|
[1] Maciej Koch-Janusz and Zohar Ringel. Mutual information, neural networks and the renormalization group. Nature Physics, 14(6):578, 2018. [2] Giuseppe Carleo and Matthias Troyer. Solving the quantum many-body prob- lem with artificial neural networks. Science, 355(6325):602–606, 2017. [3] Elina Robeva and Anna Seigal. Duality of graphical models and tensor net- works. arXiv preprint arXiv:1710.01437, 2017. [4] Pankaj Mehta and David J Schwab. An exact mapping between the variational renormalization group and deep learning. arXiv preprint arXiv:1410.3831, 2014. [5] Leo P Kadanoff. Variational principles and approximate renormalization group calculations. Physical Review Letters, 34(16):1005, 1975. [6] Robert H Swendsen. Optimization of real-space renormalization-group trans- formations. Physical review letters, 52(26):2321, 1984. [7] H Gausterer and CB Lang. Operator oriented optimization of block spin transformations. Physics Letters B, 186(1):103–106, 1987. [8] Dorit Ron, Achi Brandt, and Robert H Swendsen. Surprising convergence of the monte carlo renormalization group for the three-dimensional ising model. Physical Review E, 95(5):053305, 2017. [9] H Eugene Stanley. Phase transitions and critical phenomena. Clarendon Press, Oxford, 1971. [10] Rodney J Baxter. Exactly solved models in statistical mechanics. Elsevier, 2016. [11] Julia M Yeomans. Statistical mechanics of phase transitions. Clarendon Press, 1992. [12] Michael E Fisher. Renormalization group theory: Its basis and formulation in statistical physics. Reviews of Modern Physics, 70(2):653, 1998. [13] Michael E Fisher. The theory of equilibrium critical phenomena. Reports on progress in physics, 30(2):615, 1967. [14] Leo P Kadanoff. Scaling laws for ising models near tc. Physics Physique Fizika, 2(6):263, 1966. [15] Franz J Wegner. Corrections to scaling laws. Physical Review B, 5(11):4529, 1972. [16] Kenneth G Wilson. Renormalization group and critical phenomena. i. renor- malization group and the kadanoff scaling picture. Physical review B, 4(9):3174, 1971. [17] Martin J Wainwright, Michael I Jordan, et al. Graphical models, exponen- tial families, and variational inference. Foundations and Trends in Machine Learning, 1(1–2):1–305, 2008. [18] Leo P Kadanoff and Anthony Houghton. Numerical evaluations of the critical properties of the two-dimensional ising model. Physical Review B, 11(1):377, 1975. [19] Th Niemeijer and JMJ Van Leeuwen. Renormalization theory for ising like spin systems. Phase Transitions and Critical Phenomena, 6, 1976. [20] HJ Hilhorst, M Schick, and JMJ Van Leeuwen. Differential form of real-space renormalization: Exact results for two-dimensional ising models. Physical Review Letters, 40(25):1605, 1978. [21] HJ Hilhorst, M Schick, and JMJ van Leeuwen. Exact renormalization group equations for the two-dimensional ising model. Physical Review B, 19(5):2749, 1979. [22] Kenneth G Wilson. The renormalization group: Critical phenomena and the kondo problem. Reviews of modern physics, 47(4):773, 1975. [23] Thomas L Bell and Kenneth G Wilson. Finite-lattice approximations to renor- malization groups. Physical Review B, 11(9):3431, 1975. [24] JA Tjon. Numerical study of the renormalization group equations in the four-cell approximation. Physics Letters A, 49(4):289–290, 1974. [25] M Nauenberg and B Nienhuis. Critical surface for square ising spin lattice. Physical Review Letters, 33(16):944, 1974. [26] Th Niemeijer and JMJ Van Leeuwen. Wilson theory for spin systems on a triangular lattice. Physical Review Letters, 31(23):1411, 1973. [27] Th Niemeyer and JMJ Van Leeuwen. Wilson theory for 2-dimensional ising spin systems. Physica, 71(1):17–40, 1974. [28] Mehran Kardar. Statistical physics of fields. Cambridge University Press, 2007. [29] Alexander A Migdal. Phase transitions in gauge and spin-lattice systems. Soviet Journal of Experimental and Theoretical Physics, 42:743, 1976. [30] Leo P Kadanoff. Notes on migdal’s recursion formulas. Annals of Physics, 100(1-2):359–394, 1976. [31] Theodore W Burkhardt and JMJ van Leeuwen. Real-space renormalization, volume 30. Springer, 1982. [32] W Van Saarloos, JMJ Van Leeuwen, and AMM Pruisken. Variational prin- ciples in renormalization theory. Physica A: Statistical Mechanics and its Applications, 92(3-4):323–342, 1978. [33] Theodore W Burkhardt. Kadanoff’s lower-bound renormalization transfor- mation. Physical Review B, 13(7):3187, 1976. [34] Efi Efrati, Zhe Wang, Amy Kolan, and Leo P Kadanoff. Real-space renor- malization in statistical mechanics. Reviews of Modern Physics, 86(2):647, 2014. [35] Leo P Kadanoff, Anthony Houghton, and Mehmet C Yalabik. Variational ap- proximations for renormalization group transformations. Journal of Statistical Physics, 14(2):171–203, 1976. [36] Robert H Swendsen. Monte carlo renormalization group. Physical Review Letters, 42(14):859, 1979. [37] Clive F Baillie, Rajan Gupta, Kenneth A Hawick, and G Stuart Paw- ley. Monte carlo renormalization-group study of the three-dimensional ising model. Physical Review B, 45(18):10438, 1992. [38] Steffen L Lauritzen. Graphical models, volume 17. Clarendon Press, 1996. [39] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012. [40] Kenneth G Wilson. Monte-carlo calculations for the lattice gauge theory. In Recent developments in gauge theories, pages 363–402. Springer, 1980. [41] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016. [42] Geoffrey E Hinton. Training products of experts by minimizing contrastive divergence. Neural computation, 14(8):1771–1800, 2002. [43] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for deep belief nets. Neural computation, 18(7):1527–1554, 2006. [44] Kenneth G Wilson. The renormalization group and critical phenomena. Re- views of Modern Physics, 55(3):583, 1983. [45] Michael E Fisher and Mohit Randeria. Location of renormalization-group fixed points. Physical review letters, 56(21):2332, 1986. [46] Robert H Swendsen. Monte carlo calculation of renormalized coupling pa- rameters. Physical review letters, 52(14):1165, 1984. [47] Robert B Griffiths and Paul A Pearce. Position-space renormalization-group transformations: Some proofs and some problems. Physical Review Letters, 41(14):917, 1978. [48] Robert B Griffiths and Paul A Pearce. Mathematical properties of position- space renormalization-group transformations. Journal of Statistical Physics, 20(5):499–545, 1979. [49] Robert B Griffiths. Mathematical properties of renormalization-group trans- formations. Physica A: Statistical Mechanics and its Applications, 106(1- 2):59–69, 1981. [50] Ulli Wolff. Collective monte carlo updating for spin systems. Physical Review Letters, 62(4):361, 1989. [51] Nicolas Le Roux and Yoshua Bengio. Representational power of re- stricted boltzmann machines and deep belief networks. Neural computation, 20(6):1631–1649, 2008. [52] Giacomo Torlai and Roger G Melko. Learning thermodynamics with boltz- mann machines. Physical Review B, 94(16):165134, 2016. [53] HWJ Blöte, JR Heringa, A Hoogland, EW Meyer, and TS Smit. Monte carlo renormalization of the 3d ising model: Analyticity and convergence. Physical review letters, 76(15):2613, 1996. [54] Martin Hasenbusch. Finite size scaling study of lattice models in the three- dimensional ising universality class. Physical Review B, 82(17):174433, 2010. [55] GS Pawley, RH Swendsen, DJ Wallace, and KG Wilson. Monte carlo renormalization-group calculations of critical behavior in the simple-cubic ising model. Physical Review B, 29(7):4030, 1984. [56] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic opti- mization. arXiv preprint arXiv:1412.6980, 2014. [57] R. H. Swendsen. Monte carlo renormalization. In Topics in Current Physics, pages 57–86. Springer Berlin Heidelberg, 1982.
|