(3.235.11.178) 您好!臺灣時間:2021/02/26 04:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:徐祐珩
研究生(外文):Ywo-Herng Hsu
論文名稱:原位聚合之壓克力/石墨烯複合材料之阻氣性質研究
論文名稱(外文):Thermosetting Polyacrylate/Graphene Composite for High Performance Gas Barrier Films
指導教授:蔡豐羽
指導教授(外文):Feng-Yu Tsai
口試委員:林唯芳童世煌
口試委員(外文):Wei-Fang SuShih-Huang Tung
口試日期:2019-07-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:75
中文關鍵詞:複合阻氣膜石墨烯壓克力溶劑置換水氣穿透率
DOI:10.6342/NTU201903705
相關次數:
  • 被引用被引用:0
  • 點閱點閱:49
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
高分子由於其低成本和易於加工性而成為最被廣泛使用的阻氣材料之一,但由於高分子的高水氣穿透率,高分子阻氣膜在封裝對水氣敏感的電子元件上的應用會受到很大限制。石墨烯是一種能阻氣性佳的二維材料,因此非常適合與高分子混參,能大幅降低石墨烯/高分子複合材料的水氣穿透率。然而在高分子中均勻分散足量的石墨烯是難以達成的,因此低水氣穿透率的石墨烯/高分子複合材料並不容易製備。本研究為了增進石墨烯的分散性以製備出低水氣穿透率的阻氣膜,首先藉由表面張力的匹配篩選出五種壓克力單體,進行分散性測試以找出分散石墨烯能力最好的壓克力單體。結果發現含有苯基的壓克力單體有較好的分散性,能形成高濃度的石墨烯分散液,尤其是乙氧基化雙酚A二丙烯酸酯(ethoxylated bisphenol-A diacrylate, EBAD)能分散最高濃度的石墨烯。因為在所選的單體中,EBAD上有大量的苯基,能與石墨烯有最好的親和性。接著我們採用溶劑置換法進一步提高了石墨烯在EBAD中的分散濃度。首先將石墨烯分散在已知的好溶劑──N-乙烯基-2-吡咯烷酮(N-vinyl-2-pyrrolidone, NVP)中,然後再交換到EBAD單體中。經過溶劑置換後,石墨烯能更均勻的分散在EBAD中。接著使用光起始劑(2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1, 2-芐基-2-二甲基氨基-1-(4-嗎啉苯基)-丁酮-1)和熱起始劑(2,2′-Azobis (2-methylpropionitrile), 偶氮二異丁腈)去原位聚合石墨烯/EBAD。結果顯示光起始劑並不能固化石墨烯/EBAD複合膜,因為石墨烯會吸收大量的光源,阻礙光起始劑的分解。最後我們藉由熱聚合置備出了石墨烯/EBAD複合阻氣膜並最佳化石墨烯濃度,含有1.4 wt%的石墨烯阻氣膜有最低的水氣穿透率(7 × 10-2 g/m2·day),相較未加入石墨烯的高分子膜,水氣穿透率達到了前所未有的下降幅度,超過99.5%。同時此複合阻氣膜的熱分解溫度提升了28 ℃。此研究透過溶劑交換的方法提升了石墨烯在EBAD中的分散性,並用原位聚合法成功置備出高阻氣性、高熱穩定性且易於加工的石墨烯/壓克力複合薄膜。
Polymers are the most widely used type of gas-barrier materials thanks to their low costs and ease of processing, but their application to sensitive electronic devices has been limited by their high gas permeability. Graphene, a two-dimensional structure that is impermeable to gases, has been identified as a promising filler to decrease the water vapor transmission rate (WVTR) of its polymer matrix by orders of magnitude. However, such a drastic reduction in WVTR from graphene/polymer composites has not been achieved due to the difficulty of uniformly dispersing a sufficient amount of graphene in most polymers. This study addresses this issue with a two-pronged approach: (1) identify acrylate monomers that are good solvents of graphene through matching of surface tensions and actual dissolution experiments; (2) improve the dispersibility of graphene in the identified monomers through a solvent exchange method, where graphene was first dispersed in a good solvent which was then exchanged with the monomers. Of five acrylate monomers tested, ethoxylated bisphenol-A diacrylate (EBAD) showed the highest dispersibility of graphene thanks to its abundant phenyl substituents providing high affinity with graphene. Solvent-exchanging with N-vinyl-2-pyrrolidone (NVP) further increased the dispersibility of graphene in EBAD. Curing of the graphene/EBAD dispersion was examined with a photo initiator [2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1] or a thermal initiator [2,2′-Azobis (2-methylpropionitrile)], of which the photo initiator was found unusable because its initiation was hindered by the graphene phase, which strongly absorbed the incident light. The thermally cured graphene/EBAD composite with an optimized 1.4 wt% of graphene exhibited a > 99.5% reduction in WVTR over that of the poly-EBAD matrix—an unprecedented scale of reduction for reinforced polymers, reaching a WVTR of 7 × 10-2 g/m2·day. Additionally, the thermal decomposition temperature of the composite film was raised by 28 °C from that of the poly-EBAD. The combination of high gas-barrier performance, thermal stability, and processability of the graphene/EBAD composite film offers a practical solution for the packaging of sensitive electronics.
Chapter 1 Introduction 1
1.1 Overview of gas barriers 1
1.2 Polymer-based composite films 3
1.2.1 Overview of polymer-based composite films 3
1.2.2 Clay-based nanocomposite barrier films 6
1.2.3 Graphene-based nanocomposite barrier films 10
1.2.4 Approaches to blend fillers into polymer matrix 12
1.3 Research approaches 14
1.3.1 Methods to obtain graphene 14
1.3.2 Selection of monomer 17
1.3.3 Solvent exchange method 19
1.4 Motivation and objective statements 20
Chapter 2 Experimental Methods 23
2.1 Materials 23
2.2 Dispersibility test 25
2.3 Preparation of graphene/polyacrylate films 27
2.4 Characterization 30
2.4.1 Water vapor transmission rate measurement 30
2.4.2 Fourier-transform infrared spectroscopy measurement 31
2.4.3 Thermogravimetric analysis measurement 31
2.4.4 Differential scanning calorimetry measurement 32
2.4.5 Other characterization 32
Chapter 3 Results and Discussion 33
3.1 The selection of monomer 33
3.2 Effects on curing degree of ethoxylated bisphenol-A diacrylate (EBAD) 36
3.2.1 Photopolymerization versus thermopolymerization 36
3.2.2 Curing condition of thermopolymerization 40
3.3 Identification of composite films with/without solvent exchange 43
3.3.1 Characterization of solvent exchange process 43
3.3.2 Mechanism of our-developed solvent exchange 46
3.3.3 WVTR improvement of graphene/EBAD composite films via solvent exchange process 48
3.3.4 The conversion degree of graphene/EBAD composite films 52
3.4 Thermal analysis characterization 57
3.4.1 TGA analysis 57
3.4.2 DSC analysis 60
3.5 Other characterization 62
3.5.1 Actual amount of graphene in graphene/EBAD composite film 62
3.5.2 Thickness of the graphene/EBAD composite film 63
Chapter 4 Conclusion 65
References 67
1.Arora, A. & Padua, G. W. Review: Nanocomposites in Food Packaging. J. Food Sci. 75, R43–R49 (2010).
2.Lange, J. & Wyser, Y. Recent innovations in barrier technologies for plastic packaging—a review. Packag. Technol. Sci. 16, 149–158 (2003).
3.Lewis, J. S. & Weaver, M. S. Thin-film permeation-barrier technology for flexible organic light-emitting devices. IEEE J. Sel. Top. Quantum Electron. 10, 45–57 (2004).
4.Inagaki, N., Tasaka, S. & Hiramatsu, H. Preparation of oxygen gas barrier poly(ethylene terephthalate) films by deposition of silicon oxide films plasma-polymerized from a mixture of tetramethoxysilane and oxygen. J. Appl. Polym. Sci. 71, 2091–2100 (1999).
5.Corral, E. L. & Loehman, R. E. Ultra-High-Temperature Ceramic Coatings for Oxidation Protection of Carbon–Carbon Composites. J. Am. Ceram. Soc. 91, 1495–1502 (2008).
6.Priolo, M. A., Holder, K. M., Guin, T. & Grunlan, J. C. Recent Advances in Gas Barrier Thin Films via Layer-by-Layer Assembly of Polymers and Platelets. Macromol. Rapid Commun. 36, 866–879 (2015).
7.Hu, Y. S. et al. Improving gas barrier of PET by blending with aromatic polyamides. Polymer 46, 2685–2698 (2005).
8.Schiller, S., Kirchhoff, V., Schiller, N. & Morgner, H. PVD coating of plastic webs and sheets with high rates on large areas. Surf. Coat. Technol. 125, 354–360 (2000).
9.Erlat, A. G. et al. Characterisation of aluminium oxynitride gas barrier films. Thin Solid Films 388, 78–86 (2001).
10.Polywka, A. et al. Controlled Mechanical Cracking of Metal Films Deposited on Polydimethylsiloxane (PDMS). Nanomaterials 6, 168 (2016).
11.Baëtens, T., Pallecchi, E., Thomy, V. & Arscott, S. Cracking effects in squashable and stretchable thin metal films on PDMS for flexible microsystems and electronics. Sci. Rep. 8, 9492 (2018).
12.Won, S. et al. Graphene-based stretchable and transparent moisture barrier. Nanotechnology 29, 125705 (2018).
13.Yoo, B. M., Shin, H. J., Yoon, H. W. & Park, H. B. Graphene and graphene oxide and their uses in barrier polymers. J. Appl. Polym. Sci. 131, (2014).
14.Yano, K., Usuki, A., Okada, A., Kurauchi, T. & Kamigaito, O. Synthesis and properties of polyimide–clay hybrid. J. Polym. Sci. Part Polym. Chem. 31, 2493–2498 (1993).
15.Choudalakis, G. & Gotsis, A. D. Permeability of polymer/clay nanocomposites: A review. Eur. Polym. J. 45, 967–984 (2009).
16.Nielsen, L. E. Models for the Permeability of Filled Polymer Systems. J. Macromol. Sci. Part - Chem. 1, 929–942 (1967).
17.Cussler, E. L., Hughes, S. E., Ward, W. J. & Aris, R. Barrier membranes. J. Membr. Sci. 38, 161–174 (1988).
18.Flexible flat panel displays. (John Wiley & Sons, 2005).
19.Ogasawara, T., Ishida, Y., Ishikawa, T., Aoki, T. & Ogura, T. Helium gas permeability of montmorillonite/epoxy nanocomposites. Compos. Part Appl. Sci. Manuf. 37, 2236–2240 (2006).
20.Herrera-Alonso, J. M., Sedlakova, Z. & Marand, E. Gas barrier properties of nanocomposites based on in situ polymerized poly(n-butyl methacrylate) in the presence of surface modified montmorillonite. J. Membr. Sci. 349, 251–257 (2010).
21.Cui, Y., Kumar, S., Kona, B. R. & Houcke, D. van. Gas barrier properties of polymer/clay nanocomposites. RSC Adv. 5, 63669–63690 (2015).
22.Podsiadlo, P. et al. Ultrastrong and Stiff Layered Polymer Nanocomposites. Science 318, 80–83 (2007).
23.Jang, W.-S., Rawson, I. & Grunlan, J. C. Layer-by-layer assembly of thin film oxygen barrier. Thin Solid Films 516, 4819–4825 (2008).
24.García, A., Eceolaza, S., Iriarte, M., Uriarte, C. & Etxeberria, A. Barrier character improvement of an amorphous polyamide (Trogamid) by the addition of a nanoclay. J. Membr. Sci. 301, 190–199 (2007).
25.Tan, B. & Thomas, N. L. A review of the water barrier properties of polymer/clay and polymer/graphene nanocomposites. J. Membr. Sci. 514, 595–612 (2016).
26.Nair, R. R., Wu, H. A., Jayaram, P. N., Grigorieva, I. V. & Geim, A. K. Unimpeded Permeation of Water Through Helium-Leak–Tight Graphene-Based Membranes. Science 335, 442–444 (2012).
27.Su, Y. et al. Impermeable barrier films and protective coatings based on reduced graphene oxide. Nat. Commun. 5, 4843 (2014).
28.Yan, N. et al. Gas-Barrier Hybrid Coatings by the Assembly of Novel Poly(vinyl alcohol) and Reduced Graphene Oxide Layers through Cross-Linking with Zirconium Adducts. ACS Appl. Mater. Interfaces 7, 22678–22685 (2015).
29.Cui, Y., Kundalwal, S. I. & Kumar, S. Gas barrier performance of graphene/polymer nanocomposites. Carbon 98, 313–333 (2016).
30.Yang, J. et al. Improved mechanical and functional properties of elastomer/graphite nanocomposites prepared by latex compounding. Acta Mater. 55, 6372–6382 (2007).
31.Zhan, Y. et al. Dispersion and Exfoliation of Graphene in Rubber by an Ultrasonically-Assisted Latex Mixing and In situ Reduction Process. Macromol. Mater. Eng. 296, 590–602 (2011).
32.Kim, H., Abdala, A. A. & Macosko, C. W. Graphene/Polymer Nanocomposites. Macromolecules 43, 6515–6530 (2010).
33.Li, X. et al. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 324, 1312–1314 (2009).
34.Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574–578 (2010).
35.Hummers Jr, W. S. & Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339–1339 (1958).
36.Khan, U., O’Neill, A., Lotya, M., De, S. & Coleman, J. N. High-Concentration Solvent Exfoliation of Graphene. Small 6, 864–871 (2010).
37.O’Neill, A., Khan, U., Nirmalraj, P. N., Boland, J. & Coleman, J. N. Graphene Dispersion and Exfoliation in Low Boiling Point Solvents. J. Phys. Chem. C 115, 5422–5428 (2011).
38.Coleman, J. N. Liquid Exfoliation of Defect-Free Graphene. Acc. Chem. Res. 46, 14–22 (2013).
39.Arao, Y. & Kubouchi, M. High-rate production of few-layer graphene by high-power probe sonication. Carbon 95, 802–808 (2015).
40.Kaur, A. & Singh, R. C. Managing the degree of exfoliation and number of graphene layers using probe sonication approach. Fuller. Nanotub. Carbon Nanostructures 25, 318–326 (2017).
41.Hernandez, Y. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3, 563–568 (2008).
42.Coleman, J. N. et al. Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. Science 331, 568–571 (2011).
43.Su, D. Silver nanowires and graphene sheets applied on applications of flexible electrode, supercapacitor and stretchable gas-permeation barrier. (2019).
44.Santra, S. et al. CMOS integration of inkjet-printed graphene for humidity sensing. Sci. Rep. 5, 17374 (2015).
45.Li, D., Müller, M. B., Gilje, S., Kaner, R. B. & Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101–105 (2008).
46.Acosta Ortiz, R., Garcia Valdez, A. E., Soria Arguello, G., Mendez Padilla, G. & Acosta Berlanga, O. Photocurable shape-memory polyether-polythioether/graphene nanocomposites and the study of their thermal conductivity. J. Polym. Res. 25, 160 (2018).
47.Decker, C. & Jenkins, A. D. Kinetic approach of oxygen inhibition in ultraviolet- and laser-induced polymerizations. Macromolecules 18, 1241–1244 (1985).
48.Decker, C. A novel method for consuming oxygen instantaneously in photopolymerizable films. Makromol. Chem. 180, 2027–2030 (1979).
49.Photoinitiated Polymerization. (Oxford University Press, 2003).
50.O’Brien, A. K. & Bowman, C. N. Impact of Oxygen on Photopolymerization Kinetics and Polymer Structure. Macromolecules 39, 2501–2506 (2006).
51.Cramer, N. B., O’Brien, C. P. & Bowman, C. N. Mechanisms, polymerization rate scaling, and oxygen inhibition with an ultra-rapid monovinyl urethane acrylate. Polymer 49, 4756–4761 (2008).
52.Radical Polymerization of Ethyl Acrylate Complexed with [Beta]-Cyclodextrin in Homogeneous Aqueous medium using AIBN - ProQuest. Available at: https://search.proquest.com/docview/862581347/abstract/41AE0A3019C349A9PQ/1?accountid=8014. (Accessed: 24th June 2019)
53.Li, K. & Stöver, H. D. H. Synthesis of monodisperse poly(divinylbenzene) microspheres. J. Polym. Sci. Part Polym. Chem. 31, 3257–3263 (1993).
54.Iwasaki, T. & Yoshida, J. Free Radical Polymerization in Microreactors. Significant Improvement in Molecular Weight Distribution Control. Macromolecules 38, 1159–1163 (2005).
55.Pantoja-Castro, M. A. et al. Synthesis and investigation of PMMA films with homogeneously dispersed multiwalled carbon nanotubes. Mater. Chem. Phys. 140, 458–464 (2013).
56.Han, X. et al. Scalable, printable, surfactant-free graphene ink directly from graphite. Nanotechnology 24, 205304 (2013).
57.Fabbri, P. et al. In-situ graphene oxide reduction during UV-photopolymerization of graphene oxide/acrylic resins mixtures. Polymer 53, 6039–6044 (2012).
58.Borodko, Y. et al. Probing the Interaction of Poly (vinylpyrrolidone) with Platinum Nanocrystals by UV- Raman and FTIR. J. Phys. Chem. B 110, 23052–23059 (2006).
59.Ajithkumar, M. P., Yashoda, M. P. & Prasannakumar, S. Synthesis, characterization, microstructure determination and thermal studies of poly(N-vinyl-2-pyrrolidone–maleic anhydride–styrene) terpolymer. Iran. Polym. J. 23, 93–101 (2014).
60.Hemalatha, P., Veeraiah, M. K., Kumar, S. P., Madegowda, N. M. & Manju, M. Reactivity ratios of N-vinylpyrrolidone-acrylic acid copolymer. Am J Polym Sci 4, 16–23 (2014).
61.Zhu, K. et al. Preparation of organic–inorganic hybrid membranes with superior antifouling property by incorporating polymer-modified multiwall carbon nanotubes. RSC Adv. 7, 30564–30572 (2017).
62.Ramanathan, T. et al. Graphitic nanofillers in PMMA nanocomposites—An investigation of particle size and dispersion and their influence on nanocomposite properties. J. Polym. Sci. Part B Polym. Phys. 45, 2097–2112 (2007).
63.Xue, Q. et al. Glass transition temperature of functionalized graphene–polymer composites. Comput. Mater. Sci. 71, 66–71 (2013).
64.Lai, C.-L. et al. Composite of cyclic olefin copolymer with low graphene content for transparent water-vapor-barrier films. Carbon 90, 85–93 (2015).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔