(3.237.178.91) 您好!臺灣時間:2021/03/04 09:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳建廷
研究生(外文):Chien-Ting Chen
論文名稱:暗能量引起的宇宙加速膨脹之非均向性
論文名稱(外文):Dark Energy Induced Anisotropy in Cosmic Expansion
指導教授:陳丕燊陳丕燊引用關係
指導教授(外文):Pisin Chen
口試委員:吳建宏陳凱風王名儒廉東翰奧村哲平
口試委員(外文):Kin-Wang NgKai-Feng ChenMin-Zu WangDong-han YeomTeppei Okumura
口試日期:2019-07-29
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:物理學研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:45
中文關鍵詞:暗能量第五元素量子擾動光度距離微擾光度距離功率譜
DOI:10.6342/NTU201903140
相關次數:
  • 被引用被引用:0
  • 點閱點閱:40
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為瞭解宇宙晚期加速膨脹的本質,根據實驗測定暗能量是否為宇宙常數或具有動態性質是非常重要的。合理的假設暗能量若在宇宙暴脹時期已經存在,可以預期一個動態的暗能量會在宇宙晚期加速膨脹的非均向性上留下痕跡。為證明上述想法的可行性,我們引入第五元素(quintessence)為觀測上所允許最簡易的動態暗能量模型,藉以研究第五元素在暴脹時期產生的量子擾動(為暗能量擾動本身的物理性起源)效應,此量子擾動與初始曲率擾動為完全正相關,並估計在宇宙加速膨脹所引起的非均向性。我們證明第五元素的量子擾動初始振福與張量純量比r有關,並計算一階微擾的光度距離及其功率譜,可藉以測定宇宙晚期加速膨脹的非均向性。計算結果發現第五元素模型相比於宇宙常數模型,在宇宙晚期大尺度的重力位有較少的衰減,以致第五元素模型的光度距離功率譜在較低的紅移(redshift)與多極(multipole)上,比宇宙常數模型的功率譜相對更小。此結論與文獻上第五元素量子擾動對宇宙微波背景輻射溫度非均向性影響的研究結果一致。
In order to understand the nature of the accelerating expansion of the late-time universe, it is important to experimentally determine whether dark energy is a cosmological constant or dynamical in nature. If dark energy already exists prior to inflation, which is a reasonable assumption, then one expects that a dynamical dark energy would leave some footprint in the anisotropy of the late-time accelerated expansion. To demonstrate the viability of this notion, we invoke the quintessence field with the exponential potential as one of the simplest dynamical dark energy models allowed by observations. We investigate the effects of its quantum fluctuations (the physical origin of the perturbation being isocurvature) generated during inflation and having fully positive correlation with the primordial curvature perturbations, and estimate the anisotropy of the cosmic expansion so induced. We show that the primordial amplitude of quantum fluctuations of quintessence field can be related to the tensor-to-scalar ratio r, and we calculate the perturbed luminosity distance to first order and the associated luminosity distance power spectrum, which is an estimator of anisotropicity of late-time accelerated expansion. We find that the gravitational potential at large scales and late times is less decayed in QCDM compared to that in $ Lambda $CDM so that the smaller the redshift and multipole, the more relative deficit of power in QCDM. Our results of luminosity distance power spectrum also show the similar conclusions of suppression as that of the previous investigation regarding the effect of quantum fluctuations of quintessence field on the CMB temperature anisotropies.
1 Introduction 1
2 Models of Dark Energy 4
2.1 Cosmological Constant 5
2.2 Alternative Models 7
3 The Quintessential Universe 14
3.1 Background Evolution 14
3.2 Evolution of Scalar Perturbations 15
3.3 Quantum Fluctuations of Quintessence Field 17
4 Perturbed Luminosity Distance and Luminosity Distance Power Spectrum 19
5 Numerical Results 21
5.1 Background Evolution 21
5.2 Evolution of Scalar Perturbations 22
5.3 Luminosity Distance Power Spectrum 23
6 Conclusion 28
Appendix A The Perturbed Luminosity Distance 30
Appendix B The Components C^(i)_ℓ of the Luminosity Distance Power Spectrum 32
Bibliography 36
[1] N. Suzuki et al. The Hubble Space Telescope Cluster Supernova Survey: V. Improving the Dark Energy Constraints Above z > 1 and Building an Early-Type-Hosted Supernova Sample. Astrophys. J., 746:85, 2012.
[2] S. Perlmutter et al. Measurements of the cosmological parameters Omega and Lambda from the first 7 supernovae at z ≥ 0.35. Astrophys. J., 483:565, 1997.
[3] S. Perlmutter et al. Discovery of a supernova explosion at half the age of the Universe and its cosmological implications. Nature, 391:51–54, 1998.
[4] S. Perlmutter et al. Measurements of Omega and Lambda from 42 high redshift supernovae. Astrophys. J., 517:565–586, 1999.
[5] Adam G. Riess et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J., 116:1009–1038, 1998.
[6] Adam G. Riess et al. BV RI light curves for 22 type Ia supernovae. Astron. J., 117:707–724, 1999.
[7] Adam G. Riess et al. The farthest known supernova: support for an accelerating universe and a glimpse of the epoch of deceleration. Astrophys. J., 560:49–71, 2001.
[8] Adam G. Riess et al. Type Ia supernova discoveries at z > 1 from the Hubble Space Telescope: Evidence for past deceleration and constraints on dark energy evolution. Astrophys. J., 607:665–687, 2004.
[9] Adam G. Riess et al. New Hubble Space Telescope Discoveries of Type Ia Supernovae at z ≥ 1: Narrowing Constraints on the Early Behavior of Dark Energy. Astrophys. J., 659:98–121, 2007.
[10] M. Kowalski et al. Improved Cosmological Constraints from New, Old and Combined Supernova Datasets. Astrophys. J., 686:749–778, 2008.
[11] Malcolm Hicken, W. Michael Wood-Vasey, Stephane Blondin, Peter Challis, Saurabh Jha, Patrick L. Kelly, Armin Rest, and Robert P. Kirshner. Improved Dark Energy Constraints from 100 New CfA Supernova Type Ia Light Curves. Astrophys. J., 700:1097–1140, 2009.
[12] H. Lampeitl et al. First-year Sloan Digital Sky Survey-II (SDSS-II) supernova results: consistency and constraints with other intermediate-redshift datasets. Mon. Not. Roy. Astron. Soc., 401:2331–2342, 2009.
[13] R. Amanullah et al. Spectra and Light Curves of Six Type Ia Supernovae at 0.511 < z < 1.12 and the Union2 Compilation. Astrophys. J., 716:712–738, 2010.
[14] A. Rest et al. Cosmological Constraints from Measurements of Type Ia Supernovae discovered during the first 1.5 yr of the Pan-STARRS1 Survey. Astrophys. J., 795(1):44, 2014.
[15] M. Betoule et al. Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples. Astron. Astrophys., 568:A22, 2014.
[16] Daniel J. Eisenstein et al. Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies. Astrophys. J., 633:560–574, 2005.
[17] N. Benitez et al. Measuring Baryon Acoustic Oscillations along the line of sight with photometric redshifts: the PAU survey. Astrophys. J., 691:241–260, 2009.
[18] G. Hinshaw et al. Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results. Astrophys. J. Suppl., 208:19, 2013.
[19] P. A. R. Ade et al. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys., 594:A13, 2016.
[20] Ivaylo Zlatev, Li-Min Wang, and Paul J. Steinhardt. Quintessence, cosmic coincidence, and the cosmological constant. Phys. Rev. Lett., 82:896–899, 1999.
[21] R. R. Caldwell, Rahul Dave, and Paul J. Steinhardt. Cosmological imprint of an energy component with general equation of state. Phys. Rev. Lett., 80:1582–1585, 1998.
[22] Greg Huey, Li-Min Wang, Rahul Dave, R. R. Caldwell, and Paul J. Steinhardt. Resolving the cosmological missing energy problem. Phys. Rev., D59:063005, 1999.
[23] Paul J. Steinhardt, Li-Min Wang, and Ivaylo Zlatev. Cosmological tracking solutions. Phys. Rev., D59:123504, 1999.
[24] Philippe Brax and Jerome Martin. The Robustness of quintessence. Phys. Rev., D61:103502, 2000.
[25] Javier Grande, Ana Pelinson, and Joan Sola. Dark energy perturbations and cosmic coincidence. Phys. Rev., D79:043006, 2009.
[26] Masahiro Kawasaki, Takeo Moroi, and Tomo Takahashi. Cosmic microwave background anisotropy with cosine type quintessence. Phys. Rev., D64:083009, 2001.
[27] Masahiro Kawasaki, Takeo Moroi, and Tomo Takahashi. Isocurvature fluctuations in tracker quintessence models. Phys. Lett., B533:294–301, 2002.
[28] Takeo Moroi and Tomo Takahashi. Correlated isocurvature fluctuation in quintessence and suppressed CMB anisotropies at low multipoles. Phys. Rev. Lett., 92:091301, 2004.
[29] Tsafrir S. Kolatt and Ofer Lahav. Constraints on cosmological anisotropy out to z = 1 from supernovae ia. Mon. Not. Roy. Astron. Soc., 323:859, 2001.
[30] Dominik J. Schwarz and Bastian Weinhorst. (An)isotropy of the Hubble diagram: Comparing hemispheres. Astron. Astrophys., 474:717–729, 2007.
[31] Benedict Kalus, Dominik J. Schwarz, Marina Seikel, and Alexander Wiegand. Constraints on anisotropic cosmic expansion from supernovae. Astron. Astrophys., 553:A56, 2013.
[32] L. Campanelli, P. Cea, G. L. Fogli, and A. Marrone. Testing the Isotropy of the Universe with Type Ia Supernovae. Phys. Rev., D83:103503, 2011.
[33] Antonio Mariano and Leandros Perivolaropoulos. Is there correlation between Fine Structure and Dark Energy Cosmic Dipoles? Phys. Rev., D86:083517, 2012.
[34] Rong-Gen Cai, Yin-Zhe Ma, Bo Tang, and Zhong-Liang Tuo. Constraining the anisotropic expansion of the Universe. Phys. Rev., D87(12):123522, 2013.
[35] R. Cooke and D. Lynden-Bell. Does the Universe Accelerate Equally in all Directions? Mon. Not. Roy. Astron. Soc., 401:1409–1414, 2010.
[36] I. Antoniou and L. Perivolaropoulos. Searching for a Cosmological Preferred Axis: Union2 Data Analysis and Comparison with Other Probes. JCAP, 1012:012, 2010.
[37] Caroline Heneka, Valerio Marra, and Luca Amendola. Extensive search for systematic bias in supernova Ia data. Mon. Not. Roy. Astron. Soc., 439(2):1855–1864, 2014.
[38] W. Zhao, P. X. Wu, and Y. Zhang. Anisotropy of Cosmic Acceleration. Int. J. Mod. Phys., D22:1350060, 2013.
[39] Xiaofeng Yang, F. Y. Wang, and Zhe Chu. Searching for a preferred direction with Union2.1 data. Mon. Not. Roy. Astron. Soc., 437(2):1840–1846, 2014.
[40] Behnam Javanmardi, Cristiano Porciani, Pavel Kroupa, and Jan Pflamm-Altenburg. Probing the isotropy of cosmic acceleration traced by Type Ia supernovae. Astrophys. J., 810(1):47, 2015.
[41] Hai-Nan Lin, Sai Wang, Zhe Chang, and Xin Li. Testing the isotropy of the Universe by using the JLA compilation of type-Ia supernovae. 2015.
[42] Amin Salehi and Mohammad Reza Setare. Searching for Cosmological Preferred Axis using cosmographic approach. 2016.
[43] Wen Zhao and Larissa Santos. Preferred axis in cosmology. The Universe, (3):9–33, 2015.
[44] Asantha R. Cooray, Daniel E. Holz, and Robert Caldwell. Measuring dark energy spatial inhomogeneity with supernova data. JCAP, 1011:015, 2010.
[45] Michael Blomqvist, Jonas Enander, and Edvard Mortsell. Constraining dark energy fluctuations with supernova correlations. JCAP, 1010:018, 2010.
[46] Joel K. Erickson, R. R. Caldwell, Paul J. Steinhardt, C. Armendariz-Picon, and Viatcheslav F. Mukhanov. Measuring the speed of sound of quintessence. Phys. Rev. Lett., 88:121301, 2002.
[47] Jai-chan Hwang and Hyerim Noh. Quintessential perturbations during scaling regime. Phys. Rev., D64:103509, 2001.
[48] Simon DeDeo, R. R. Caldwell, and Paul J. Steinhardt. Effects of the sound speed of quintessence on the microwave background and large scale structure. Phys. Rev., D67:103509, 2003. [Erratum: Phys. Rev.D69,129902(2004)].
[49] Luca Amendola. Linear and non-linear perturbations in dark energy models. Phys. Rev., D69:103524, 2004.
[50] Rachel Bean and Olivier Dore. Probing dark energy perturbations: The Dark energy equation of state and speed of sound as measured by WMAP. Phys. Rev., D69:083503, 2004.
[51] Jing-Song Liu. Sensitivity of quintessence perturbations to initial conditions. Phys. Rev., D69:083504, 2004.
[52] Rachel Bean and Olivier Doré. Probing for Dark Energy Perturbations using the CMB and Large Scale Structure? AIP Conf. Proc., 743(1):88, 2004.
[53] Nelson J. Nunes and D. F. Mota. Structure formation in inhomogeneous dark energy models. Mon. Not. Roy. Astron. Soc., 368:751–758, 2006.
[54] Steen Hannestad. Constraints on the sound speed of dark energy. Phys. Rev., D71:103519, 2005.
[55] Jun-Qing Xia, Yi-Fu Cai, Tao-Tao Qiu, Gong-Bo Zhao, and Xinmin Zhang. Constraints on the Sound Speed of Dynamical Dark Energy. Int. J. Mod. Phys., D17:1229–1243, 2008.
[56] A. Torres-Rodriguez and C. M. Cress. Constraining the Nature of Dark Energy using the SKA. Mon. Not. Roy. Astron. Soc., 376:1831–1837, 2007.
[57] Guillermo Ballesteros and Antonio Riotto. Parameterizing the Effect of Dark Energy Perturbations on the Growth of Structures. Phys. Lett., B668:171–176, 2008.
[58] James B. Dent, Sourish Dutta, and Thomas J. Weiler. A new perspective on the relation between dark energy perturbations and the late-time ISW effect. Phys. Rev., D79:023502, 2009.
[59] L. R. Abramo, R. C. Batista, L. Liberato, and R. Rosenfeld. Physical approximations for the nonlinear evolution of perturbations in inhomogeneous dark energy scenarios. Phys. Rev., D79:023516, 2009.
[60] Sanil Unnikrishnan, H. K. Jassal, and T. R. Seshadri. Scalar Field Dark Energy Perturbations and their Scale Dependence. Phys. Rev., D78:123504, 2008.
[61] Olga Sergijenko and Bohdan Novosyadlyj. Perturbed dark energy: classical scalar field versus tachyon. Phys. Rev., D80:083007, 2009.
[62] Chan-Gyung Park, Jai-chan Hwang, Jae-heon Lee, and Hyerim Noh. Roles of dark energy perturbations in the dynamical dark energy models: Can we ignore them? Phys. Rev. Lett., 103:151303, 2009.
[63] Sirichai Chongchitnan and Lindsay King. Imprints of dynamical dark energy on weak-lensing measurements. Mon. Not. Roy. Astron. Soc., 407:1989–1997, 2010.
[64] Roland de Putter, Dragan Huterer, and Eric V. Linder. Measuring the Speed of Dark: Detecting Dark Energy Perturbations. Phys. Rev., D81:103513, 2010.
[65] Özgür Akarsu, Mariam Bouhmadi-López, Maxim Brilenkov, Ruslan Brilenkov, Maxim Eingorn, and Alexander Zhuk. Are dark energy models with variable EoS parameter w compatible with the late inhomogeneous Universe? JCAP, 1507(07):038, 2015.
[66] Celia Escamilla-Rivera, Luciano Casarini, Julio C. Fabris, and Jailson S. Alcaniz. Linear and non-linear perturbations in dark energy models. JCAP, 1611(11):010, 2016.
[67] Tomi Koivisto and David F. Mota. Dark energy anisotropic stress and large scale structure formation. Phys. Rev., D73:083502, 2006.
[68] Richard A. Battye and Adam Moss. Anisotropic perturbations due to dark energy. Phys. Rev., D74:041301, 2006.
[69] David F. Mota, Douglas J. Shaw, and Joseph Silk. On the Magnitude of Dark Energy Voids and Overdensities. Astrophys. J., 675:29–48, 2008.
[70] Stephen Appleby, Richard Battye, and Adam Moss. Constraints on the anisotropy of dark energy. Phys. Rev., D81:081301, 2010.
[71] Y. T. Wang, L. X. Xu, and Y. X. Gui. Integrated Sachs-Wolfe effect in a quintessence cosmological model: Including anisotropic stress of dark energy. Phys. Rev., D82:083522, 2010.
[72] Anil Kumar Yadav, Farook Rahaman, and Ray Saibal. Dark energy model with variable equation of state parameter. Int. J. Theor. Phys., 50:871–881, 2011.
[73] Leandros Perivolaropoulos. Large Scale Cosmological Anomalies and Inhomogeneous Dark Energy. Galaxies, 2:22–61, 2014.
[74] Chien-Ting Chen and Pisin Chen. Dark Energy Induced Anisotropy in Cosmic Expansion. Eur. Phys. J., C79(8):649, 2017.
[75] Misao Sasaki. The Magnitude - Redshift relation in a perturbed Friedmann universe. Mon. Not. Roy. Astron. Soc., 228:653–669, 1987.
[76] Ted Pyne and Mark Birkinshaw. Null geodesics in perturbed space-times. Astrophys. J., 415:459, 1993.
[77] Ted Pyne and Mark Birkinshaw. Beyond the thin lens approximation. Astrophys. J., 458:46, 1996.
[78] Ted Pyne and Mark Birkinshaw. The luminosity distance in perturbed FLRW spacetimes. Mon. Not. Roy. Astron. Soc., 348:581, 2004.
[79] Camille Bonvin, Ruth Durrer, and M. Alice Gasparini. Fluctuations of the luminosity distance. Phys. Rev., D73:023523, 2006. [Erratum: Phys. Rev.D85,029901(2012)].
[80] Lam Hui and Patrick B. Greene. Correlated Fluctuations in Luminosity Distance and the (Surprising) Importance of Peculiar Motion in Supernova Surveys. Phys. Rev., D73:123526, 2006.
[81] Eanna E. Flanagan, Eran Rosenthal, and Ira M. Wasserman. Modification to the Luminosity Distance Redshift Relation in Modified Gravity Theories. Phys. Rev., D79:044032, 2009.
[82] Luca Amendola and Shinji Tsujikawa. Dark Energy. Cambridge University Press, 2015.
[83] Edward W. Kolb and Michael S. Turner. The Early Universe. Front. Phys., 69:1–547, 1990.
[84] R. R. Caldwell and Eric V. Linder. The Limits of quintessence. Phys. Rev. Lett., 95:141301, 2005.
[85] Eric V. Linder. Quintessence’s last stand? Phys. Rev., D91:063006, 2015.
[86] Azam Hussain, Shruti Thakur, Tapomoy Guha Sarkar, and Anjan A. Sen. Prospects of probing quintessence with HI 21-cm intensity mapping survey. Mon. Not. Roy. Astron. Soc., 463(4):3492–3498, 2016.
[87] Tetsuya Hara, Anna Suzuki, Shogo Saka, and Takuma Tanigawa. Constraints for the thawing and freezing potentials. PTEP, 2018(1):013E02, 2018.
[88] C. Armendariz-Picon, T. Damour, and Viatcheslav F. Mukhanov. k - inflation. Phys. Lett., B458:209–218, 1999.
[89] Takeshi Chiba, Takahiro Okabe, and Masahide Yamaguchi. Kinetically driven quintessence. Phys. Rev., D62:023511, 2000.
[90] C. Armendariz-Picon, Viatcheslav F. Mukhanov, and Paul J. Steinhardt. A Dynamical solution to the problem of a small cosmological constant and late time cosmic acceleration. Phys. Rev. Lett., 85:4438–4441, 2000.
[91] C. Armendariz-Picon, Viatcheslav F. Mukhanov, and Paul J. Steinhardt. Essentials of k essence. Phys. Rev., D63:103510, 2001.
[92] R. R. Caldwell. A Phantom menace? Phys. Lett., B545:23–29, 2002.
[93] Alexander Yu. Kamenshchik, Ugo Moschella, and Vincent Pasquier. An Alternative to quintessence. Phys. Lett., B511:265–268, 2001.
[94] M. C. Bento, O. Bertolami, and A. A. Sen. Generalized Chaplygin gas, accelerated expansion and dark energy matter unification. Phys. Rev., D66:043507, 2002.
[95] Robert J. Scherrer. Purely kinetic k-essence as unified dark matter. Phys. Rev. Lett., 93:011301, 2004.
[96] Hideo Kodama and Misao Sasaki. Cosmological Perturbation Theory. Prog. Theor. Phys. Suppl., 78:1–166, 1984.
[97] James M. Bardeen. Gauge Invariant Cosmological Perturbations. Phys. Rev., D22:1882–1905, 1980.
[98] Antonio Riotto. Inflation and the theory of cosmological perturbations. In Astroparticle physics and cosmology. Proceedings: Summer School, Trieste, Italy, Jun 17-Jul 5 2002, pages 317–413, 2002.
[99] P. A. R. Ade et al. Planck 2013 results. XXII. Constraints on inflation. Astron. Astrophys., 571:A22, 2014.
[100] P. A. R. Ade et al. Planck 2015 results. XX. Constraints on inflation. Astron. Astrophys., 594:A20, 2016.
[101] Ido Ben-Dayan, Giovanni Marozzi, Fabien Nugier, and Gabriele Veneziano. The second-order luminosity-redshift relation in a generic inhomogeneous cosmology. JCAP, 1211:045, 2012.
[102] Fabien Nugier. Lightcone Averaging and Precision Cosmology. PhD thesis, UPMC, Paris, 2013.
[103] N. Aghanim et al. Planck 2018 results. VI. Cosmological parameters. 2018.
[104] Y. Akrami et al. Planck 2018 results. X. Constraints on inflation. 2018.
[105] H. K. Jassal. Evolution of perturbations in distinct classes of canonical scalar field models of dark energy. Phys. Rev., D81:083513, 2010.
[106] D. Scolnic et al. Supercal: Cross-Calibration of Multiple Photometric Systems to Improve Cosmological Measurements with Type Ia Supernovae. Astrophys. J., 815(2):117, 2015.
[107] R. Brent Tully, Helene M. Courtois, and Jenny G. Sorce. Cosmicflows-3. Astron. J., 152:50, 2016.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔