuators B: Chemical 89, 92–102 (2003).
24.Jonas, F., Krafft, W. & Muys, B. Poly(3, 4-ethylenedioxythiophene): Conductive coatings, technical applications and properties. Macromolecular Symposia 100, 169–173 (1995).
25.Pei, Q., Zuccarello, G., Ahlskog, M. & Inganäs, O. Electrochromic and highly stable poly(3,4-ethylenedioxythiophene) switches between opaque blue-black and transparent sky blue. Polymer 35, 1347–1351 (1994).
26.Kudoh, Y., Akami, K. & Matsuya, Y. Properties of chemically prepared polypyrrole with an aqueous solution containing Fe2(SO4)3, a sulfonic surfactant and a phenol derivative. Synthetic Metals 95, 191–196 (1998).
27.de Leeuw, D. M., Kraakman, P. A., Bongaerts, P. F. G., Mutsaers, C. M. J. & Klaassen, D. B. M. Electroplating of conductive polymers for the metallization of insulators. Synthetic Metals 66, 263–273 (1994).
28.Skotheim, T. A., Reynolds, J. & Reynolds, J. Conjugated Polymers : Processing and Applications. (CRC Press, 2006). doi:10.1201/b10739
29.Im, S. G. & Gleason, K. K. Systematic Control of the Electrical Conductivity of Poly(3,4-ethylenedioxythiophene) via Oxidative Chemical Vapor Deposition. Macromolecules 40, 6552–6556 (2007).
30.Bhattacharyya, D., Howden, R. M., Borrelli, D. C. & Gleason, K. K. Vapor phase oxidative synthesis of conjugated polymers and applications. Journal of Polymer Science Part B: Polymer Physics 50, 1329–1351 (2012).
31.Ali, M. A., Kim, H. H., Lee, C. Y., Soh, H. S. & Lee, J. G. Effects of the FeCl3 concentration on the polymerization of conductive poly(3,4-ethylenedioxythiophene) thin films on (3-aminopropyl) trimethoxysilane monolayer-coated SiO2 surfaces. Met. Mater. Int. 15, 977–981 (2009).
32.Winther-Jensen, B., Chen, J., West, K. & Wallace, G. Vapor Phase Polymerization of Pyrrole and Thiophene Using Iron(III) Sulfonates as Oxidizing Agents. Macromolecules 37, 5930–5935 (2004).
33.Subramanian, P., Clark, N., Winther-Jensen, B., MacFarlane, D. & Spiccia, L. Vapour-Phase Polymerization of Pyrrole and 3,4-Ethylenedioxythiophene Using Iron(iii) 2,4,6-Trimethylbenzenesulfonate. Aust. J. Chem. 62, 133–139 (2009).
34.Subramanian, P. et al. Vapour phase polymerisation of pyrrole induced by iron(III) alkylbenzenesulfonate salt oxidising agents. Synthetic Metals 158, 704–711 (2008).
35.Lock, J. P., Im, S. G. & Gleason, K. K. Oxidative Chemical Vapor Deposition of Electrically Conducting Poly(3,4-ethylenedioxythiophene) Films. Macromolecules 39, 5326–5329 (2006).
36.Winther-Jensen, B., Breiby, D. W. & West, K. Base inhibited oxidative polymerization of 3,4-ethylenedioxythiophene with iron(III)tosylate. Synthetic Metals 152, 1–4 (2005).
37.Fabretto, M., Müller, M., Zuber, K. & Murphy, P. Influence of PEG-ran-PPG Surfactant on Vapour Phase Polymerised PEDOT Thin Films. Macromolecular Rapid Communications 30, 1846–1851 (2009).
38.Fabretto, M. et al. High conductivity PEDOT resulting from glycol/oxidant complex and glycol/polymer intercalation during vacuum vapour phase polymerisation. Polymer 52, 1725–1730 (2011).
39.Brooke, R. et al. Recent advances in the synthesis of conducting polymers from the vapour phase. Progress in Materials Science 86, 127–146 (2017).
40.Coclite, A. M. et al. 25th anniversary article: CVD polymers: a new paradigm for surface modification and device fabrication. Adv. Mater. Weinheim 25, 5392–5423 (2013).
41.Heydari Gharahcheshmeh, M. & Gleason, K. K. Device Fabrication Based on Oxidative Chemical Vapor Deposition (oCVD) Synthesis of Conducting Polymers and Related Conjugated Organic Materials. Advanced Materials Interfaces 6, 1801564 (2019).
42.Castro‐Carranza, A. et al. Effects of FeCl3 as oxidizing agent on the conduction mechanisms in polypyrrole (PPy)/pc–ZnO hybrid heterojunctions grown by oxidative chemical vapor deposition. Journal of Polymer Science Part B: Polymer Physics 54, 1537–1544 (2016).
43.M. Howden, R., D. McVay, E. & K. Gleason, K. oCVD poly(3,4-ethylenedioxythiophene) conductivity and lifetime enhancement via acid rinse dopant exchange. Journal of Materials Chemistry A 1, 1334–1340 (2013).
44.Chelawat, H., Vaddiraju, S. & Gleason, K. Conformal, Conducting Poly(3,4-ethylenedioxythiophene) Thin Films Deposited Using Bromine as the Oxidant in a Completely Dry Oxidative Chemical Vapor Deposition Process. Chem. Mater. 22, 2864–2868 (2010).
45.Kaviani, S., Mohammadi Ghaleni, M., Tavakoli, E. & Nejati, S. Electroactive and Conformal Coatings of Oxidative Chemical Vapor Deposition Polymers for Oxygen Electroreduction. ACS Appl. Polym. Mater. 1, 552–560 (2019).
46.Atanasov, S. E. et al. Highly Conductive and Conformal Poly(3,4-ethylenedioxythiophene) (PEDOT) Thin Films via Oxidative Molecular Layer Deposition. Chem. Mater. 26, 3471–3478 (2014).
47.Kim, D. H., Atanasov, S. E., Lemaire, P., Lee, K. & Parsons, G. N. Platinum-Free Cathode for Dye-Sensitized Solar Cells Using Poly(3,4-ethylenedioxythiophene) (PEDOT) Formed via Oxidative Molecular Layer Deposition. ACS Appl. Mater. Interfaces 7, 3866–3870 (2015).
48.Knez, M., Nielsch, K. & Niinistö, L. Synthesis and Surface Engineering of Complex Nanostructures by Atomic Layer Deposition. Advanced Materials 19, 3425–3438 (2007).
49.Wang, W. et al. Conductive Polymer–Inorganic Hybrid Materials through Synergistic Mutual Doping of the Constituents. ACS Appl. Mater. Interfaces 9, 27964–27971 (2017).
50.Wang, W. Vapor Phase Infiltration (VPI) and Doping of Conducting Polymers. (2017).
51.Wang, W. et al. Tuning the Conductivity of Polyaniline through Doping by Means of Single Precursor Vapor Phase Infiltration. Advanced Materials Interfaces 4, 1600806 (2017).
52.Wang, W. et al. Efficient and controllable vapor to solid doping of the polythiophene P3HT by low temperature vapor phase infiltration. J. Mater. Chem. C 5, 2686–2694 (2017).
53.Huang, J. & Kaner, R. B. Nanofiber formation in the chemical polymerization of aniline: a mechanistic study. Angew. Chem. Int. Ed. Engl. 43, 5817–5821 (2004).
54.Lee, S.-H., Lee, D.-H., Lee, K. & Lee, C.-W. High-Performance Polyaniline Prepared via Polymerization in a Self-Stabilized Dispersion. Advanced Functional Materials 15, 1495–1500 (2005).
55.Das, D., Datta, A. & Contractor, A. Q. Doping of polyaniline with 6-cyano-2-naphthol. J Phys Chem B 118, 12993–13001 (2014).
56.Stejskal, J., Sapurina, I., Trchová, M. & Prokeš, J. Protonation of Polyaniline with 3-Nitro-1,2,4-triazol-5-one. Chem. Mater. 14, 3602–3606 (2002).
57.Ryu, K. S., Moon, B. W., Joo, J. & Chang, S. H. Characterization of highly conducting lithium salt doped polyaniline films prepared from polymer solution. polymer 42, 9355–9360 (2001).
58.Chen, S.-A. & Lin, L.-C. Polyaniline Doped by the New Class of Dopant, Ionic Salt: Structure and Properties. Macromolecules 28, 1239–1245 (1995).
59.Chaudhuri, D., Kumar, A., Rudra, I. & Sarma, D. D. Synthesis and Spectroscopic Characterization of Highly Conducting BF3-Doped Polyaniline. Advanced Materials 13, 1548–1551 (2001).
60.Kulszewicz-Bajer, I. et al. Lewis Acid Doped Polyaniline:  Preparation and Spectroscopic Characterization. Chem. Mater. 11, 552–556 (1999).
61.Dimitriev, O. P. Doping of Polyaniline by Transition-Metal Salts. Macromolecules 37, 3388–3395 (2004).
62.Izumi, C. M. S., Ferreira, A. M. D. C., Constantino, V. R. L. & Temperini, M. L. A. Studies on the Interaction of Emeraldine Base Polyaniline with Cu(II), Fe(III), and Zn(II) Ions in Solutions and Films. Macromolecules 40, 3204–3212 (2007).
63.Gregorczyk, K. & Knez, M. Hybrid nanomaterials through molecular and atomic layer deposition: Top down, bottom up, and in-between approaches to new materials. Progress in Materials Science 75, 1–37 (2016).
64.Wang, X. et al. High electrical conductivity and carrier mobility in oCVD PEDOT thin films by engineered crystallization and acid treatment. Science Advances 4, eaat5780 (2018).
65.Zhao, Q., Jamal, R., Zhang, L., Wang, M. & Abdiryim, T. The structure and properties of PEDOT synthesized by template-free solution method. Nanoscale Res Lett 9, 557 (2014).
66.Aasmundtveit, K. E. et al. Structure of thin films of poly(3,4-ethylenedioxythiophene). Synthetic Metals 101, 561–564 (1999).
67.Mitraka, E. et al. Oxygen-induced doping on reduced PEDOT. J. Mater. Chem. A 5, 4404–4412 (2017).
68.Terzi, F. et al. New Insights on the Interaction between Thiophene Derivatives and Au Surfaces. The Case of 3,4-Ethylenedioxythiophene and the Relevant Polymer. J. Phys. Chem. C 115, 17836–17844 (2011).
69.C.D. Wagner, A.V. Naumkin, A. Kraut-Vass, J.W. Allison, C.J. Powell, J.R.Jr. Rumble. Standard Reference Database 20, Version 3.4 (web version). (2003).
70.Brokken-Zijp, J. C. M., van Asselen, O. L. J., Kleinjan, W. E., van de Belt, R. & de With, G. Photocatalytic Properties of Tin Oxide and Antimony-Doped Tin Oxide Nanoparticles. Journal of Nanotechnology (2011). doi:10.1155/2011/106254
71.Nie, T., Zhang, K., Xu, J., Lu, L. & Bai, L. A facile one-pot strategy for the electrochemical synthesis of poly(3,4-ethylenedioxythiophene)/Zirconia nanocomposite as an effective sensing platform for vitamins B2, B6 and C. Journal of Electroanalytical Chemistry 717–718, 1–9 (2014).
72.Kim, J., Kim, E., Won, Y., Lee, H. & Suh, K. The preparation and characteristics of conductive poly(3,4-ethylenedioxythiophene) thin film by vapor-phase polymerization. Synthetic Metals 139, 485–489 (2003).
73.Hohnholz, D., MacDiarmid, A. G., Sarno, D. M. & Wayne E. Jones, J. Uniform thin films of poly-3,4-ethylenedioxythiophene (PEDOT) prepared by in-situ deposition. Chem. Commun. 2444–2445 (2001). doi:10.1039/B107130K
74.Ahonen, H. J., Lukkari, J. & Kankare, J. n- and p-Doped Poly(3,4-ethylenedioxythiophene):  Two Electronically Conducting States of the Polymer. Macromolecules 33, 6787–6793 (2000).
75.Cho, M. S., Kim, S. Y., Nam, J. D. & Lee, Y. Preparation of PEDOT/Cu composite film by in situ redox reaction between EDOT and copper(II) chloride. Synthetic Metals 158, 865–869 (2008).
76.Ng, C. A. & Camacho, D. H. Polymer electrolyte system based on carrageenan-poly(3,4- ethylenedioxythiophene) (PEDOT) composite for dye sensitized solar cell. IOP Conf. Ser.: Mater. Sci. Eng. 79, 012020 (2015).
77.Department of Physics, Institute of Science, Civil Lines, Nagpur – 440 001, India, Kelkar, D., Chourasia, A. & Electronic Science Department, H.P.T.Arts &R.Y.K.Science College, Nasik, India. Structural, Thermal and Electrical Properties of Doped Poly(3,4 ethylenedioxythiophene). ChChT 10, 395–400 (2016).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top