|
[1] S. Herculano-Houzel. The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost. Proceedings of the National Academy of Sciences, 109:10661–10668, 2012. [2] S. Marc. Breedlove, Mark R. Rosenzweig, and Neil V. Watson. Biological Psychology: An Introduction to Behavioral, Cognitive, and Clinical Neuroscience, chapter 2, page 24. Sinauer, seventh edition, 2013. [3] Mark F. Bear, Barry W. Connors, and Michael A. Paradiso. Neuroscience: Exploring the Brain, chapter 4, page 94. Lippincott Williams and Wilkins, third edition, 2007. [4] S. Marc. Breedlove, Mark R. Rosenzweig, and Neil V. Watson. Biological Psychology: An Introduction to Behavioral, Cognitive, and Clinical Neuroscience, chapter 3, page 68. Sinauer, seventh edition, 2013. [5] Bernard J. Baars and Nicole M. Gage. Fundamentals of Cognitive Neuroscience: A Beginner’s Guide, chapter 3, page 64. Academic Press, first edition, 2012. [6] Wikimedia Commons contributors. File:somatosensory cortex of a mouse brain slice - gfp expressed - 20x magnification.jpg, 2018. Last accessed 23 May 2019. [7] Javier DeFelipe. The evolution of the brain, the human nature of cortical circuits, and intellectual creativity. Frontiers in Neuroanatomy, 5:1–17, 2013. [8] Joyce Keifer and Cliff H. Summers. Putting the ’biology’ back into ’neurobiology’: The strength of diversity in animal model systems for neuroscience research. Frontiers in Systems Neuroscience, 10(69), 2016. [9] Bart Ellenbroek and Jiun Youn. Rodent models in neuroscience research: is it a rat race? Disease Models and Mechanisms, 9(10):1079–1087, 2016. [10] Robert L. Isaacson. Hippocampal destruction in man and other animals. Neuropsychologia, 10(1):47–64, 1972. [11] Yaniv Ziv, Laurie D Burns, Eric D Cocker, Elizabeth O Hamel, Kunal K Ghosh, Lacey J Kitch, Abbas El Gamal, and Mark J Schnitzer. Long-term dynamics of ca1 hippocampal place codes. Nature Neuroscience, 16(3):264–266, 2013. [12] Ying Li, Alexander Mathis, Benjamin F. Grewe, Jessica A. Osterhout, Biafra Ahanonu, Mark J. Schnitzer, Venkatesh N. Murthy, and Catherine Dulac. Neuronal representation of social information in the medial amygdala of awake behaving mice. Cell, 171(5):1176–1190, Nov 2017. [13] Scott A. Rivkees. The development of circadian rhythms: From animals to humans. Sleep Medicine Clinics, 2(3):331–341, 2007. [14] Christa J. Van Dort, Daniel P. Zachs, Jonathan D. Kenny, Shu Zheng, Rebecca R. Goldblum, Noah A. Gelwan, Daniel M. Ramos, Michael A. Nolan, Karen Wang, Feng-Ju Weng, Yingxi Lin, Matthew A. Wilson, and Emery N. Browna. Optogenetic activation of cholinergic neurons in the ppt or ldt induces rem sleep. Proceedings of the National Academy of Sciences, 112(2):584–589, 2014. [15] Marisela Morales and Elyssa B. Margolis. Ventral tegmental area: cellular heterogeneity, connectivity and behaviour. Nature Reviews Neuroscience, 18(2):73–85, 2017. [16] Jenna A Mchenry, James M Otis, Mark A Rossi, J Elliott Robinson, Oksana Kosyk, Noah W Miller, Zoe A Mcelligott, Evgeny A Budygin, David R Rubinow, Garret D Stuber, and et al. Hormonal gain control of a medial preoptic area social reward circuit. Nature Neuroscience, 20(3):449–458, 2017. [17] Kirk R. Thomas and Mario R. Capecchi. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell, 51(3):503–512, 1987. [18] Adams A Beckel-Mitchener A Churchill J Farber G Freund M Gnadt J Hsu NS Langhals N Lisanby S Liu G Peng GCY Ramos K Steinmetz M Talley E White S. Koroshetz W, Gordon J. The state of the NIH BRAIN Initiative. The Journal of Neuroscience, 38(29):6427–6438, 2018. [19] Meghan C. Mott, Joshua A. Gordon, and Walter J. Koroshetz. The NIH BRAIN Initiative: Advancing neurotechnologies, integrating disciplines. PLOS Biology, 16(11), 2018. [20] Robert Y. Moore, Joan C. Speh, and Rehana K. Leak. Suprachiasmatic nucleus organization. Cell and Tissue Research, 309(1):89–98, 2002. [21] L. P. Morin, K.-Y. Shivers, J. H. Blanchard, and L. Muscat. Complex organization of mouse and rat suprachiasmatic nucleus. Neuroscience, 137(4):1285–1297, 2006. [22] David K. Welsh, Joseph S. Takahashi, and Steve A. Kay. Suprachiasmatic nucleus: Cell autonomy and network properties. Annual Review of Physiology, 72:551–577, 2010. [23] Robert Y. Moore and Victor B. Eichler. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Research, 42(1):201–206, 1972. [24] F. K. Stephan and I. Zucker. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proceedings of the National Academy of Sciences, 69(6):1583–1586, 1972. [25] The nobel prize in physiology or medicine 2017, https://www.nobelprize.org/prizes/medicine/2017/summary/. [26] Frédéric Gachon, Emi Nagoshi, Steven A. Brown, Juergen Ripperger, and UeliSchibler. The mammalian circadian timing system: from gene expression to physiology. Chromosoma, 113(3):103–112, 2004. [27] The Allen Institute for Brain Science. Sch suprachiasmatic nucleus, 2019. Last accessed 23 May 2019. [28] Freeman J. Dyson. Imagined worlds, page 50. Harvard University Press, 1998. [29] A. L. Hodgkin and A. F. Huxley. Action potentials recorded from inside a nerve fibre. Nature, 144(3651):710–711, 1939. [30] Synaptidude. File:field potential schematic.jpg, 2005. Last accessed 23 May 2019, https://en.wikipedia.org/wiki/Electrophysiology. [31] John W. Belliveau, Bruce R. Rosen, Howard L. Kantor, Richard R. Rzedzian, David N. Kennedy, Robert C. Mckinstry, James M. Vevea, Mark S. Cohen, Ian L. Pykett, and Thomas J. Brady. Functional cerebral imaging by susceptibilitycontrast nmr. Magnetic Resonance in Medicine, 14(3):538–546, 1990. [32] Maggie Sm Chow, Sharon L Wu, Sarah E Webb, Katie Gluskin, and D T Yew. Functional magnetic resonance imaging and the brain: A brief review. World Journal of Radiology, 9(1):5–9, 2017. [33] Nikos K. Logothetis, Jon Pauls, Mark Augath, Torsten Trinath, and Axel Oeltermann. Neurophysiological investigation of the basis of the fmri signal. Nature, 412(6843):150–157, 2001. [34] Jozien Goense, Yvette Bohraus, and Nikos K. Logothetis. fmri at high spatial resolution: Implications for bold-models. Frontiers in Computational Neuroscience, 10(66):1–13, 2016. [35] Gary H. Glover. Overview of functional magnetic resonance imaging. Neurosurgery Clinics of North America, 22(2):133–139, 2012. [36] Tsai-Wen Chen, Trevor J. Wardill, Yi Sun, Stefan R. Pulver, Sabine L. Renninger, Amy Baohan, Eric R. Schreiter, Rex A. Kerr, Michael B. Orger, Vivek Jayaraman, and et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature, 499(7458):295–300, 2013. [37] W Denk, J. H. Strickler, and W. W. Webb. Two-photon laser scanning fluorescence microscopy. Science, 248(4951):73–76, 1990. [38] The nobel prize in physiology or medicine 1906, https://www.nobelprize.org/prizes/medicine/1906/summary/. [39] Warren R Zipfel, Rebecca M Williams, and Watt W Webb. Nonlinear magic: multiphoton microscopy in the biosciences. Nature Biotechnology, 21(11):1369–1377, 2003. [40] Ernst H.k. Stelzer, Stefan Hell, Steffen Lindek, Reinhold Stricker, Rainer Pick, Clemens Storz, Georg Ritter, and Nick Salmon. Nonlinear absorption extends confocal fluorescence microscopy into the ultra-violet regime and confines the illumination volume. Optics Communications, 104(4-6):223–228, 1994. [41] W. Denk, K. R. Delaney, A. Gelperin, D. Kleinfeld, B. W. Strowbridge, D. W. Tank, and R. Yuste. Anatomical and functional imaging of neurons using 2-photon laser scanning microscopy. Journal of Neuroscience Methods, 54(2):151–162, 1994. [42] David Kleinfeld, Partha P. Mitra, Fritjof Helmchen, and Winfried Denk. Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. Proceedings of the National Academy of Sciences, 95(26):15741–15746, 1998. [43] Fritjof Helmchen, Karel Svoboda, Winfried Denk, and David W. Tank. In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons. Nature Neuroscience, 2(11):989–996, 1999. [44] Patrick Theer, Mazahir T. Hasan, and Winfried Denk. Two-photon imaging to a depth of 1000 μm in living brains by use of a ti:al2o3 regenerative amplifier. Optics Letters, 28(12):1022–1024, 2003. [45] Nicholas G. Horton, Ke Wang, Demirhan Kobat, Catharine G. Clark, Frank W. Wise, Chris B. Schaffer, and Chris Xu. In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nature Photonics, 7(3):205–209, 2013. [46] Dimitre G Ouzounov, Tianyu Wang, Mengran Wang, Danielle D Feng, Nicholas G Horton, Jean C Cruz-Hernández, Yu-Ting Cheng, Jacob Reimer, Andreas S Tolias, Nozomi Nishimura, and Chris Xu. In vivo three-photon imaging of activity of gcamp6-labeled neurons deep in intact mouse brain. Nature Methods, 14(4):388–390, 2017. [47] David R. Miller, Ahmed M. Hassan, Jeremy W. Jarrett, Flor A. Medina, Evan P. Perillo, Kristen Hagan, S. M. Shams Kazmi, Taylor A. Clark, Colin T. Sullender,Theresa A. Jones, and et al. In vivo multiphoton imaging of a diverse array of fluorophores to investigate deep neurovascular structure. Biomedical Optics Express, 8(7):3470–3481, 2017. [48] K. Amunts, C. Lepage, L. Borgeat, H. Mohlberg, T. Dickscheid, M.-E. Rousseau, S. Bludau, P.-L. Bazin, L. B. Lewis, A.-M. Oros-Peusquens, and et al. Bigbrain: An ultrahigh-resolution 3d human brain model. Science, 340(6139):1472–1475, 2013. [49] A. Mizrahi. High-resolution in vivo imaging of hippocampal dendrites and spines. Journal of Neuroscience, 24(13):3147–3151, 2004. [50] James H. Marshel, Alfred P. Kaye, Ian Nauhaus, and Edward M. Callaway. Anterior-posterior direction opponency in the superficial mouse lateral geniculate nucleus. Neuron, 76(4):713–720, 2012. [51] Daniel A Dombeck, Christopher D Harvey, Lin Tian, Loren L Looger, and David W Tank. Functional imaging of hippocampal place cells at cellular resolution during virtual navigation. Nature Neuroscience, 13(11):1433–1440, 2010. [52] Masaaki Sato, Masako Kawano, Yuchio Yanagawa, and Yasunori Hayashi. In vivo two-photon imaging of striatal neuronal circuits in mice. Neurobiology of Learning and Memory, 135:146–151, 2016. [53] N. A. Bock. In vivo magnetic resonance imaging and semiautomated image analysis extend the brain phenotype for cdf/cdf mice. Journal of Neuroscience, 26(17):4455–4459, 2006. [54] Joshua H. Jennings, Randall L. Ung, Shanna L. Resendez, Alice M. Stamatakis, Johnathon G. Taylor, Jonathan Huang, Katie Veleta, Pranish A. Kantak, Megumi Aita, Kelson Shilling-Scrivo, and et al. Visualizing hypothalamic network dynamics for appetitive and consummatory behaviors. Cell, 160(3):516–527, 2015. [55] Ying Li, Alexander Mathis, Benjamin F. Grewe, Jessica A. Osterhout, Biafra Ahanonu, Mark J. Schnitzer, Venkatesh N. Murthy, and Catherine Dulac. Neuronal representation of social information in the medial amygdala of awake behaving mice. Cell, 171(5):1176–1190, 2017. [56] Juergen C. Jung, Amit D. Mehta, Emre Aksay, Raymond Stepnoski, and Mark J. Schnitzer. In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy. Journal of Neurophysiology, 92(5):3121–3133, 2004. [57] Juergen C. Jung and Mark J. Schnitzer. Multiphoton endoscopy. Optics Letters, 28(11):902–904, 2003. [58] Michael J. Levene, Daniel A. Dombeck, Karl A. Kasischke, Raymond P. Molloy, and Watt W. Webb. In vivo multiphoton microscopy of deep brain tissue. Journal of Neurophysiology, 91(4):1908–1912, 2004. [59] Miriam E. Bocarsly, Wan-Chen Jiang, Chen Wang, Joshua T. Dudman, Na Ji, and Yeka Aponte. Minimally invasive microendoscopy system for in vivo functional imaging of deep nuclei in the mouse brain. Biomedical Optics Express, 6(11):4546, 2015. [60] Claudio Moretti, Andrea Antonini, Serena Bovetti, Carlo Liberale, and Tommaso Fellin. Scanless functional imaging of hippocampal networks using patterned twophoton illumination through grin lenses. Biomedical Optics Express, 7(10):3958–3967, 2016. [61] Masaaki Sato, Yuki Motegi, Shogo Yagi, Keiko Gengyo-Ando, Masamichi Ohkura, and Junichi Nakai. Fast varifocal two-photon microendoscope for imaging neuronal activity in the deep brain. Biomedical Optics Express, 8(9):4049, 2017. [62] Guanghan Meng, Yajie Liang, Sarah Sarsfield, Wan-Chen Jiang, Rongwen Lu, Joshua Tate Dudman, Yeka Aponte, and Na Ji. High-throughput synapse-resolving two-photon fluorescence microendoscopy for deep-brain volumetric imaging in vivo. eLife, 8:1–22, Jan 2019. [63] Fritjof Helmchen and Winfried Denk. Deep tissue two-photon microscopy. Nature Methods, 2(12):932–940, 2005. [64] L. Fu and M. Gu. Fibre-optic nonlinear optical microscopy and endoscopy. Journal of Microscopy, 226(3):195–206, 2007. [65] Steve Ruzin and UC Berkeley Holly Aaron. 1P vs 2P fluorescence imaging. Last accessed 23 May 2019, http://microscopy.berkeley.edu/courses/TLM/2P/index.html. [66] Wolfgang Becker. The bh TCSPC Handbook, page 128. Becker and Hickl GmbH, 7 edition, 2017. [67] Amnon Yariv and Pochi Yeh. Photonics: optical electronics in modern communications, chapter 2, page 74 and 75. Oxford University Press, sixth edition, 2007. [68] Grintech product catalog, 2019, https://www.grintech.de/downloads/.html. [69] Robert P J Barretto, Bernhard Messerschmidt, and Mark J Schnitzer. In vivo fluorescence imaging with high-resolution microlenses. Nature Methods, 6(7):511–512, 2009. [70] Euan Mcleod, Adam B. Hopkins, and Craig B. Arnold. Multiscale bessel beams generated by a tunable acoustic gradient index of refraction lens. Optics Letters, 31(21):3155–3157, 2006. [71] Nicolas Olivier, Alexandre Mermillod-Blondin, Craig B. Arnold, and Emmanuel Beaurepaire. Two-photon microscopy with simultaneous standard and extended depth of field using a tunable acoustic gradient-index lens. Optics Letters, 34(11):1684–1686, 2009. [72] Kuo-Jen Hsu, Kuan-Yu Li, Yen-Yin Lin, Ann-Shyn Chiang, and Shi-Wei Chu. Optimizing depth-of-field extension in optical sectioning microscopy techniques using a fast focus-tunable lens. Optics Express, 25(14):16783–16794, 2017. [73] Kuo-Jen Hsu. Master thesis: All-in-focus Functional Imaging System for Drosophila Brain Activities Study, page 14 and 15. National Taiwan University, 2014. [74] Kai-Ping Yang. Master thesis: The Application of All-Optical Physiology and Volumetric Imaging Microscopy in Drosophila Neuroscience Research, page 25. National Taiwan University, 2016. [75] Duocastella Martí, Bo Sun, and Craig B. Arnold. Simultaneous imaging of multiple focal planes for three-dimensional microscopy using ultra-high-speed adaptive optics. Journal of Biomedical Optics, 17(5), 2012. [76] Weijian Yang and Rafael Yuste. In vivo imaging of neural activity. Nature Methods, 14(4):349–359, 2017. [77] C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb. Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy. Proceedings of the National Academy of Sciences, 93(20):10763–10768, 1996. [78] Janelia Research Campus. Two-photon fluorescent probes. Last accessed 23 May 2019, https://www.janelia.org/lab/harris-lab/research/photophysics/twophoton-fluorescent-probes. [79] David Huland, Kriti Charan, Dimitre G. Ouzounov, Jason S. Jones, Nozomi Nishimura, and Chris Xu. Three-photon excited fluorescence imaging of unstained tissue using a grin endoscope. Biomedical Optics Express, 4:652–658, 2013. [80] Eugene Hecht. Optics, chapter 10. Pearson, 2017. [81] TAG OPTICS Inc. Tag lens - world’s fastest focusing lenses, 2015, https://drive.google.com/file/d/0B2brAz79pT3aTnZfNWpNaDFXLTQ/view?usp=sharing. [82] Kuo-Jen Hsu. Doctoral dissertation: High-speed and Deep-tissue Optical Microscope Techniques for Drosophila Brain Functional Studies, page 113 and 121. National Taiwan University, 2018. [83] Jun Ki Kim, Woei Ming Lee, Pilhan Kim, Myunghwan Choi, Keehoon Jung, Seonghoon Kim, and Seok Hyun Yun. Fabrication and operation of grin probes for in vivo fluorescence cellular imaging of internal organs in small animals. Nature Protocols, 7(8):1456–1469, Jul 2012. [84] Single-axis galvanometer scanners 62xxh series, https://www.cambridgetechnology.com/products/galvanometer-scanner, 2016. [85] Wikimedia Commons contributors. File:field curvature.svg, 2013. Last accessed 23 May 2019. [86] Wikimedia Commons contributors. File:backfocalplane aperture.svg, 2017. Last accessed 23 May 2019. [87] Thorlabs. Scan lenses for laser scanning microscopy, 2019. Last accessed 23 May 2019. [88] Thorlabs. Infinity-corrected tube lenses, 2019. Last accessed 23 May 2019. [89] Semrock. Choosing the right dichroic beamsplitter, 2017. Last accessed 23 May 2019, https://www.semrock.com/choosingadichroic.aspx. [90] Wikimedia Commons contributors. File:astigmatism.svg, 2014. Last accessed 23 May 2019, https://commons.wikimedia.org/w/index.php?title=File:Astigmatism.svg&oldid=118786664. [91] Jong-Hyun Lee, Sung-Sik Yun, Young Yun Kim, and Kyoung-Woo Jo. Optical characteristics of a refractive optical attenuator with respect to the wedge angles of a silicon optical leaker. Applied Optics, 43(4):877–882, 2004. [92] Hamamatsu Photonics K. K. Editorial Committee. Photomultiplier Tubes: Basics and Applications, chapter 2, page 14. Hamamatsu Photonics K. K. Electron Tube Division, 3a edition, 2007. [93] Hamamatsu Photonics. Photosensor module H7422-40. Hamamatsu Photonics, https://www.hamamatsu.com/us/en/product/type/H7422-40/index.html. [94] Li-Chung Cheng, Nicholas G. Horton, Ke Wang, Shean-Jen Chen, and Chris Xu. Measurements of multiphoton action cross sections for multiphoton microscopy. Biomedical Optics Express, 5(10):3427–3433, 2014. [95] Ron Milo and Rob Phillips. Cell biology by the numbers. Garland Science, 2016. [96] Brandon Ho, Anastasia Baryshnikova, and Grant W. Brown. Unification of protein abundance datasets yields a quantitative saccharomyces cerevisiae proteome. Cell Systems, 6(2):192–205, 2018. [97] Chi-Wei Liu. Master thesis: High Speed 3D Volumetric Imaging Microscopy, page 52 and 55. National Taiwan University, 2017. [98] J. Akerboom, T.-W. Chen, T. J. Wardill, L. Tian, J. S. Marvin, S. Mutlu, N. C. Calderon, F. Esposti, B. G. Borghuis, X. R. Sun, and et al. Optimization of a gcamp calcium indicator for neural activity imaging. Journal of Neuroscience, 32(40):13819–13840, 2012. [99] Margaret L. Byron and Evan A. Variano. Refractive-index-matched hydrogel materials for measuring flow-structure interactions. Experiments in Fluids, 54(2):1456–1461, Jan 2013. [100] Richard W Cole, Tushare Jinadasa, and Claire M Brown. Measuring and interpreting point spread functions to determine confocal microscope resolution and ensure quality control. Nature Protocols, 6(12):1929–1941, 2011. [101] Keith B. J. Franklin and George Paxinos. The mouse brain in stereotaxic coordinates: a comprehensive brain atlas with an introduction to stereotaxic surgery and the use of stereotaxic coordinates in the laboratory. Elsevier, Academic Press, 2008. [102] Shanna L Resendez, Josh H Jennings, Randall L Ung, Vijay Mohan K Namboodiri, Zhe Charles Zhou, James M Otis, Hiroshi Nomura, Jenna A Mchenry, Oksana Kosyk, Garret D Stuber, and et al. Visualization of cortical, subcortical and deep brain neural circuit dynamics during naturalistic mammalian behavior with head-mounted microscopes and chronically implanted lenses. Nature Protocols, 11(3):566–597, 2016. [103] Simone Agha and Daniel Minkin. Understanding ”Walking the Beam”. Stony Brook Laser Teaching Center, http://laser.physics.sunysb.edu/ simone/miniproject/, 2010. [104] Bobo Chao. SouthPort board manual Ver.2. SouthPort Corporation, 2017, https://drive.google.com/file/d/1LDR72Fm9WXfFy-udGru0mPaNjtQPG9x/view?usp=sharing. [105] David M. Huland, Christopher M. Brown, Scott S. Howard, Dimitre G. Ouzounov, Ina Pavlova, Ke Wang, David R. Rivera, Watt W. Webb, and Chris Xu. In vivo imaging of unstained tissues using long gradient index lens multiphoton endoscopic systems. Biomedical Optics Express, 3(5):1077–1085, 2012. [106] Chao He, Jintao Chang, Qi Hu, Jingyu Wang, Jacopo Antonello, Honghui He, Shaoxiong Liu, Jianyu Lin, Ben Dai, Daniel S. Elson, Peng Xi, Hui Ma, and Martin J. Booth. Complex vectorial optics through gradient index lens cascades. Nature Communications, 10(4264), 2019. [107] Teresa A. Murray and Michael J. Levene. Singlet gradient index lens for deep in vivo multiphoton microscopy. Journal of Biomedical Optics, 17(2):021106–1–021106–4, 2012. [108] Chen Wang and Na Ji. Pupil-segmentation-based adaptive optical correction of a high-numerical-aperture gradient refractive index lens for two-photon fluorescence endoscopy. Optics Letters, 37(11):2001–2003, 2012. [109] Chen Wang and Na Ji. Characterization and improvement of three-dimensional imaging performance of grin-lens-based two-photon fluorescence endomicroscopes with adaptive optics. Optics Express, 21(22):27142–27154, 2013.
|