(44.192.112.123) 您好!臺灣時間:2021/03/08 15:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊善淳
研究生(外文):Shan-Chun Yang
論文名稱:淬火暨沃斯田鐵逆相變微合金中錳鋼之研究
論文名稱(外文):Study on Microalloyed Medium-Manganese Steels in Quenching and Austenite Reversion Process
指導教授:顏鴻威
指導教授(外文):Hung-Wei Yen
口試委員:陳志慶吳明偉林俊銘
口試委員(外文):Zhi-Qing ChenMing-Wei WuJun-Ming Lin
口試日期:2019-07-23
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:130
中文關鍵詞:中錳鋼沃斯田鐵逆相變相變態誘發塑性微合金碳化物電子顯微鏡機械性質
DOI:10.6342/NTU201903797
相關次數:
  • 被引用被引用:1
  • 點閱點閱:25
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究係著重於觀察淬火暨沃斯田鐵逆相變微合金中錳鋼之顯微結構與機械性質,以及討論與比較鈦、鈮、鉬、釩的微合金碳化物析出行為與其所扮演之角色。此研究發現微合金碳化物的形成可藉由兩種形式達成材料強度的強化。在沃斯田鐵化中,析出粗大的碳化物可以藉由Zener Pinning Effect幫助沃斯田鐵晶粒細化,並產生較細小的麻田散鐵組織以及隨後產生均勻分布的殘餘沃斯田鐵。而在沃斯田鐵逆相變中,大量析出細小的碳化物可以有效地提供析出強化。此目的在於彌補高溫退火造成的軟化以及增加材料強度。此外,藉由良好地調控沃斯田鐵逆相變的溫度,即可產生最大量的殘留沃斯田鐵以及提供最佳的延伸率。基於本研究提出的結論,我們設計了一新穎的鈮鉬釩添加的鋼種且結果顯示其有最佳的機械性質(降伏強度> 700 MPa;抗拉強度> 1000 MPa;均勻延伸率> 14 %;破壞延伸率> 20 %)。本研究係展現透過合金設計以及製程調控使先進超高強度鋼達到優異的機械性質。
The current work investigates micro/nanostructure and mechanical behaviors of microalloyed medium-Manganese steels processed by quenching and austenite reversion (Q&AR). Precipitation behaviors of carbides due to complex additions of Ti, V, Nb, and Mo and their roles were compared and discussed in this work. It was found that formation of microalloyed carbide can contribute to materials’ strength in two ways. During austenization, coarser carbides enable significant grain refinement by the Zener pinning effect, leading to finer martensite laths and uniform distribution of reversed austenite in latter processes. During austenite reversion, precipitation of extremely fine carbides enables effective precipitation strengthening. All these benefits compensate the softening due to inter-critical annealing and increase materials yield strength. Moreover, with well-controlled temperature of austenite reversion, optimized ductility can be obtained when volume fraction of retained austenite is maximized. Based on established principles, a Nb-Mo-V-adding steel was designed for optimized mechanical properties: yield strength > 700 MPa, ultimate tensile strength > 1000 MPa, uniform elongation > 14 %, total elongation > 20 %. This thesis demonstrates the novel process and the combination of alloy design to create advanced high-strength steels with excellent properties.
摘要 I
Abstract II
Content III
Figure Content VII
Table Content Х
Chapter 1 – General Introduction 1
Chapter 2 – Literature Review 3
2.1 Advanced High-Strength Steels 3
2.1.1 Recent Progress in Advanced High-Strength Steels 3
2.1.2 Transformation-Induced Plasticity Steel 7
2.1.3 Medium-Manganese Steel 10
2.1.4 Quenching and Partitioning Steel 11
2.2 Austenite Reversion 15
2.2.1 Review on Austenite Reversion Process 15
2.2.2 Austenite Reversion Mechanism 18
2.2.3 Austenite Stabilization 20
2.3 Microalloyed Carbide in Steels 26
2.3.1 Characteristic of Carbide Precipitation 26
2.3.2 Zener Pinning and Solute Drag 30
Chapter 3 – General Experimental Procedures 33
3.1 Alloy Design of Microalloyed Medium-Mn Steel 33
3.2 Quenching and Austenite Reversion Process 36
3.3 Microstructure Characterization 38
3.3.1 Optical Microscopy 38
3.3.2 Scanning Electron Microscopy 38
3.3.3 Crystallography Mapping 39
3.3.4 Transmission Electron Microscopy 42
3.3.5 X-ray Diffractometer 42
3.3.6 Specimen Preparation for Microstructure Characterization 43
3.4 Mechanical Test 44
Chapter 4 − Microstructural Evolution and Mechanical Behavior 45
4.1 Experimental Results 45
4.1.1 Microstructural evolution in Q&AR process 45
4.1.2 Nanostructural evolution in Q&AR process 58
4.1.3 Mechanical properties 64
4.2 Discussion 66
4.2.1 Relationship of microstructure-mechanical property 66
4.2.2 Austenite stability in Q&AR process 73
4.2.3 Effect of microalloyed carbide 78
4.3 Summary 87
Chapter 5 – Effect of Various Microalloying Elements 88
5.1 Experimental Results 88
5.1.1 Grain size of prior austenite and martensite 88
5.1.2 Volume fraction of retained austenite in Q&AR process 91
5.1.3 Mechanical properties 95
5.2 Discussion 98
5.2.1 Effect of microalloying elements on microstructure 98
5.2.2 Effect of microalloying elements on mechanical behavior 104
5.2.3 Determination of optimal microalloying 111
5.3 Summary 116
Chapter 6 – Conclusion 117
Chapter 7 – Future Work 120
7.1 Determination of Optimal Austenite Reversion Parameter 120
Reference 121
[1] W. Bleck, K. Phiu-On, Microalloying of cold-formable multi phase steel grades, 2005.
[2] R. Kuziak, R. Kawalla, S. Waengler, Advanced high strength steels for automotive industry, Archives of Civil and Mechanical Engineering 8(2) (2008) 103-117.
[3] O. Kwon, K.Y. Lee, G.S. Kim, K.G. Chin, New Trends in Advanced High Strength Steel Developments for Automotive Application, Materials Science Forum 638-642 (2010) 136-141.
[4] D. Chatterjee, Behind the Development of Advanced High Strength Steel (AHSS) Including Stainless Steel for Automotive and Structural Applications - An Overview, Materials Science and Metallurgy Engineering 4(1) (2017) 1-15.
[5] J.-H. Schmitt, T. Iung, New developments of advanced high-strength steels for automotive applications, Comptes Rendus Physique 19(8) (2018) 641-656.
[6] L. Samek, D. Krizan, STEEL – MATERIAL OF CHOICE FOR AUTOMOTIVE LIGHTWEIGHT APPLICATIONS, 2012.
[7] J. Zhao, Z. Jiang, Thermomechanical processing of advanced high strength steels, Progress in Materials Science 94 (2018) 174-242.
[8] G.R. Speich, V.A. Demarest, R.L. Miller, Formation of Austenite During Intercritical Annealing of Dual-Phase Steels, Metallurgical and Materials Transactions A 12(8) (1981) 1419-1428.
[9] K. Hasegawa, K. Kawamura, T. Urabe, Y. Hosoya, Effects of Microstructure on Stretch-flange-formability of 980 MPa Grade Cold-rolled Ultra High Strength Steel Sheets, ISIJ International 44(3) (2004) 603-609.
[10] Z. Zhao, T. Tong, J. Liang, H. Yin, A. Zhao, D. Tang, Microstructure, mechanical properties and fracture behavior of ultra-high strength dual-phase steel, Materials Science and Engineering: A 618 (2014) 182-188.
[11] N. Fonstein, 7 - Dual-phase steels, Automotive Steels, Woodhead Publishing2017, pp. 169-216.
[12] Y.F. Shen, Y.D. Liu, X. Sun, Y.D. Wang, L. Zuo, R.D.K. Misra, Improved ductility of a transformation-induced-plasticity steel by nanoscale austenite lamellae, Materials Science and Engineering: A 583 (2013) 1-10.
[13] B.C. De Cooman, Structure–properties relationship in TRIP steels containing carbide-free bainite, Current Opinion in Solid State and Materials Science 8(3) (2004) 285-303.
[14] Y.F. Shen, L.N. Qiu, X. Sun, L. Zuo, P.K. Liaw, D. Raabe, Effects of retained austenite volume fraction, morphology, and carbon content on strength and ductility of nanostructured TRIP-assisted steels, Materials Science and Engineering: A 636 (2015) 551-564.
[15] Z.H. Cai, H. Ding, R.D.K. Misra, Z.Y. Ying, Austenite stability and deformation behavior in a cold-rolled transformation-induced plasticity steel with medium manganese content, Acta Mater 84 (2015) 229-236.
[16] N.M. Lopez Granados, A. Salinas Rodriguez, EBSD investigation on effect of cooling rate on microstructure and transformation textures of high strength hot-rolled steel plates, Journal of Iron and Steel Research International 23(3) (2016) 261-269.
[17] F. Hairer, C. Krempaszky, P. Tsipouridis, E. Werner, K. Satzinger, T. Hebesberger, A. Pichler, Effects of heat treatment on microstructure and mechanical properties of bainitic single- and complex-phase steel, 2009.
[18] E.I. Galindo-Nava, P.E.J. Rivera-Díaz-del-Castillo, Understanding the factors controlling the hardness in martensitic steels, Scripta Materialia 110 (2016) 96-100.
[19] H. Matsuda, R. Mizuno, Y. Funakawa, K. Seto, S. Matsuoka, Y. Tanaka, Effects of auto-tempering behaviour of martensite on mechanical properties of ultra high strength steel sheets, Journal of Alloys and Compounds 577 (2013) S661-S667.
[20] B.C. De Cooman, Y. Estrin, S.K. Kim, Twinning-induced plasticity (TWIP) steels, Acta Mater 142 (2018) 283-362.
[21] S. Curtze, V.T. Kuokkala, Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate, Acta Mater 58(15) (2010) 5129-5141.
[22] O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, D. Barbier, High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships, Current Opinion in Solid State and Materials Science 15(4) (2011) 141-168.
[23] S.S. Sohn, K. Choi, J.-H. Kwak, N.J. Kim, S. Lee, Novel ferrite–austenite duplex lightweight steel with 77% ductility by transformation induced plasticity and twinning induced plasticity mechanisms, Acta Mater 78 (2014) 181-189.
[24] G. Frommeyer, U. Brüx, Microstructures and Mechanical Properties of High-Strength Fe-Mn-Al-C Light-Weight TRIPLEX Steels, steel research international 77(9-10) (2006) 627-633.
[25] S. Allain, J.P. Chateau, O. Bouaziz, A physical model of the twinning-induced plasticity effect in a high manganese austenitic steel, Materials Science and Engineering: A 387-389 (2004) 143-147.
[26] O. Bouaziz, N. Guelton, Modelling of TWIP effect on work-hardening, Materials Science and Engineering: A 319-321 (2001) 246-249.
[27] Y.K. Lee, J. Han, Current opinion in medium manganese steel, Materials Science and Technology 31(7) (2015) 843-856.
[28] H. Aydin, E. Essadiqi, I.-H. Jung, S. Yue, Development of 3rd generation AHSS with medium Mn content alloying compositions, Materials Science and Engineering: A 564 (2013) 501-508.
[29] J. Speer, D.K. Matlock, B.C. De Cooman, J.G. Schroth, Carbon partitioning into austenite after martensite transformation, Acta Mater 51(9) (2003) 2611-2622.
[30] J.G. Speer, F.C.R. Assunção, D.K. Matlock, D.V. Edmonds, The "quenching and partitioning" process: background and recent progress, Materials Research 8 (2005) 417-423.
[31] D.V. Edmonds, K. He, F.C. Rizzo, B.C. De Cooman, D.K. Matlock, J.G. Speer, Quenching and partitioning martensite—A novel steel heat treatment, Materials Science and Engineering: A 438-440 (2006) 25-34.
[32] A.J. Clarke, J.G. Speer, M.K. Miller, R.E. Hackenberg, D.V. Edmonds, D.K. Matlock, F.C. Rizzo, K.D. Clarke, E. De Moor, Carbon partitioning to austenite from martensite or bainite during the quench and partition (Q&P) process: A critical assessment, Acta Mater 56(1) (2008) 16-22.
[33] M.J. Santofimia, L. Zhao, J. Sietsma, Microstructural Evolution of a Low-Carbon Steel during Application of Quenching and Partitioning Heat Treatments after Partial Austenitization, Metallurgical and Materials Transactions A 40(1) (2008) 46.
[34] L. Wang, J.G. Speer, Quenching and Partitioning Steel Heat Treatment, Metallography, Microstructure, and Analysis 2(4) (2013) 268-281.
[35] O. Matsumura, Y. Sakuma, H. Takechi, Retained Austenite in 0.4C-Si-1.2Mn Steel Sheet Intercritically Heated and Austempered, ISIJ International 32(9) (1992) 1014-1020.
[36] E. Pereloma, A. Gazder, I.B. Timokhina, Retained Austenite: Transformation-Induced Plasticity, 2016.
[37] P.J. Jacques, Transformation-induced plasticity for high strength formable steels, Current Opinion in Solid State and Materials Science 8(3) (2004) 259-265.
[38] N. Lim, H. Park, S. Kim, C. Park, Effects of aluminum on the microstructure and phase transformation of TRIP steels, Metals and Materials International 18(4) (2012) 647-654.
[39] P.J. Jacques, E. Girault, A. Mertens, B. Verlinden, J.v. Humbeeck, F. Delannay, The Developments of Cold-rolled TRIP-assisted Multiphase Steels. Al-alloyed TRIP-assisted Multiphase Steels, ISIJ International 41(9) (2001) 1068-1074.
[40] M.D. Meyer, D. Vanderschueren, B.C.D. Cooman, The Influence of the Substitution of Si by Al on the Properties of Cold Rolled C-Mn-Si TRIP Steels, ISIJ International 39(8) (1999) 813-822.
[41] C. Wang, H. Ding, M. Cai, B. Rolfe, Characterization of microstructures and tensile properties of TRIP-aided steels with different matrix microstructure, Materials Science and Engineering: A 610 (2014) 65-75.
[42] C. Wang, H. Ding, M. Cai, B. Rolfe, Multi-phase microstructure design of a novel high strength TRIP steel through experimental methodology, Materials Science and Engineering: A 610 (2014) 436-444.
[43] R.L. Miller, Ultrafine-grained microstructures and mechanical properties of alloy steels, Metallurgical and Materials Transactions B 3(4) (1972) 905-912.
[44] J. Shi, X. Sun, M. Wang, W. Hui, H. Dong, W. Cao, Enhanced work-hardening behavior and mechanical properties in ultrafine-grained steels with large-fractioned metastable austenite, Scripta Materialia 63(8) (2010) 815-818.
[45] P.J. Gibbs, E. De Moor, M.J. Merwin, B. Clausen, J.G. Speer, D.K. Matlock, Austenite Stability Effects on Tensile Behavior of Manganese-Enriched-Austenite Transformation-Induced Plasticity Steel, Metallurgical and Materials Transactions A 42(12) (2011) 3691-3702.
[46] R. Ding, Z. Dai, M. Huang, Z. Yang, C. Zhang, H. Chen, Effect of pre-existed austenite on austenite reversion and mechanical behavior of an Fe-0.2C-8Mn-2Al medium Mn steel, Acta Mater 147 (2018) 59-69.
[47] A. Arlazarov, M. Gouné, O. Bouaziz, A. Hazotte, G. Petitgand, P. Barges, Evolution of microstructure and mechanical properties of medium Mn steels during double annealing, Materials Science and Engineering: A 542 (2012) 31-39.
[48] S. Lee, S.-J. Lee, S. Santhosh Kumar, K. Lee, B.C.D. Cooman, Localized Deformation in Multiphase, Ultra-Fine-Grained 6 Pct Mn Transformation-Induced Plasticity Steel, Metallurgical and Materials Transactions A 42(12) (2011) 3638-3651.
[49] J.G. Speer, D.V. Edmonds, F.C. Rizzo, D.K. Matlock, Partitioning of carbon from supersaturated plates of ferrite, with application to steel processing and fundamentals of the bainite transformation, Current Opinion in Solid State and Materials Science 8(3) (2004) 219-237.
[50] F.L.H. Gerdemann, J.G. Speer, D. Matlock, Microstructure and hardness of steel grade 9260 heat-treated by the quenching and partitioning (Q&P) process, 2004.
[51] T.Y. Hsu, X.J. Jin, Y.H. Rong, Strengthening and toughening mechanisms of quenching–partitioning–tempering (Q–P–T) steels, Journal of Alloys and Compounds 577 (2013) S568-S571.
[52] X. Rong, S. Liu, Y. Li, B. Hu, M. Enomoto, H. Guo, C. Shang, Simultaneous enhancement of strength and ductility via nanoscale Cu precipitates and ultrafine filmy retained austenite in a novel quench-partitioned and tempered steel, Materials Science and Engineering: A 760 (2019) 47-57.
[53] J. Dong, C. Li, C. Liu, Y. Huang, L. Yu, H. Li, Y. Liu, Microstructural and mechanical properties development during quenching-partitioning-tempering process of Nb-V-Ti microalloyed ultra-high strength steel, Materials Science and Engineering: A 705 (2017) 249-256.
[54] J. Dong, X. Zhou, Y. Liu, C. Li, C. Liu, H. Li, Effects of quenching-partitioning-tempering treatment on microstructure and mechanical performance of Nb-V-Ti microalloyed ultra-high strength steel, Materials Science and Engineering: A 690 (2017) 283-293.
[55] J. Zhang, H. Ding, R.D.K. Misra, C. Wang, Microstructural evolution and consequent strengthening through niobium-microalloying in a low carbon quenched and partitioned steel, Materials Science and Engineering: A 641 (2015) 242-248.
[56] N. Zhong, X.D. Wang, L. Wang, Y.H. Rong, Enhancement of the mechanical properties of a Nb-microalloyed advanced high-strength steel treated by quenching–partitioning–tempering process, Materials Science and Engineering: A 506(1) (2009) 111-116.
[57] S. Rajasekhara, P.J. Ferreira, L.P. Karjalainen, A. Kyröläinen, Hall–Petch Behavior in Ultra-Fine-Grained AISI 301LN Stainless Steel, Metallurgical and Materials Transactions A 38(6) (2007) 1202-1210.
[58] M. Eskandari, A. Najafizadeh, A. Kermanpur, Effect of strain-induced martensite on the formation of nanocrystalline 316L stainless steel after cold rolling and annealing, Materials Science and Engineering: A 519(1) (2009) 46-50.
[59] F. Forouzan, A. Najafizadeh, A. Kermanpur, A. Hedayati, R. Surkialiabad, Production of nano/submicron grained AISI 304L stainless steel through the martensite reversion process, Materials Science and Engineering: A 527(27) (2010) 7334-7339.
[60] S. Rajasekhara, P.J. Ferreira, Martensite→austenite phase transformation kinetics in an ultrafine-grained metastable austenitic stainless steel, Acta Mater 59(2) (2011) 738-748.
[61] K. Tomimura, S. Takaki, S. Tanimoto, Y. Tokunaga, Optimal Chemical Composition in Fe-Cr-Ni Alloys for Ultra Grain Refining by Reversion from Deformation Induced Martensite, ISIJ International 31(7) (1991) 721-727.
[62] T. Furuhara, K. Kikumoto, H. Saito, T. Sekine, T. Ogawa, S. Morito, T. Maki, Phase Transformation from Fine-grained Austenite, ISIJ International 48(8) (2008) 1038-1045.
[63] N. Nakada, K. Mizutani, T. Tsuchiyama, S. Takaki, Difference in transformation behavior between ferrite and austenite formations in medium manganese steel, Acta Mater 65 (2014) 251-258.
[64] K. Tomimura, S. Takaki, Y. Tokunaga, Reversion Mechanism from Deformation Induced Martensite to Austenite in Metastable Austenitic Stainless Steels, ISIJ International 31(12) (1991) 1431-1437.
[65] K.W. Andrews, Empirical Formulae for the Calculation of Some Transformation Temperatures, J. Iron Steel Inst 203 (1965) 721-727.
[66] D.P. Kosistinen, R.E. Marburger, A general equation prescribing extent of austenite–martensite transition in pure Fe–C alloys and plain carbon steel, 1959.
[67] S. Lee, B.C. De Cooman, On the Selection of the Optimal Intercritical Annealing Temperature for Medium Mn TRIP Steel, Metallurgical and Materials Transactions A 44(11) (2013) 5018-5024.
[68] E. Jimenez-Melero, N.H. van Dijk, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, S. van der Zwaag, Martensitic transformation of individual grains in low-alloyed TRIP steels, Scripta Materialia 56(5) (2007) 421-424.
[69] Y.-b. Xu, Z.-p. Hu, Y. Zou, X.-d. Tan, D.-t. Han, S.-q. Chen, D.-g. Ma, R.D.K. Misra, Effect of two-step intercritical annealing on microstructure and mechanical properties of hot-rolled medium manganese TRIP steel containing δ-ferrite, Materials Science and Engineering: A 688 (2017) 40-55.
[70] H.-S. Yang, H.K.D.H. Bhadeshia, Austenite grain size and the martensite-start temperature, Scripta Materialia 60(7) (2009) 493-495.
[71] J.F. Breedis, Influence of dislocation substructure on the martensitic transformation in stainless steel, Acta Metallurgica 13(3) (1965) 239-250.
[72] M. Maalekian, E. Kozeschnik, S. Chatterjee, H.K.D.H. Bhadeshia, Mechanical stabilisation of eutectoid steel, Materials Science and Technology 23(5) (2007) 610-612.
[73] S. Chatterjee, H.S. Wang, J.R. Yang, H.K.D.H. Bhadeshia, Mechanical stabilisation of austenite, Materials Science and Technology 22(6) (2006) 641-644.
[74] J.R. Strife, M.J. Carr, G.S. Ansell, The effect of austenite prestrain above the Md temperature on the martensitic transformation in Fe-Ni-Cr-C alloys, Metallurgical Transactions A 8(9) (1977) 1471-1484.
[75] B.B. He, W. Xu, M.X. Huang, Increase of martensite start temperature after small deformation of austenite, Materials Science and Engineering: A 609 (2014) 141-146.
[76] T. Gladman, The Physical Metallurgy of Microalloyed Steels, Institute of Materials (London, England) 615 (1997).
[77] X.D. Wang, B.X. Huang, L. Wang, Y.H. Rong, Microstructure and Mechanical Properties of Microalloyed High-Strength Transformation-Induced Plasticity Steels, Metallurgical and Materials Transactions A 39(1) (2008) 1-7.
[78] F.-m. Liu, J.-j. Wang, Y.-j. Liu, R.D.K. Misra, C.-m. Liu, Effects of Nb and V on Microstructural Evolution, Precipitation Behavior and Tensile Properties in Hot-rolled Mo-bearing Steel, Journal of Iron and Steel Research, International 23(6) (2016) 559-565.
[79] B.-h. Hu, Q.-w. Cai, H.-b. Wu, Influence of Mo on Growth and Coarsening of Nanometer-sized Carbides in Low-alloy Ferritic Steels Containing Ti, Journal of Iron and Steel Research, International 21(9) (2014) 878-885.
[80] H.W. Yen, C.Y. Chen, T.Y. Wang, C.Y. Huang, J.R. Yang, Orientation relationship transition of nanometre sized interphase precipitated TiC carbides in Ti bearing steel, Materials Science and Technology 26(4) (2010) 421-430.
[81] R.W.K. Honeycombe, Transformation from Austenite in Alloy Steels, Metall. Trans. 7A (1976) 915-936.
[82] T. Furuhara, H.I. Aaronson, On the mechanisms of interphase boundary carbide precipitation, Scripta Metallurgica 22(10) (1988) 1635-1637.
[83] H.-W. Yen, P.-Y. Chen, C.-Y. Huang, J.-R. Yang, Interphase precipitation of nanometer-sized carbides in a titanium–molybdenum-bearing low-carbon steel, Acta Mater 59(16) (2011) 6264-6274.
[84] J.H. Jang, Y.U. Heo, C.H. Lee, H.K.D.H. Bhadeshia, D.-W. Suh, Interphase precipitation in Ti–Nb and Ti–Nb–Mo bearing steel, Materials Science and Technology 29(3) (2013) 309-313.
[85] C.Y. Chen, C.C. Chen, J.R. Yang, Microstructure characterization of nanometer carbides heterogeneous precipitation in Ti–Nb and Ti–Nb–Mo steel, Materials Characterization 88 (2014) 69-79.
[86] B. Ju, H.-b. Wu, D. Tang, N. Dang, Characterization of (Nb,Ti,Mo)C Precipitates in an Ultrahigh Strength Martensitic Steel, 2016.
[87] E. Abbasi, W.M. Rainforth, Microstructural Evolution of Nb–V–Mo and V Containing TRIP-assisted Steels during Thermomechanical Processing, Journal of Materials Science & Technology 33(4) (2017) 311-320.
[88] J. Dong, X. Zhou, Y. Liu, C. Li, C. Liu, Q. Guo, Carbide precipitation in Nb-V-Ti microalloyed ultra-high strength steel during tempering, Materials Science and Engineering: A 683 (2017) 215-226.
[89] M. Cabibbo, A. Fabrizi, M. Merlin, G.L. Garagnani, Effect of thermo-mechanical treatments on the microstructure of micro-alloyed low-carbon steels, Journal of Materials Science 43(21) (2008) 6857-6865.
[90] J. Cao, Q. Yong, Q. Liu, S. Xinjun, Precipitation of MC phase and precipitation strengthening in hot rolled Nb–Mo and Nb–Ti steels, 2007.
[91] C.S. Smith, Grains, phases, and interfaces: an interpretation of microstructure, Trans. Am. Inst. (Metall.) Eng. 175 (1948) 15–51.
[92] P.A. Manohar, M. Ferry, T. Chandra, Five Decades of the Zener Equation, ISIJ International 38(9) (1998) 913-924.
[93] M. Hillert, Inhibition of grain growth by second-phase particles, Acta Metallurgica 36(12) (1988) 3177-3181.
[94] M.H. P. Hellman, Effect of second-phase particles on grain growth,, Scand. J. Metall. 4(5) (1975) 211–219.
[95] D. Fan, S.P. Chen, L.-Q. Chen, Computer simulation of grain growth kinetics with solute drag, Journal of Materials Research 14(3) (2011) 1113-1123.
[96] R. Le Gall, J.J. Jonas, Solute drag effects during the dynamic recrystallization of nickel, Acta Mater 47(17) (1999) 4365-4374.
[97] I. Toda-Caraballo, C. Capdevila, G. Pimentel, C.G. De Andrés, Drag effects on grain growth dynamics, Computational Materials Science 68 (2013) 95-106.
[98] J.W. Cahn, The impurity-drag effect in grain boundary motion, Acta Metallurgica 10(9) (1962) 789-798.
[99] P. Gong, E.J. Palmiere, W.M. Rainforth, Dissolution and precipitation behaviour in steels microalloyed with niobium during thermomechanical processing, Acta Mater 97 (2015) 392-403.
[100] S. Vervynckt, K. Verbeken, P. Thibaux, Y. Houbaert, Recrystallization–precipitation interaction during austenite hot deformation of a Nb microalloyed steel, Materials Science and Engineering: A 528(16) (2011) 5519-5528.
[101] T. Furukawa, Dependence of strength–ductility characteristics on thermal history in lowcarbon, 5 wt-%Mn steels, Materials Science and Technology 5(5) (1989) 465-470.
[102] S.I. Wright, M.M. Nowell, R. de Kloe, P. Camus, T. Rampton, Electron imaging with an EBSD detector, Ultramicroscopy 148 (2015) 132-145.
[103] T.B. Britton, J. Jiang, Y. Guo, A. Vilalta-Clemente, D. Wallis, L.N. Hansen, A. Winkelmann, A.J. Wilkinson, Tutorial: Crystal orientations and EBSD — Or which way is up?, Materials Characterization 117 (2016) 113-126.
[104] S.I. Wright, M.M. Nowell, S.P. Lindeman, P.P. Camus, M. De Graef, M.A. Jackson, Introduction and comparison of new EBSD post-processing methodologies, Ultramicroscopy 159 (2015) 81-94.
[105] F.J. Humphreys, Characterisation of fine-scale microstructures by electron backscatter diffraction (EBSD), Scripta Materialia 51(8) (2004) 771-776.
[106] R. Keller, R. Geiss, Transmission EBSD from 10 nm domains in a scanning electron microscope, 2011.
[107] P.W. Trimby, Orientation mapping of nanostructured materials using transmission Kikuchi diffraction in the scanning electron microscope, Ultramicroscopy 120 (2012) 16-24.
[108] G.C. Sneddon, P.W. Trimby, J.M. Cairney, Transmission Kikuchi diffraction in a scanning electron microscope: A review, Materials Science and Engineering: R: Reports 110 (2016) 1-12.
[109] X.D. Wang, Z.H. Guo, Y.H. Rong, Mechanism exploration of an ultrahigh strength steel by quenching–partitioning–tempering process, Materials Science and Engineering: A 529 (2011) 35-40.
[110] C. Sun, S.L. Liu, R.D.K. Misra, Q. Li, D.H. Li, Influence of intercritical tempering temperature on impact toughness of a quenched and tempered medium-Mn steel: Intercritical tempering versus traditional tempering, Materials Science and Engineering: A 711 (2018) 484-491.
[111] C.M. Chu, H. Huang, P.W. Kao, D. Gan, Effect of alloying chemistry on the lattice constant of austenitic Fe-Mn-Al-C alloys, Scripta Metallurgica et Materialia 30(4) (1994) 505-508.
[112] N.H. van Dijk, A.M. Butt, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, S. van der Zwaag, Thermal stability of retained austenite in TRIP steels studied by synchrotron X-ray diffraction during cooling, Acta Mater 53(20) (2005) 5439-5447.
[113] S.S. Babu, E.D. Specht, S.A. David, E. Karapetrova, P. Zschack, M. Peet, H.K.D.H. Bhadeshia, In-situ observations of lattice parameter fluctuations in austenite and transformation to bainite, Metallurgical and Materials Transactions A 36(12) (2005) 3281-3289.
[114] S. Liu, Z. Xiong, H. Guo, C. Shang, R.D.K. Misra, The significance of multi-step partitioning: Processing-structure-property relationship in governing high strength-high ductility combination in medium-manganese steels, Acta Mater 124 (2017) 159-172.
[115] B. Sun, F. Fazeli, C. Scott, B. Guo, C. Aranas, X. Chu, M. Jahazi, S. Yue, Microstructural characteristics and tensile behavior of medium manganese steels with different manganese additions, Materials Science and Engineering: A 729 (2018) 496-507.
[116] A.H. Cottrell, B.A. Bilby, Dislocation Theory of Yielding and Strain Ageing of Iron, Proceedings of the Physical Society. Section A 62(1) (1949) 49-62.
[117] D.W. Suh, J.H. Ryu, M.S. Joo, H.S. Yang, K. Lee, H.K.D.H. Bhadeshia, Medium-Alloy Manganese-Rich Transformation-Induced Plasticity Steels, Metallurgical and Materials Transactions A 44(1) (2013) 286-293.
[118] H. Luo, H. Dong, M. Huang, Effect of intercritical annealing on the Lüders strains of medium Mn transformation-induced plasticity steels, Materials & Design 83 (2015) 42-48.
[119] R. G.Davies, The deformation behavior of a vanadium-strengthened dual phase steel, Metallurgical Transactions A 9(1) (1978) 41-52.
[120] X.G. Wang, L. Wang, M.X. Huang, In-situ evaluation of Lüders band associated with martensitic transformation in a medium Mn transformation-induced plasticity steel, Materials Science and Engineering: A 674 (2016) 59-63.
[121] X.-g. Wang, M.-x. Huang, Temperature dependence of Lüders strain and its correlation with martensitic transformation in a medium Mn transformation-induced plasticity steel, Journal of Iron and Steel Research, International 24(11) (2017) 1073-1077.
[122] H. Luo, Comments on “Austenite stability of ultrafine-grained transformation-induced plasticity steel with Mn partitioning” by S. Lee, S.J. Lee and B.C. De Cooman, Scripta Materialia 65 (2011) 225–228, Scripta Materialia 66(10) (2012) 829-831.
[123] J. Mahieu, B.C. De Cooman, J. Maki, Phase transformation and mechanical properties of si-free CMnAl transformation-induced plasticity-aided steel, Metallurgical and Materials Transactions A 33(8) (2002) 2573-2580.
[124] S. Takaki, Review on the Hall-Petch Relation in Ferritic Steel, Materials Science Forum 654-656 (2010) 11-16.
[125] S. Morito, H. Yoshida, T. Maki, X. Huang, Effect of block size on the strength of lath martensite in low carbon steels, Materials Science and Engineering: A 438-440 (2006) 237-240.
[126] T. Swarr, G. Krauss, The effect of structure on the deformation of as-quenched and tempered martensite in an Fe-0.2 pct C alloy, Metallurgical Transactions A 7(1) (1976) 41-48.
[127] T. Gladman, Precipitation hardening in metals, Materials Science and Technology 15(1) (1999) 30-36.
[128] E. Pereloma, I. Timokhina, 9 - Bake hardening of automotive steels, in: R. Rana, S.B. Singh (Eds.), Automotive Steels, Woodhead Publishing2017, pp. 259-288.
[129] Y.-W. Chen, B.-M. Huang, Y.-T. Tsai, S.-P. Tsai, C.-Y. Chen, J.-R. Yang, Microstructural evolutions of low carbon Nb/Mo-containing bainitic steels during high-temperature tempering, Materials Characterization 131 (2017) 298-305.
[130] W.-B. Lee, S.-G. Hong, C.-G. Park, S.-H. Park, Carbide precipitation and high-temperature strength of hot-rolled high-strength, low-alloy steels containing Nb and Mo, Metallurgical and Materials Transactions A 33(6) (2002) 1689.
[131] B.B. He, B. Hu, H.W. Yen, G.J. Cheng, Z.K. Wang, H.W. Luo, M.X. Huang, High dislocation density–induced large ductility in deformed and partitioned steels, Science 357(6355) (2017) 1029.
[132] D. Lee, J.-K. Kim, S. Lee, K. Lee, B.C. De Cooman, Microstructures and mechanical properties of Ti and Mo micro-alloyed medium Mn steel, Materials Science and Engineering: A 706 (2017) 1-14.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔