(3.238.186.43) 您好!臺灣時間:2021/03/01 15:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳友銓
研究生(外文):Yu-Chuan Chen
論文名稱:以反應氣氛控制石墨烯成核密度以達大面積石墨烯成長之研究
論文名稱(外文):Increase the domain size of graphene by adjusting the atmosphere in chemical vapor deposition growth
指導教授:溫政彥
指導教授(外文):Cheng-Yen Wen
口試委員:李紹先王迪彥
口試日期:2019-06-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:68
中文關鍵詞:石墨烯化學氣相沉積成核密度晶域大小
DOI:10.6342/NTU201903340
相關次數:
  • 被引用被引用:1
  • 點閱點閱:27
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
石墨烯為一由含有sp2鍵結的碳原子所組成六角蜂巢狀晶格的二維原子網格,其優異的電子性質,常溫下其電子遷移率超過15000 cm2/V·s,比奈米碳管或矽晶體(monocrystalline silicon)高,及優異的機械性質,是世上最薄卻也是最堅硬的奈米材料,近年來引起許多學者的興趣,也接踵投入研究。如未來要將石墨烯薄膜應用於各式各樣的電子元件上,生產出高品質且穩定的石墨烯薄膜將是至關重要的因素,而在眾多製備石墨烯薄膜的方法當中,利用化學氣相沉積製程進行石墨烯薄膜成長,相較於其他製備方法有著許多優點,其包括好的厚度均勻性和高的純度及密度,除此之外最重要的是化學氣相沉積法能將其製程規模放大,有利於業界進行大面積的生產,以達商業化之目標。
然而,一般化學氣相沈積法在銅箔上成長出的石墨烯,常常是由成核密度極高的數個小核合併成大片薄膜,單一晶粒大小約只有數十微米大小,其不同晶向的晶粒間存在大量晶界,造成電性、機械性質等等的影響,應用在元件中會產生一定的影響。因此,在本論文中,我們探討了化學氣相沉積製程中的反應氣氛對石墨烯薄膜成長的影響,並且在進入石墨烯成長階段之前,先將金屬銅基板置於氧氣氣氛下,使其表面生成穩定的氧化層,有效地鈍化銅金屬表面的成核點,並且調控反應時爐管內的各項參數,使石墨烯在成長初期階段的成核密度可以從104 nuclei/mm2逐步降低至1 nuclei/mm2,建立在此低成核密度的基礎上,並且在成長階段中,儘可能控制條件降低新的成核機會,讓石墨烯單一晶域大小從數十微米達到釐米乃至於公分尺度。
Graphene, a two-dimensional hexagonal lattice structure composed of sp2-bonded carbon atoms, surprisingly has outstanding electrical and mechanical properties. These exceptional properties have made graphene a popular material for a decade. On the other hand, the development of liquid cell has attracted significant interest in these years. With finely fabricated liquid cells, it has been possible to image through liquids using TEM with subnanometer resolution, and many previously unseen materials dynamics have been revealed. Recently, the invention of graphene liquid cell provides a better resolution for observing liquid samples in an electron microscope. In order to apply graphene in liquid cell techniques for TEM observation, reliable fabrication methods, which can produce high-quality graphene layers, are very essential. Among the approaches to synthesize graphene, the chemical vapor deposition (CVD) method shows several advantages, including simple fabrication procedures, good step coverage ability, and, most importantly, its scalability – it has been demonstrated that the size of graphene sheet is large enough for many applications.
 To apply graphene in liquid cell, large enough graphene domain size is required. However, graphene synthesized by traditional CVD method is not perfectly suitable for liquid cell application because of small domain size and polycrystalline properties. To enlarge the graphene domain size and acquire single orientation of graphene island, adapted method should be used to conquer these problems. A refined method called oxygen-assisted chemical vapor deposition(OCVD) is introduced. By this way, lower nucleation density and larger graphene domain size can be reached.
口試委員會審定書 #
致謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES xiii
Chapter 1 概述與動機 1
Chapter 2 石墨烯的性質 4
2.1 石墨烯之晶體結構 5
2.2 石墨烯之物理性質 7
2.2.1 石墨烯之電子性質 7
2.2.2 石墨烯之機械性質 10
2.3 石墨烯之化學性質 12
Chapter 3 石墨烯的製備方法 14
3.1 機械剝離法 14
3.2 磊晶成長法 16
3.3 化學溶液法 17
3.4 化學氣相沉積法 20
3.4.1 基板的效應與石墨烯成長反應機制 20
3.4.2 石墨烯晶域大小提升之方法 26
3.4.3 石墨烯薄膜層數之影響及控制 30
3.4.4 溫度效應 31
Chapter 4 實驗步驟與研究方法 33
4.1 實驗方法 33
4.1.1 基板前處理 33
4.1.2 化學氣相沉積製程 34
4.1.3 氧化層輔助化學氣相沉積製程 35
4.1.4 高壓氧化層輔助化學氣相沉積製程 36
4.1.5 成長基板氧化 37
4.1.6 石墨烯轉印 38
4.2 薄膜分析與鑑定 39
4.2.1 光學顯微鏡 40
4.2.2 拉曼光譜儀 42
4.2.3 掃描式電子顯微鏡 45
4.2.4 背向式散射電子繞射 45
4.2.5 穿透式電子顯微鏡 46
Chapter 5 結果與討論 48
5.1 氧化層輔助化學氣相沉積與一般化學氣相沉積成長出石墨烯之比較 48
5.2 高壓氧化層輔助化學氣相沉積製程成長大晶域石墨烯 49
5.2.1 氬氣對石墨烯成核密度之影響 50
5.2.2 碳源氣體流量的影響 52
5.2.3 溫度的影響 53
5.3 兩階段高壓氧化層輔助化學氣相沉積製程 54
5.4 大晶域石墨烯之性質分析 58
5.4.1 利用拉曼光譜對石墨烯層數之分析 58
5.4.2 利用電子顯微鏡繞射對石墨烯結晶方向之分析 59
Chapter 6 結論與未來展望 62
REFERENCE 63
[1]M. Terrones, A. R. Botello-Méndez, J. Campos-Delgado, F. López-Urías, Y. I. Vega-Cantú, F. J. Rodríguez-Macías, A. L. Elías, E. Muñoz-Sandoval, A. G. Cano-Márquez, J.C. Charlier, and H. Terrones, "Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications," Nano Today 5, 351 – 372, (2010).
[2]P. R. Wallace, "The band theory of graphite," Phys. Rev. 71, 622 – 634, (1947).
[3]W. Kratschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman, "Solid C60: a new form of carbon," Nature 347, 354 – 1358, (1990).
[4]S. Iijima, "Helical Microtubes of Graphitic Carbon," Nature 354, 56 – 58 (1991).
[5]A. K. Geim and K. S. Novoselov, "The rise of graphene," Nat. Mater. 6, 183 – 191 (2007).
[6]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films," Science 306, 666 – 669 (2004).
[7]N. P. Guisinger and M. S. Arnold, "Beyond Silicon: Carbon-Based Nanotechnology," MRS Bulletin 35, 273 – 276 (2010).
[8]F. Schwierz, "Graphene Transistors: Status, Prospects, and Problems," Proc. IEEE 101, 1567 – 1584 (2013).
[9]S. Bae, S. J. Kim, D. Shin, J.-H. Ahn, and B. H. Hong, "Towards industrial applications of graphene electrodes," Phys. Scr 146, 014024 (2012).
[10]W. Wu, Z. Liu, L. A. Jauregui, Q. Yu, R. Pillai, H. Cao, J. Bao, Y. P. Chen, and S.-S. Pei, "Wafer-scale synthesis of graphene by chemical vapor deposition and its application in hydrogen sensing," Sens. Actuator B-Chem. 150, 296 – 300 (2010).
[11]H. Bai, C. Li, and G. Shi, "Functional Composite Materials Based on Chemically Converted Graphene," Adv. Mater. 23, 1089 – 1115 (2011).
[12]L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, "Raman spectroscopy in graphene," Phys. Rep. 473, 51 – 87, (2009).
[13]A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, "The electronic properties of graphene," Rev. Mod. Phys. 81, 109 – 162, (2009).
[14]A. K. Geim, "Graphene: Status and Prospects," Science, 324, 1530 – 1534 (2009).
[15]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, "Two-dimensional gas of massless Dirac fermions in graphene," Nature 438, 197 – 200, (2005).
[16]F. Liu, P. M. Ming, and J. Li, "Ab initio calculation of ideal strength and phonon instability of graphene under tension," Phys. Rev. B 76, 064120 (2007).
[17]C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, "Measurement of the elastic properties and intrinsic strength of monolayer graphene," Science 321, 385 – 388 (2008).
[18]R. J. Young, I. A. Kinloch, L. Gong, and K. S. Novoselov, "The mechanics of graphene nanocomposites: A review," Compos. Sci. Technol. 72, 1459 – 1476 (2012).
[19]F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, "Detection of individual gas molecules adsorbed on graphene," Nat. Mater. 6, 652 – 655 (2007).
[20]X. K. Lu, M. F. Yu, H. Huang, and R. S. Ruoff, "Tailoring graphite with the goal of achieving single sheets," Nanotechnology, 10, 269 – 272 (1999).
[21]M. Yi, Z. Shen, "A review on mechanical exfoliation for the scalable production of graphene," J. Mater. Chem. A, 3, 11700 – 11715 (2015).
[22]X. Liang, A. S. P. Chang, Y. Zhang, B. D. Harteneck, H. Choo, D. L. Olynick, and S. Cabrini, "Electrostatic Force Assisted Exfoliation of Prepatterned Few-Layer Graphenes into Device Sites," Nano Lett. 9, 467 – 472 (2009).
[23]C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, "Electronic confinement and coherence in patterned epitaxial graphene," Science 312, 1191 – 1196 (2006).
[24]W. A. de Heer, C. Berger, X. Wu, P. N. First, E. H. Conrad, X. Li, T. Li, M. Sprinkle, J. Hass, M. L. Sadowski, M. Potemski, and G. Martinez, "Epitaxial graphene," Solid State Commun. 143, 92 – 100 (2007).
[25]S. Y. Zhou, G. H. Gweon, A. V. Fedorov, P. N. First, W. A. De Heer, D. H. Lee, F. Guinea, A. H. C. Neto, and A. Lanzara, "Substrate-induced bandgap opening in epitaxial graphene," Nat. Mater. 6 770 – 775 (2007).
[26]M. Sprinkle, M. Ruan, Y. Hu, J. Hankinson, M. Rubio-Roy, B. Zhang, X. Wu, C. Berger, and W. A. de Heer, "Scalable templated growth of graphene nanoribbons on SiC," Nat. Nanotechnol. 5, 727 – 731 (2010).
[27]W. A. de Heer, C. Berger, M. Ruan, M. Sprinkle, X. Li, Y. Hu, B. Zhang, J. Hankinson, and E. Conrad, "Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide," PNAS 108, 16900 – 16905 (2011).
[28]W. Gao, L. B. Alemany, L. J. Ci, and P. M. Ajayan, "New insights into the structure and reduction of graphite oxide," Nat Chem. 1, 403 – 408 (2009).
[29]H. J. Shin, K. K. Kim, A. Benayad, S. M. Yoon, H. K. Park, I. S. Jung, M. H. Jin, H. K. Jeong, J. M. Kim, J. Y. Choi, and Y. H. Lee, "Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance," Adv. Funct. Mater. 19, 1987 – 1992 (2009).
[30]H. C. Schniepp, J. L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson, R. K. Prud''homme, R. Car, D. A. Saville, and I. A. Aksay, "Functionalized single graphene sheets derived from splitting graphite oxide," J. Phys. Chem. B 110 8535 – 8539 (2006).
[31]M. J. McAllister, J. L. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, M. Herrera-Alonso, D. L. Milius, R. Car, R. K. Prud''homme, and I. A. Aksay, "Single sheet functionalized graphene by oxidation and thermal expansion of graphite," Chem. Mater. 19, 4396 – 4404 (2007).
[32]S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, "Graphene-based composite materials," Nature 442, 282 – 286 (2006).
[33]W. S. Hummers and R. E. Offeman, "Preparation of Graphitic Oxide," J. Am. Chem. Soc. 80, 1339 – 1339 (1958).
[34]D. Li, M. B. Mueller, S. Gilje, R. B. Kaner, and G. G. Wallace, "Processable aqueous dispersions of graphene nanosheets," Nat. Nanotechnol. 3, 101 – 105, (2008).
[35]S. Saadi, F. Abild-Pedersen, S. Helveg, J. Sehested, B. Hinnemann, C. C. Appel, and J. K. Nørskov, "On the Role of Metal Step-Edges in Graphene Growth," J. Phys. Chem. C 114, 11221 – 11227 (2010).
[36]C. Mattevi, H. Kim, and M. Chhowalla, "A review of chemical vapour deposition of graphene on copper," J. Mater. Chem 21, 3324 – 3334 (2011).
[37]F. H. Ree, N. W. Winter, J. N. Glosli, J. A. Viecelli, "Kinetics and thermodynamic behavior of carbon clusters under high pressure and high temperature," Physica B Condens Matter 265, 223 – 229 (1999).
[38]X. Li, W. Cai, L. Colombo, R. S. Ruoff, "Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling," Nano Lett. 9, 4268 – 4272 (2009).
[39]X. Li, W. Cai, J. An, S. Kim, J. Na, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, "Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils," Science 324, 1312 – 1314, (2009).
[40]H. Mehdipour and K. Ostrikov, "Kinetics of Low-Pressure, Low-Temperature Graphene Growth: Toward Single-Layer, Single-Crystalline Structure," Acs Nano. 6, 10276 – 10286 (2012).
[41]Y. Ogawa, B. Hu, C. M. Orofeo, M. Tsuji, K.-i. Ikeda, S. Mizuno, H. Hibino, and H. Ago, "Domain Structure and Boundary in Single-Layer Graphene Grown on Cu(111) and Cu(100) Films," J. Phys. Chem. Lett 3, 219 – 226 (2011).
[42]L. Gao, J. R. Guest, and N. P. Guisinger, "Epitaxial Graphene on Cu(111)," Nano Lett. 10, 3512 – 3516 (2010).
[43]J. Cho, L. Gao, J. Tian, H. Cao, W. Wu, Q. Yu, E. N. Yitamben, B. Fisher, J. R. Guest, Y. P. Chen, and N. P. Guisinger, "Atomic-Scale Investigation of Graphene Grown on Cu Foil and the Effects of Thermal Annealing," Acs Nano. 5, 3607 – 3613 (2011).
[44]H. I. Rasool, E. B. Song, M. J. Allen, J. K. Wassei, R. B. Kaner, K. L. Wang, B. H. Weiller, and J. K. Gimzewski, "Continuity of Graphene on Polycrystalline Copper," Nano Lett. 11, 251 – 256 (2011).
[45]H. I. Rasool, E. B. Song, M. Mecklenburg, B. C. Regan, K. L. Wang, B. H. Weiller, and J. K. Gimzewski, "Atomic-Scale Characterization of Graphene Grown on Copper (100) Single Crystals," J. Am. Chem. Soc. 133, 12536 – 12543 (2011).
[46]A. T. Murdock, A. Koos, T. B. Britton, L. Houben, T. Batten, T. Zhang, A. J. Wilkinson, R. E. Dunin-Borkowski, C. E. Lekka, and N. Grobert, "Controlling the Orientation, Edge Geometry, and Thickness of Chemical Vapor Deposition Graphene," Acs Nano. 7, 1351 – 1359 (2013).
[47]X. Li, C. W. Magnuson, A. Venugopal, J. An, J. W. Suk, B. Han, M. Borysiak, W. Cai, A. Velamakanni, Y. Zhu, L. Fu, E. M. Vogel, E. Voelkl, L. Colombo, and R. S. Ruoff, "Graphene Films with Large Domain Size by a Two-Step Chemical Vapor Deposition Process," Nano Lett. 10, 4328 – 4334 (2010).
[48]Y. Zhang, L. Zhang, P. Kim, M. Ge, Z. Li, and C. Zhou, "Vapor Trapping Growth of Single-Crystalline Graphene Flowers: Synthesis, Morphology, and Electronic Properties," Nano Lett. 12, 2810 – 2816 (2012).
[49]H. Wang, G. Wang, P. Bao, S. Yang, W. Zhu, X. Xie, and W.-J. Zhang, "Controllable Synthesis of Submillimeter Single-Crystal Monolayer GrapheneDomains on Copper Foils by Suppressing Nucleation," J. Am. Chem. Soc. 134, 3627 – 3630 (2012).
[50]Z. Yan, J. Lin, Z. Peng, Z. Sun, Y. Zhu, L. Li, C. Xiang, E. L. Samuel, C. Kittrell, and J. M. Tour, "Toward the Synthesis of Wafer-Scale Single-Crystal Graphene on Copper Foils," Acs Nano. 6, 9110 – 9117 (2012).
[51]Y. A. Wu, Y. Fan, S. Speller, G. L. Creeth, J. T. Sadowski, K. He, A. W. Robertson, C. S. Allen, and J. H. Warner, "Large Single Crystals of Graphene on Melted Copper Using Chemical Vapor Deposition," Acs Nano. 6, 5010 – 5017 (2012).
[52]A. Mohsin, L. Liu, P. Liu, W. Deng, I. N. Ivanov, G. Li, O. E. Dyck, G. Duscher, J. R. Dunlap, K. Xiao, and G. Gu, "Synthesis of Millimeter-Size Hexagon-Shaped Graphene Single Crystals on Resolidified Copper," Acs Nano. 7, 8924 – 8931 (2013).
[53]S. Chen, H. Ji, H. Chou, Qi. Li, H. Li, J. W. Suk, R. Piner, L. Liao, W. Cai, R. S. Ruoff, "Millimeter‐Size Single‐Crystal Graphene by Suppressing Evaporative Loss of Cu During Low Pressure Chemical Vapor Deposition," Adv. Mater. 25, 2062 – 2065 (2013).
[54]L. Zhan, Y. Wang, H. Chang, R. Stehle, J. Xu, L. Gao, W. Zhang, Y. Jia, F. Qing and X. Li, "Preparation of Ultra-Smooth Cu Surface for High-Quality Graphene Synthesis," Nanoscale Res. Lett. 13, 340 (2018).
[55]Y. Y. Zhang, Y. T. Gu, "Mechanical properties of graphene: Effects of layer number, temperature and isotope," Comput. Mater. Sci. 71, 197 – 200 (2013).
[56]V. N. Robinson and J. L. Robins, "Nucleation Kinetics of Gold Deposited onto UHV Cleaved Surfaces of NaCl and KBr," Thin Solid Films 20, 155 – 175 (1974).
[57]H. Kim, C. Mattevi, M. R. Calvo, J. C. Oberg, L. Artiglia, S. Agnoli, C. F. Hirjibehedin, M. Chhowalla, and E. Saiz, "Activation Energy Paths for Graphene Nucleation and Growth on Cu," Acs Nano. 6, 3614 – 3623 (2012).
[58]G. Gajewski and C. W. Pao, "Ab initio calculations of the reaction pathways for methane decomposition over the Cu (111) surface," J. Chem. Phys. 135, 064707 (2011).
[59]P. Wu, W. H. Zhang, Z. Y. Li, J. L. Yang, and J. G. Hou, "Communication: Coalescence of carbon atoms on Cu (111) surface: Emergence of a stable bridging-metal structure motif," J. Chem. Phys. 133, 071101 (2010).
[60]W. Zhang, P. Wu, Z. Li, and J. Yang, "First-Principles Thermodynamics of Graphene Growth on Cu Surfaces," J. Phys. Chem. C 115, 17782 – 17787 (2011).
[61]E. Loginova, N. C. Bartelt, P. J. Feibelman, and K. F. McCarty, "Evidence for graphene growth by C cluster attachment," New J. Phys. 10, 093026 (2008).
[62]O. V. Yazyev and S. G. Louie, "Electronic transport in polycrystalline graphene," Nat. Mater. 9, 806 – 809 (2010).
[63]Z. Luo, Y. Lu, D. W. Singer, M. E. Berck, L. A. Somers, B. R. Goldsmith, and A. T. C. Johnson, "Effect of Substrate Roughness and Feedstock Concentration on Growth of Wafer-Scale Graphene at Atmospheric Pressure," Chem. Mater. 23, 1441 – 1447 (2011).
[64]C. Jia, J. Jiang, L. Gan, and X. Guo, "Direct Optical Characterization of Graphene Growth and Domains on Growth Substrates," Sci Rep. 2, 00707 2012.
[65]Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, "Graphene thickness determination using reflection and contrast spectroscopy," Nano Lett. 7, 2758 – 2763 (2007).
[66]P. Blake, E. W. Hill, A. H. C. Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, "Making graphene visible," Appl. Phys. Lett. 91, 063125 (2007).
[67]B. Tang, G. Hu, and H. Gao, "Raman Spectroscopic Characterization of Graphene," Appl. Spectrosc. Rev. 45, 369 – 407 (2010).
[68]A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, "Raman spectrum of graphene and graphene layers," Phys. Rev. Lett. 97, 187401 2006.
[69]A. C. Ferrari and D. M. Basko, "Raman spectroscopy as a versatile tool for studying the properties of graphene," Nat. Nanotechnol. 8, 235 – 246 (2013).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔