|
[1]M. Terrones, A. R. Botello-Méndez, J. Campos-Delgado, F. López-Urías, Y. I. Vega-Cantú, F. J. Rodríguez-Macías, A. L. Elías, E. Muñoz-Sandoval, A. G. Cano-Márquez, J.C. Charlier, and H. Terrones, "Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications," Nano Today 5, 351 – 372, (2010). [2]P. R. Wallace, "The band theory of graphite," Phys. Rev. 71, 622 – 634, (1947). [3]W. Kratschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman, "Solid C60: a new form of carbon," Nature 347, 354 – 1358, (1990). [4]S. Iijima, "Helical Microtubes of Graphitic Carbon," Nature 354, 56 – 58 (1991). [5]A. K. Geim and K. S. Novoselov, "The rise of graphene," Nat. Mater. 6, 183 – 191 (2007). [6]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films," Science 306, 666 – 669 (2004). [7]N. P. Guisinger and M. S. Arnold, "Beyond Silicon: Carbon-Based Nanotechnology," MRS Bulletin 35, 273 – 276 (2010). [8]F. Schwierz, "Graphene Transistors: Status, Prospects, and Problems," Proc. IEEE 101, 1567 – 1584 (2013). [9]S. Bae, S. J. Kim, D. Shin, J.-H. Ahn, and B. H. Hong, "Towards industrial applications of graphene electrodes," Phys. Scr 146, 014024 (2012). [10]W. Wu, Z. Liu, L. A. Jauregui, Q. Yu, R. Pillai, H. Cao, J. Bao, Y. P. Chen, and S.-S. Pei, "Wafer-scale synthesis of graphene by chemical vapor deposition and its application in hydrogen sensing," Sens. Actuator B-Chem. 150, 296 – 300 (2010). [11]H. Bai, C. Li, and G. Shi, "Functional Composite Materials Based on Chemically Converted Graphene," Adv. Mater. 23, 1089 – 1115 (2011). [12]L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, "Raman spectroscopy in graphene," Phys. Rep. 473, 51 – 87, (2009). [13]A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, "The electronic properties of graphene," Rev. Mod. Phys. 81, 109 – 162, (2009). [14]A. K. Geim, "Graphene: Status and Prospects," Science, 324, 1530 – 1534 (2009). [15]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, "Two-dimensional gas of massless Dirac fermions in graphene," Nature 438, 197 – 200, (2005). [16]F. Liu, P. M. Ming, and J. Li, "Ab initio calculation of ideal strength and phonon instability of graphene under tension," Phys. Rev. B 76, 064120 (2007). [17]C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, "Measurement of the elastic properties and intrinsic strength of monolayer graphene," Science 321, 385 – 388 (2008). [18]R. J. Young, I. A. Kinloch, L. Gong, and K. S. Novoselov, "The mechanics of graphene nanocomposites: A review," Compos. Sci. Technol. 72, 1459 – 1476 (2012). [19]F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, "Detection of individual gas molecules adsorbed on graphene," Nat. Mater. 6, 652 – 655 (2007). [20]X. K. Lu, M. F. Yu, H. Huang, and R. S. Ruoff, "Tailoring graphite with the goal of achieving single sheets," Nanotechnology, 10, 269 – 272 (1999). [21]M. Yi, Z. Shen, "A review on mechanical exfoliation for the scalable production of graphene," J. Mater. Chem. A, 3, 11700 – 11715 (2015). [22]X. Liang, A. S. P. Chang, Y. Zhang, B. D. Harteneck, H. Choo, D. L. Olynick, and S. Cabrini, "Electrostatic Force Assisted Exfoliation of Prepatterned Few-Layer Graphenes into Device Sites," Nano Lett. 9, 467 – 472 (2009). [23]C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, "Electronic confinement and coherence in patterned epitaxial graphene," Science 312, 1191 – 1196 (2006). [24]W. A. de Heer, C. Berger, X. Wu, P. N. First, E. H. Conrad, X. Li, T. Li, M. Sprinkle, J. Hass, M. L. Sadowski, M. Potemski, and G. Martinez, "Epitaxial graphene," Solid State Commun. 143, 92 – 100 (2007). [25]S. Y. Zhou, G. H. Gweon, A. V. Fedorov, P. N. First, W. A. De Heer, D. H. Lee, F. Guinea, A. H. C. Neto, and A. Lanzara, "Substrate-induced bandgap opening in epitaxial graphene," Nat. Mater. 6 770 – 775 (2007). [26]M. Sprinkle, M. Ruan, Y. Hu, J. Hankinson, M. Rubio-Roy, B. Zhang, X. Wu, C. Berger, and W. A. de Heer, "Scalable templated growth of graphene nanoribbons on SiC," Nat. Nanotechnol. 5, 727 – 731 (2010). [27]W. A. de Heer, C. Berger, M. Ruan, M. Sprinkle, X. Li, Y. Hu, B. Zhang, J. Hankinson, and E. Conrad, "Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide," PNAS 108, 16900 – 16905 (2011). [28]W. Gao, L. B. Alemany, L. J. Ci, and P. M. Ajayan, "New insights into the structure and reduction of graphite oxide," Nat Chem. 1, 403 – 408 (2009). [29]H. J. Shin, K. K. Kim, A. Benayad, S. M. Yoon, H. K. Park, I. S. Jung, M. H. Jin, H. K. Jeong, J. M. Kim, J. Y. Choi, and Y. H. Lee, "Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance," Adv. Funct. Mater. 19, 1987 – 1992 (2009). [30]H. C. Schniepp, J. L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson, R. K. Prud''homme, R. Car, D. A. Saville, and I. A. Aksay, "Functionalized single graphene sheets derived from splitting graphite oxide," J. Phys. Chem. B 110 8535 – 8539 (2006). [31]M. J. McAllister, J. L. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, M. Herrera-Alonso, D. L. Milius, R. Car, R. K. Prud''homme, and I. A. Aksay, "Single sheet functionalized graphene by oxidation and thermal expansion of graphite," Chem. Mater. 19, 4396 – 4404 (2007). [32]S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, "Graphene-based composite materials," Nature 442, 282 – 286 (2006). [33]W. S. Hummers and R. E. Offeman, "Preparation of Graphitic Oxide," J. Am. Chem. Soc. 80, 1339 – 1339 (1958). [34]D. Li, M. B. Mueller, S. Gilje, R. B. Kaner, and G. G. Wallace, "Processable aqueous dispersions of graphene nanosheets," Nat. Nanotechnol. 3, 101 – 105, (2008). [35]S. Saadi, F. Abild-Pedersen, S. Helveg, J. Sehested, B. Hinnemann, C. C. Appel, and J. K. Nørskov, "On the Role of Metal Step-Edges in Graphene Growth," J. Phys. Chem. C 114, 11221 – 11227 (2010). [36]C. Mattevi, H. Kim, and M. Chhowalla, "A review of chemical vapour deposition of graphene on copper," J. Mater. Chem 21, 3324 – 3334 (2011). [37]F. H. Ree, N. W. Winter, J. N. Glosli, J. A. Viecelli, "Kinetics and thermodynamic behavior of carbon clusters under high pressure and high temperature," Physica B Condens Matter 265, 223 – 229 (1999). [38]X. Li, W. Cai, L. Colombo, R. S. Ruoff, "Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling," Nano Lett. 9, 4268 – 4272 (2009). [39]X. Li, W. Cai, J. An, S. Kim, J. Na, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, "Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils," Science 324, 1312 – 1314, (2009). [40]H. Mehdipour and K. Ostrikov, "Kinetics of Low-Pressure, Low-Temperature Graphene Growth: Toward Single-Layer, Single-Crystalline Structure," Acs Nano. 6, 10276 – 10286 (2012). [41]Y. Ogawa, B. Hu, C. M. Orofeo, M. Tsuji, K.-i. Ikeda, S. Mizuno, H. Hibino, and H. Ago, "Domain Structure and Boundary in Single-Layer Graphene Grown on Cu(111) and Cu(100) Films," J. Phys. Chem. Lett 3, 219 – 226 (2011). [42]L. Gao, J. R. Guest, and N. P. Guisinger, "Epitaxial Graphene on Cu(111)," Nano Lett. 10, 3512 – 3516 (2010). [43]J. Cho, L. Gao, J. Tian, H. Cao, W. Wu, Q. Yu, E. N. Yitamben, B. Fisher, J. R. Guest, Y. P. Chen, and N. P. Guisinger, "Atomic-Scale Investigation of Graphene Grown on Cu Foil and the Effects of Thermal Annealing," Acs Nano. 5, 3607 – 3613 (2011). [44]H. I. Rasool, E. B. Song, M. J. Allen, J. K. Wassei, R. B. Kaner, K. L. Wang, B. H. Weiller, and J. K. Gimzewski, "Continuity of Graphene on Polycrystalline Copper," Nano Lett. 11, 251 – 256 (2011). [45]H. I. Rasool, E. B. Song, M. Mecklenburg, B. C. Regan, K. L. Wang, B. H. Weiller, and J. K. Gimzewski, "Atomic-Scale Characterization of Graphene Grown on Copper (100) Single Crystals," J. Am. Chem. Soc. 133, 12536 – 12543 (2011). [46]A. T. Murdock, A. Koos, T. B. Britton, L. Houben, T. Batten, T. Zhang, A. J. Wilkinson, R. E. Dunin-Borkowski, C. E. Lekka, and N. Grobert, "Controlling the Orientation, Edge Geometry, and Thickness of Chemical Vapor Deposition Graphene," Acs Nano. 7, 1351 – 1359 (2013). [47]X. Li, C. W. Magnuson, A. Venugopal, J. An, J. W. Suk, B. Han, M. Borysiak, W. Cai, A. Velamakanni, Y. Zhu, L. Fu, E. M. Vogel, E. Voelkl, L. Colombo, and R. S. Ruoff, "Graphene Films with Large Domain Size by a Two-Step Chemical Vapor Deposition Process," Nano Lett. 10, 4328 – 4334 (2010). [48]Y. Zhang, L. Zhang, P. Kim, M. Ge, Z. Li, and C. Zhou, "Vapor Trapping Growth of Single-Crystalline Graphene Flowers: Synthesis, Morphology, and Electronic Properties," Nano Lett. 12, 2810 – 2816 (2012). [49]H. Wang, G. Wang, P. Bao, S. Yang, W. Zhu, X. Xie, and W.-J. Zhang, "Controllable Synthesis of Submillimeter Single-Crystal Monolayer GrapheneDomains on Copper Foils by Suppressing Nucleation," J. Am. Chem. Soc. 134, 3627 – 3630 (2012). [50]Z. Yan, J. Lin, Z. Peng, Z. Sun, Y. Zhu, L. Li, C. Xiang, E. L. Samuel, C. Kittrell, and J. M. Tour, "Toward the Synthesis of Wafer-Scale Single-Crystal Graphene on Copper Foils," Acs Nano. 6, 9110 – 9117 (2012). [51]Y. A. Wu, Y. Fan, S. Speller, G. L. Creeth, J. T. Sadowski, K. He, A. W. Robertson, C. S. Allen, and J. H. Warner, "Large Single Crystals of Graphene on Melted Copper Using Chemical Vapor Deposition," Acs Nano. 6, 5010 – 5017 (2012). [52]A. Mohsin, L. Liu, P. Liu, W. Deng, I. N. Ivanov, G. Li, O. E. Dyck, G. Duscher, J. R. Dunlap, K. Xiao, and G. Gu, "Synthesis of Millimeter-Size Hexagon-Shaped Graphene Single Crystals on Resolidified Copper," Acs Nano. 7, 8924 – 8931 (2013). [53]S. Chen, H. Ji, H. Chou, Qi. Li, H. Li, J. W. Suk, R. Piner, L. Liao, W. Cai, R. S. Ruoff, "Millimeter‐Size Single‐Crystal Graphene by Suppressing Evaporative Loss of Cu During Low Pressure Chemical Vapor Deposition," Adv. Mater. 25, 2062 – 2065 (2013). [54]L. Zhan, Y. Wang, H. Chang, R. Stehle, J. Xu, L. Gao, W. Zhang, Y. Jia, F. Qing and X. Li, "Preparation of Ultra-Smooth Cu Surface for High-Quality Graphene Synthesis," Nanoscale Res. Lett. 13, 340 (2018). [55]Y. Y. Zhang, Y. T. Gu, "Mechanical properties of graphene: Effects of layer number, temperature and isotope," Comput. Mater. Sci. 71, 197 – 200 (2013). [56]V. N. Robinson and J. L. Robins, "Nucleation Kinetics of Gold Deposited onto UHV Cleaved Surfaces of NaCl and KBr," Thin Solid Films 20, 155 – 175 (1974). [57]H. Kim, C. Mattevi, M. R. Calvo, J. C. Oberg, L. Artiglia, S. Agnoli, C. F. Hirjibehedin, M. Chhowalla, and E. Saiz, "Activation Energy Paths for Graphene Nucleation and Growth on Cu," Acs Nano. 6, 3614 – 3623 (2012). [58]G. Gajewski and C. W. Pao, "Ab initio calculations of the reaction pathways for methane decomposition over the Cu (111) surface," J. Chem. Phys. 135, 064707 (2011). [59]P. Wu, W. H. Zhang, Z. Y. Li, J. L. Yang, and J. G. Hou, "Communication: Coalescence of carbon atoms on Cu (111) surface: Emergence of a stable bridging-metal structure motif," J. Chem. Phys. 133, 071101 (2010). [60]W. Zhang, P. Wu, Z. Li, and J. Yang, "First-Principles Thermodynamics of Graphene Growth on Cu Surfaces," J. Phys. Chem. C 115, 17782 – 17787 (2011). [61]E. Loginova, N. C. Bartelt, P. J. Feibelman, and K. F. McCarty, "Evidence for graphene growth by C cluster attachment," New J. Phys. 10, 093026 (2008). [62]O. V. Yazyev and S. G. Louie, "Electronic transport in polycrystalline graphene," Nat. Mater. 9, 806 – 809 (2010). [63]Z. Luo, Y. Lu, D. W. Singer, M. E. Berck, L. A. Somers, B. R. Goldsmith, and A. T. C. Johnson, "Effect of Substrate Roughness and Feedstock Concentration on Growth of Wafer-Scale Graphene at Atmospheric Pressure," Chem. Mater. 23, 1441 – 1447 (2011). [64]C. Jia, J. Jiang, L. Gan, and X. Guo, "Direct Optical Characterization of Graphene Growth and Domains on Growth Substrates," Sci Rep. 2, 00707 2012. [65]Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, "Graphene thickness determination using reflection and contrast spectroscopy," Nano Lett. 7, 2758 – 2763 (2007). [66]P. Blake, E. W. Hill, A. H. C. Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, "Making graphene visible," Appl. Phys. Lett. 91, 063125 (2007). [67]B. Tang, G. Hu, and H. Gao, "Raman Spectroscopic Characterization of Graphene," Appl. Spectrosc. Rev. 45, 369 – 407 (2010). [68]A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, "Raman spectrum of graphene and graphene layers," Phys. Rev. Lett. 97, 187401 2006. [69]A. C. Ferrari and D. M. Basko, "Raman spectroscopy as a versatile tool for studying the properties of graphene," Nat. Nanotechnol. 8, 235 – 246 (2013).
|