(54.236.58.220) 您好!臺灣時間:2021/02/27 12:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:呂玨璇
研究生(外文):Chueh-Hsuan Lu
論文名稱:草本多酚結合非侵入式物理性刺激對於胰臟癌細胞影響之研究
論文名稱(外文):Study of the effects of herbal polyphenols combined with non-invasive physical stimuli on pancreatic cancer cells
指導教授:趙治宇
口試委員:林清凉張明富冀宏源溫進德呂世正
口試日期:2019-07-18
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:物理學研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:135
中文關鍵詞:薑黃素氯原酸兒茶素脈衝式電場熱療胰臟癌結合治療
DOI:10.6342/NTU201901807
相關次數:
  • 被引用被引用:0
  • 點閱點閱:64
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
胰臟癌是一種高度惡性的腫瘤,存活率更是所有癌症中最低。除了手術,現行的醫學治療方式往往涉及化學療法和放射線治療,這些傳統療法還可能引發不必要的副作用。因此,近來人們積極開發及應用新型治療方法來取代現行可能會產生許多副作用的傳統療法。在本論文中,我們採取草本多酚結合物理性刺激的方法作為一種溫和的治療方式,並研究這樣的結合治療對人胰臟癌細胞株PANC-1的效應及其協同作用。
在第一個結合治療的主題中,我們提出了一種基於非接觸式電刺激的物理方法,應用此低強度脈衝電場 (low-intensity pulsed electric field; LIPEF)與施加薑黃素(curcumin) 的組合作用於PANC-1細胞上。實驗結果顯示,非接觸式LIPEF在施加特定強度後可顯著地增強低劑量薑黃素的細胞毒殺作用所引起之外源性和內源性細胞凋亡途徑。值得注意的是,相同的結合療法對於非癌性的HEK293細胞幾乎沒有產生毒殺作用。此外,藉由LIPEF引起的電誘發內吞作用(electro-endocytosis)增加PANC-1細胞對於薑黃素吸收的結果,不僅提供了薑黃素抗癌活性增強的直接性證據,也揭示了LIPEF與薑黃素的協同作用機制。
針對第二個研究主題,我們採用溫度循環熱療 (thermal-cycling hyperthermia; TC-HT) 此一新方法結合兒茶素 (EGCG) 或氯原酸 (CGA) 並探討其組合對於PANC-1細胞之毒殺影響。結果顯示,TC-HT結合CGA以及TC-HT 結合EGCG的這兩種組合都能顯著地發揮對PANC-1細胞的抗癌作用,然而在單一藥劑或TC-HT單獨處理後並未能引起此種效果;其中協同活性是經由G2 / M期的細胞週期停滯和氧化壓力介入導致粒腺體調控凋亡路徑被激活所致。此研究顯示TC-HT可增加PANC-1細胞對抗癌藥劑的敏感性,從而產生CGA或EGCG的熱增強之細胞毒殺作用。
最後,本論文的目標是要探討應用兩種物理刺激TC-HT和LIPEF搭配CGA對於PANC-1細胞處理之影響。研究發現這種三聯組合處理顯著地抑制了胰臟癌細胞的生長,其中在24小時後細胞存活率僅剩餘約20%。實驗結果顯示此三聯組合處理能使PANC-1細胞週期停滯於G2 / M期及引起細胞凋亡,我們發現這是與p53的表現上升及其下游蛋白p21和Bax的增加有關。研究進一步發現細胞凋亡與粒線體路徑有關,包括Bcl-2蛋白表現減少,粒線體膜電位降低,啟動caspase-9和PARP的活化。此外,我們發現透過三聯組合處理會造成細胞內氧化壓力的增加;而抗氧化劑N-acetyl-cysteine (NAC) 能顯著抑制三聯組合處理所誘導出之細胞毒性,並同時抑制p53和p21蛋白的表現上升以及Bax / Bcl-2比例的增加,這些結果顯示出TC-HT和LIPEF結合CGA在PANC-1細胞產生的細胞毒性是因氧化壓力誘發p53訊息路徑的活化所導致。
總結本論文中的三個研究中,非接觸性LIPEF和TC-HT結合草本帶來的協同效益均顯示了作為癌症治療中物理方法的潛力和可行性,再加上草本對於病患而言具有較好的耐受性,相信將草本與LIPEF和/或TC-HT聯合用藥是一種具有前景的新穎胰臟癌治療策略。
Pancreatic cancer is one of highly lethal cancers, with the lowest survival rate among all human cancers. Despite the current availability of many modulations against cancer, these treatments generally involve chemotherapy and radiotherapy, which are associated with undesired side effects. Recently, many researchers have focused on the development and applications of alternative cancer treatments. In this dissertation, the combination of herbal polyphenol with physical stimuli as a mild treatment modality was adopted to study their cooperative anticancer effects on human pancreatic cancer PANC-1 cells.
Firstly, we present a non-invasive treatment comprising of exposure of PANC-1 cells to curcumin coupled with the low-intensity pulsed electric field (LIPEF). The results showed that non-contact LIPEF at certain intensity could enhance the anticancer effect of low-dose curcumin on PANC-1 cells through both extrinsic and intrinsic caspase pathways. This combination approach, by contrast, was found to be less toxic toward non-cancerous human HEK293 cells. Furthermore, the increase of curcumin uptake in PANC-1 cells via electro-endocytosis revealed the mechanism of combination action for electrical enhancement of curcumin’s anticancer activities.
Secondly, a novel methodology, termed thermal-cycling hyperthermia (TC-HT), to enhance the cytotoxicity of epigallocatechin gallate (EGCG) and chlorogenic acid (CGA) in PANC-1 cells was illustrated. Our results demonstrated that combination of TC-HT plus CGA and TC-HT plus EGCG significantly exerted the anticancer activites against PANC-1 cells, while any of the single treatment did not induce such effects. The synergistic activity was attributed to the cell cycle arrest at the G2/M phase and the induction of reactive oxygen species (ROS)-dependent mitochondria-mediated apoptosis. The finding of our study indicates that the TC-HT may sensitize PANC-1 cells to anticancer agents, thereby yielding thermal enhancement of cytotoxicity of CGA or EGCG.
Finally, the TC-HT and LIPEF were both employed to combine with CGA in the treatment of PANC-1 cells. It was found that this triple combination can impede the proliferation of human pancreatic cancer PANC-1 cells, with only about 20% viable cells left after 24 h, while being non-toxic to normal human pancreatic duct H6c7 cells. The synergistic effect of this triple treatment could be achieved through up-regulation of p53 and coupled with increased expressions of downstream proteins p21 and Bax, which resulted in G2/M phase arrest and cell death. Further mechanism investigations revealed that the cytotoxic activity could be related to mitochondrial apoptosis, characterized by the reduced level of Bcl-2, mitochondrial dysfunction, and sequential activation of caspase-9 and PARP. In addition, we found that intracellular ROS production was increased by triple treatment. Notably, the triple treatment-induced cytotoxic effects and the elevated expression of p53 and p21 proteins, as well as the increased Bax/Bcl-2 ratio, all could be alleviated by the ROS scavenger, N-acetyl-cysteine (NAC).
To sum up, the studies have unambiguously shown the potential and feasibility of the non-contact LIPEF and TC-HT as physical remedies combined with herbs in pancreatic cancer treatment. It is known that the herbal agents often possess much gentle and tolerable properties, it can be suggested the combination use of herb medicine with LIPEF and/or TC-HT could be the novel and promising strategy for pancreatic cancer treatment.
致謝....................................................i
摘要...................................................ii
Abstract...............................................iv
Contents..............................................vii
List of Figures........................................ix
List of Tables........................................xii
List of Abbreviations................................xiii
Chapter 1 Pancreatic cancer therapies and alternative remedies with herbs.....................................1
1.1 Conventional treatment of pancreatic cancer.........2
1.2 Herbal medication approach in cancer treatment......6
1.3 Polyphenol..........................................9
1.3.1 Curcumin..........................................9
1.3.2 EGCG.............................................10
1.3.3 Chlorogenic acid.................................12
1.4 Herbal medication and combination treatment........14
Chapter 2 Physical remedies in cancer treatment........17
2.1 Electrical stimulation.............................18
2.1.1 Electroporation..................................18
2.1.2 Tumor treating fields (TTFields).................21
2.2 Non-contact low-intensity pulsed electric field (LIPEF)................................................23
2.3 Hyperthermia and combined treatment modalities.....27
2.4 Thermal cycling-hyperthermia (TC-HT)...............30
Chapter 3 Enhanced anticancer effect of low-dose curcumin with non-contact LIPEF on PANC-1 cells.................34
3.1 Materials and methods..............................35
3.2 Results............................................42
3.3 Discussion.........................................51
3.4 Summary............................................57
Chapter 4 TC-HT in combination with polyphenols, EGCG, and CGA, exerts synergistic anticancer effect against PANC-1 cells...........................................58
4.1 Materials and methods..............................59
4.2 Results............................................65
4.3 Discussion.........................................78
4.4 Summary............................................85
Chapter 5 Triple combination of non-contact LIPEF, TC-HT, and CGA synergistically enhanced anticancer effect on PANC-1 cells...........................................86
5.1 Materials and methods..............................87
5.2 Results............................................92
5.3 Discussion........................................107
5.4 Summary...........................................113
Chapter 6 Conclusion..................................114
Publication List......................................117
References............................................120
1.Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7-30.
2.Fryer RA, Galustian C, Dalgleish AG. Recent advances and developments in treatment strategies against pancreatic cancer. Curr Clin Pharmacol. 2009;4(2):102-12.
3.Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74(11):2913-21.
4.Sarkar FH, Li Y, Wang Z, Kong D. Pancreatic cancer stem cells and EMT in drug resistance and metastasis. Minerva Chir. 2009;64(5):489-500.
5.Conlon KC, Klimstra DS, Brennan MF. Long-term survival after curative resection for pancreatic ductal adenocarcinoma. Clinicopathologic analysis of 5-year survivors. Ann Surg. 1996;223(3):273-9.
6.Lee J-c, Ahn S, Cho IK, Lee J, Kim J, Hwang J-H. Management of recurrent pancreatic cancer after surgical resection: a protocol for systematic review, evidence mapping and meta-analysis. BMJ Open. 2018;8(4):e017249.
7.Hesketh PJ. Chemotherapy-induced nausea and vomiting. N Engl J Med. 2008;358(23):2482-94.
8.Groopman JE, Itri LM. Chemotherapy-induced anemia in adults: incidence and treatment. J Natl Cancer Inst. 1999;91(19):1616-34.
9.Yarana C, St Clair DK. Chemotherapy-induced tissue injury: an insight into the role of extracellular vesicles-mediated oxidative stress responses. Antioxidants (Basel). 2017;6(4):E75.
10.Yue QX, Gao GG, Zou GY, Yu HQ, Zheng X. Natural products as adjunctive treatment for pancreatic cancer: recent trends and advancements. Biomed Res Int. 2017;2017:8412508.
11.Guo XZ, Cui ZM, Liu X. Current developments, problems and solutions in the non-surgical treatment of pancreatic cancer. World J Gastrointest Oncol. 2013;5(2):20-8.
12.Cho SW, Tzeng CW, Johnston WC, Cassera MA, Newell PH, Hammill CW, et al. Neoadjuvant radiation therapy and its impact on complications after pancreaticoduodenectomy for pancreatic cancer: analysis of the American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP). HPB (Oxford). 2014;16(4):350-6.
13.Neesse A, Algul H, Tuveson DA, Gress TM. Stromal biology and therapy in pancreatic cancer: a changing paradigm. Gut. 2015;64(9):1476-84.
14.Kameshima H, Tsuruma T, Kutomi G, Shima H, Iwayama Y, Kimura Y, et al. Immunotherapeutic benefit of alpha-interferon (IFNalpha) in survivin2B-derived peptide vaccination for advanced pancreatic cancer patients. Cancer Sci. 2013;104(1):124-9.
15.Widakowich C, de Castro G, Jr., de Azambuja E, Dinh P, Awada A. Review: side effects of approved molecular targeted therapies in solid cancers. Oncologist. 2007;12(12):1443-55.
16.Amanam I, Chung V. Targeted therapies for pancreatic cancer. Cancers (Basel). 2018;10(2):36.
17.Lacouture M, Sibaud V. Toxic side effects of targeted therapies and immunotherapies affecting the skin, oral mucosa, hair, and nails. Am J Clin Dermatol. 2018;19(Suppl 1):31-9.
18.Pan S-Y, Zhou S-F, Gao S-H, Yu Z-L, Zhang S-F, Tang M-K, et al. New perspectives on how to discover drugs from herbal medicines: CAM''s outstanding contribution to modern therapeutics. Evid Based Complement Alternat Med. 2013;2013:627375.
19.Khan N, Mukhtar H. Dietary agents for prevention and treatment of lung cancer. Cancer Lett. 2015;359(2):155-64.
20.Zhou Y, Li Y, Zhou T, Zheng J, Li S, Li HB. Dietary natural products for prevention and treatment of liver cancer. Nutrients. 2016;8(3):156.
21.Li Y, Li S, Meng X, Gan RY, Zhang JJ, Li HB. Dietary natural products for prevention and treatment of breast cancer. Nutrients. 2017;9(7).
22.Wang H, Khor TO, Shu LM, Su ZY, Fuentes F, Lee JH, et al. Plants vs. cancer: a review on natural phytochemicals in preventing and treating cancers and their druggability. Anti-Cancer Agent Me. 2012;12(10):1281-305.
23.Carter LG, D''Orazio JA, Pearson KJ. Resveratrol and cancer: focus on in vivo evidence. Endocr Relat Cancer. 2014;21(3):R209-25.
24.Gibellini L, Pinti M, Nasi M, Montagna JP, De Biasi S, Roat E, et al. Quercetin and cancer chemoprevention. Evid Based Complement Alternat Med. 2011;2011:591356.
25.Yan X, Qi M, Li P, Zhan Y, Shao H. Apigenin in cancer therapy: anti-cancer effects and mechanisms of action. Cell Biosci. 2017;7:50.
26.Iqbal J, Abbasi BA, Mahmood T, Kanwal S, Ali B, Shah SA, et al. Plant-derived anticancer agents: a green anticancer approach. Asian Pac J Trop Biomed. 2017;7(12):1129-50.
27.Guerra AR, Duarte MF, Duarte IF. Targeting tumor metabolism with plant-derived natural products: emerging trends in cancer therapy. J Agri Food Chem. 2018;66(41):10663-85.
28.Cory H, Passarelli S, Szeto J, Tamez M, Mattei J. The role of polyphenols in human health and food systems: a mini-review. Front Nutr. 2018;5:87.
29.Williams RJ, Spencer JP, Rice-Evans C. Flavonoids: antioxidants or signalling molecules? Free Radic Biol Med. 2004;36(7):838-49.
30.Zhou Y, Zheng J, Li Y, Xu DP, Li S, Chen YM, et al. Natural polyphenols for prevention and treatment of cancer. Nutrients. 2016;8(8):E515.
31.Maheshwari RK, Singh AK, Gaddipati J, Srimal RC. Multiple biological activities of curcumin: a short review. Life Sci. 2006;78(18):2081-7.
32.Milacic V, Banerjee S, Landis-Piwowar KR, Sarkar FH, Majumdar APN, Dou QP. Curcumin inhibits the proteasome activity in human colon cancer cells in vitro and in vivo. Cancer Res. 2008;68(18):7283-92.
33.Bachmeier BE, Mohrenz IV, Mirisola V, Schleicher E, Romeo F, Hohneke C, et al. Curcumin downregulates the inflammatory cytokines CXCL1 and-2 in breast cancer cells via NF kappa B. Carcinogenesis. 2008;29(4):779-89.
34.Sahu RP, Batra S, Srivastava SK. Activation of ATM/Chk1 by curcumin causes cell cycle arrest and apoptosis in human pancreatic cancer cells. Brit J Cancer. 2009;100(9):1425-33.
35.Shehzad A, Lee J, Lee YS. Curcumin in various cancers. Biofactors. 2013;39(1):56-68.
36.Masuelli L, Benvenuto M, Fantini M, Marzocchella L, Sacchetti P, Di Stefano E, et al. Curcumin Induces Apoptosis in Breast Cancer Cell Lines and Delays the Growth of Mammary Tumors in Neu Transgenic Mice. J Biol Reg Homeos Ag. 2013;27(1):105-19.
37.Bush JA, Cheung KJJ, Li G. Curcumin induces apoptosis in human melanoma cells through a Fas receptor/caspase-8 pathway independent of p53. Exp Cell Res. 2001;271(2):305-14.
38.Moragoda L, Jaszewski R, Majumdar APN. Curcumin induced modulation of cell cycle and apoptosis in gastric and colon cancer cells. Anticancer Res. 2001;21(2A):873-8.
39.Uddin S, Hussain AR, Manogaran PS, Al-Hussein K, Platanias LC, Gutierrez MI, et al. Curcumin suppresses growth and induces apoptosis in primary effusion lymphoma. Oncogene. 2005;24(47):7022-30.
40.Shim JS, Lee HJ, Park SS, Cha BG, Chang HR. Curcumin-induced apoptosis of A-431 cells involves caspase-3 activation. J Biochem Mol Biol. 2001;34(3):189-93.
41.Magalska A, Sliwinska M, Szczepanowska J, Salvioli S, Franceschi C, Sikora E. Resistance to apoptosis of HCW-2 cells can be overcome by curcumin- or vincristine-induced mitotic catastrophe. Int J Cancer. 2006;119(8):1811-8.
42.Walters DK, Muff R, Langsam B, Born W, Fuchs B. Cytotoxic effects of curcumin on osteosarcoma cell lines. Investigational new drugs. 2008;26(4):289-97.
43.Zhao ZM, Li CG, Xi H, Gao YX, Xu DB. Curcumin induces apoptosis in pancreatic cancer cells through the induction of forkhead box O1 and inhibition of the PI3K/Akt pathway. Mol Med Rep. 2015;12(4):5415-22.
44.Balasubramanian S, Eckert RL. Curcumin suppresses AP1 transcription factor-dependent differentiation and activates apoptosis in human epidermal keratinocytes. J Biol Chem. 2007;282(9):6707-15.
45.Premanand C, Rema M, Sameer MZ, Sujatha M, Balasubramanyam M. Effect of curcumin on proliferation of human retinal endothelial cells under in vitro conditions. Invest Ophth Vis Sci. 2006;47(5):2179-84.
46.Magalska A, Brzezinska A, Bielak-Zmijewska A, Piwocka K, Mosieniak G, Sikora E. Curcumin induces cell death without oligonucleosomal DNA fragmentation in quiescent and proliferating human CD8+cells. Acta Biochim Pol. 2006;53(3):531-8.
47.Liu A, Lou H, Zhao L, Fan P. Validated LC/MS/MS assay for curcumin and tetrahydrocurcumin in rat plasma and application to pharmacokinetic study of phospholipid complex of curcumin. Journal of pharmaceutical and biomedical analysis. 2006;40(3):720-7.
48.Khan N, Mukhtar H. Tea and health: studies in humans. Curr Pharm Des. 2013;19(34):6141-7.
49.Leung LK, Su Y, Chen R, Zhang Z, Huang Y, Chen Z-Y. Theaflavins in black tea and catechins in green tea are equally effective antioxidants. J Nutr. 2001;131(9):2248-51.
50.Ji SJ, Han DH, Kim JH. Inhibition of proliferation and induction of apoptosis by EGCG in human osteogenic sarcoma (HOS) cells. Arch Pharmacal Res. 2006;29(5):363-8.
51.Negri A, Naponelli V, Rizzi F, Bettuzzi S. Molecular targets of epigallocatechingallate (EGCG): a special focus on signal transduction and cancer. Nutrients. 2018;10(12):E1936.
52.Pan MH, Liang YC, Lin-Shiau SY, Zhu NQ, Ho C-T, Lin J-K. Induction of apoptosis by the oolong tea polyphenol theasinensin A through cytochrome c release and activation of caspase-9 and caspase-3 in human U937 cells. J Agric Food Chem. 2000;48(12):6337-46.
53.Wei Y, Chen P, Ling T, Wang Y, Dong R, Zhang C, et al. Certain (-)-epigallocatechin-3-gallate (EGCG) auto-oxidation products (EAOPs) retain the cytotoxic activities of EGCG. Food Chem. 2016;204:218-26.
54.Hou Z, Sang S, You H, Lee MJ, Hong J, Chin KV, et al. Mechanism of action of (-)-epigallocatechin-3-gallate: auto-oxidation-dependent inactivation of epidermal growth factor receptor and direct effects on growth inhibition in human esophageal cancer KYSE 150 cells. Cancer Res. 2005;65(17):8049-56.
55.Zeng L, Holly JM, Perks CM. Effects of physiological levels of the green tea extract epigallocatechin-3-gallate on breast cancer cells. Front Endocrinol (Lausanne). 2014;5:61.
56.Vignes M, Maurice T, Lante F, Nedjar M, Thethi K, Guiramand J, et al. Anxiolytic properties of green tea polyphenol (-)-epigallocatechin gallate (EGCG). Brain Res. 2006;1110(1):102-15.
57.Collins QF, Liu HY, Pi J, Liu Z, Quon MJ, Cao W. Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, suppresses hepatic gluconeogenesis through 5''-AMP-activated protein kinase. J Biol Chem. 2007;282(41):30143-9.
58.Ryan P, Hynes MJ. The kinetics and mechanisms of the complex formation and antioxidant behaviour of the polyphenols EGCg and ECG with iron(III). J Inorg Biochem. 2007;101(4):585-93.
59.Mereles D, Hunstein W. Epigallocatechin-3-gallate (EGCG) for clinical trials: more pitfalls than promises? Int J Mol Sci. 2011;12(9):5592-603.
60.Katada S, Watanabe T, Mizuno T, Kobayashi S, Takeshita M, Osaki N, et al. Effects of chlorogenic acid-enriched and hydroxyhydroquinone-reduced coffee on postprandial fat oxidation and antioxidative capacity in healthy men: a randomized, double-blind, placebo-controlled, crossover trial. Nutrients. 2018;10(4):E525.
61.Godos J, Pluchinotta FR, Marventano S, Buscemi S, Li Volti G, Galvano F, et al. Coffee components and cardiovascular risk: beneficial and detrimental effects. Int J Food Sci Nutr. 2014;65(8):925-36.
62.Huang MT, Smart RC, Wong CQ, Conney AH. Inhibitory effect of curcumin, chlorogenic acid, caffeic acid, and ferulic acid on tumor promotion in mouse skin by 12-o-tetradecanoylphorbol-13-acetate. Cancer Res. 1988;48(21):5941-6.
63.Kasai H, Fukada S, Yamaizumi Z, Sugie S, Mori H. Action of chlorogenic acid in vegetables and fruits as an inhibitor of 8-hydroxydeoxyguanosine formation in vitro and in a rat carcinogenesis model. Food Chem Toxicol. 2000;38(5):467-71.
64.Yamagata K, Izawa Y, Onodera D, Tagami M. Chlorogenic acid regulates apoptosis and stem cell marker-related gene expression in A549 human lung cancer cells. Mol Cell Biochem. 2018;441(1-2):9-19.
65.Hou N, Liu N, Han J, Yan Y, Li J. Chlorogenic acid induces reactive oxygen species generation and inhibits the viability of human colon cancer cells. Anti-Cancer Drug. 2017;28(1):59-65.
66.Chou TC. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010;70(2):440-6.
67.Yardley DA. Drug resistance and the role of combination chemotherapy in improving patient outcomes. Int J Breast Cancer. 2013;2013:137414.
68.Chen X-X, Lai M-D, Zhang Y-L, Huang Q. Less cytotoxicity to combination therapy of 5-fluorouracil and cisplatin than 5-fluorouracil alone in human colon cancer cell lines. World J Gastroenterol. 2002;8(5):841.
69.Blagosklonny MV. Overcoming limitations of natural anticancer drugs by combining with artificial agents. Trends Pharmacol Sci. 2005;26(2):77-81.
70.Mohapatro SK, Dandapat MC, Padhi NC. Toxicity and side-effects of combination chemohormonal therapy of advanced breast cancer. J Indian Med Assoc. 1992;90(2):39-42.
71.Li B, Gan R, Yang QJ, Huang JL, Chen PG, Wan LL, et al. Chinese herbal medicines as an adjunctive therapy for unresectable pancreatic cancer: a systematic review and meta-analysis. Evid Based Complement Alternat Med. 2015;2015:350730.
72.Hemalswarya S, Doble M. Potential synergism of natural products in the treatment of cancer. Phytother Res. 2006;20(4):239-49.
73.Yin SY, Wei WC, Jian FY, Yang NS. Therapeutic applications of herbal medicines for cancer patients. Evid Based Complement Alternat Med. 2013;2013:302426.
74.Witta S, Eckhardt G, Rothenberg M, Sosman J, Gustafson D, O’Bryant C, et al., editors. A phase I combination trial of irofulven and gemcitabine in patients with advanced solid malignancies. Proc Am Soc Clin Oncol; 2003;22:138.
75.Schwarz RE, Donohue CA, Sadava D, Kane SE. Pancreatic cancer in vitro toxicity mediated by Chinese herbs SPES and PC-SPES: implications for monotherapy and combination treatment. Cancer Lett. 2003;189(1):59-68.
76.Yue Q, Gao G, Zou G, Yu H, Zheng X. Natural products as adjunctive treatment for pancreatic cancer: recent trends and advancements. Biomed Res Int. 2017;2017:13.
77.Hauns B, Häring B, Köhler S, Mross K, Robben-Bathe P, Unger C. Phase II study with 5-fluorouracil and Ginkgo biloba extract (GBE 761 ONC) in patients with pancreatic cancer. Arzneimittelforschung. 1999;49(12):1030-4.
78.Yue W, Zheng X, Lin Y, Yang CS, Xu Q, Carpizo D, et al. Metformin combined with aspirin significantly inhibit pancreatic cancer cell growth in vitro and in vivo by suppressing anti-apoptotic proteins Mcl-1 and Bcl-2. Oncotarget. 2015;6(25):21208-24.
79.Srivastava RK, Tang S-N, Zhu W, Meeker D, Shankar S. Sulforaphane synergizes with quercetin to inhibit self-renewal capacity of pancreatic cancer stem cells. Front Biosci (Elite Ed). 2011;3:515.
80.Terrault NA. Benefits and risks of combination therapy for hepatitis B. Hepatology. 2009;49(5 Suppl):S122-8.
81.Lee JJ, Kong M, Ayers GD, Lotan R. Interaction index and different methods for determining drug interaction in combination therapy. J Biopharm Stat. 2007;17(3):461-80.
82.Huang H, Zhang P, Qu XA, Sanseau P, Yang L. Systematic prediction of drug combinations based on clinical side-effects. Sci Rep-UK. 2014;4:7160.
83.Chu KF, Dupuy DE. Thermal ablation of tumours: biological mechanisms and advances in therapy. Nat Rev Cancer. 2014;14:199.
84.Lopes JR, Santos G, Barata P, Oliveira R, Lopes CM. Physical and chemical stimuli-responsive drug delivery systems: targeted delivery and main routes of administration. Curr Pharm Des. 2013;19(41):7169-84.
85.Brace C. Thermal tumor ablation in clinical use. IEEE pulse. 2011;2(5):28-38.
86.Kim YS, Rhim H, Lim HK, Choi D, Lee MW, Park MJ. Coagulation necrosis induced by radiofrequency ablation in the liver: histopathologic and radiologic review of usual to extremely rare changes. Radiographics. 2011;31(2):377-90.
87.Hadjicostas P, Malakounides N, Varianos C, Kitiris E, Lerni F, Symeonides P. Radiofrequency ablation in pancreatic cancer. HPB (Oxford). 2006;8(1):61-4.
88.Chen X, Ren Z, Zhu T, Zhang X, Peng Z, Xie H, et al. Electric ablation with irreversible electroporation (IRE) in vital hepatic structures and follow-up investigation. Sci Rep-UK. 2015;5:16233.
89.Nuccitelli R, Berridge JC, Mallon Z, Kreis M, Athos B, Nuccitelli P. Nanoelectroablation of murine tumors triggers a CD8-dependent inhibition of secondary tumor growth. Plos One. 2015;10(7):e0134364.
90.Wagstaff PGK, Buijs M, van den Bos W, de Bruin DM, Zondervan PJ, de la Rosette JJMCH, et al. Irreversible electroporation: state of the art. Oncotargets Ther. 2016;9:2437-46.
91.Esmaeili N, Friebe M. Electrochemotherapy: a review of current status, alternative IGP approaches, and future perspectives. J Healthc Eng. 2019:2784516.
92.Deodhar A, Dickfeld T, Single GW, Hamilton WC, Thornton RH, Sofocleous CT, et al. Irreversible electroporation near the heart: ventricular arrhythmias can be prevented with ECG synchronization. Am J Roentgenol. 2011;196(3):W330-W5.
93.Snoj M, Cemazar M, Kolar BS, Sersa G. Effective treatment of multiple unresectable skin melanoma Metastases by electrochemotherapy. Croat Med J. 2007;48(3):391-5.
94.Fujimoto T, Maeda H, Kubo K, Sugita Y, Nakashima T, Sato E, et al. Enhanced anti-tumour effect of cisplatin with low-voltage electrochemotherapy in hamster oral fibrosarcoma. J Int Med Res. 2005;33(5):507-12.
95.Shankayi Z, Firoozabadi SMP, Hassan ZS. Optimization of electric pulse amplitude and frequency in vitro for low voltage and high frequency electrochemotherapy. J Membrane Biol. 2014;247(2):147-54.
96.Novac BM, Banakhr FA, Smith IR, Pecastaing L, Ruscassie R, de Ferron AS, et al. Demonstration of a novel pulsed electric field technique generating neither conduction currents nor joule effects. IEEE T Plasma Sci. 2014;42(1):216-28.
97.Matsuki N, Ishikawa T, Imai Y, Yamaguchi T. Low voltage pulses can induce apoptosis. Cancer Lett. 2008;269(1):93-100.
98.Grys M, Madeja Z, Korohoda W. Avoiding the side effects of electric current pulse application to electroporated cells in disposable small volume cuvettes assures good cell survival. Cell Mol Biol Lett. 2017;22:1.
99.Guenther E, Klein N, Mikus P, Stehling MK, Rubinsky B. Electrical breakdown in tissue electroporation. Biochem Bioph Res Co. 2015;467(4):736-41.
100.Hannan MA, Mutashar S, Samad SA, Hussain A. Energy harvesting for the implantable biomedical devices: issues and challenges. Biomed Eng Online. 2014;13:79.
101.Chu KF, Dupuy DE. Thermal ablation of tumours: biological mechanisms and advances in therapy. Nat Rev Cancer. 2014;14(3):199-208.
102.Wang LZ, Chang J, Qu YQ, Qiu RN. Combination therapy comprising irreversible electroporation and hydroxycamptothecin loaded electrospun membranes to treat rabbit VX2 subcutaneous cancer. Biomed Microdevices. 2018;20(4):88.
103.Yu ZQ, Yan B, Gao LQ, Dong CB, Zhong J, D''Ortenzio M, et al. Targeted delivery of bleomycin: a comprehensive anticancer review. Curr Cancer Drug Tar. 2016;16(6):509-21.
104.Tuszynski JA, Wenger C, Friesen DE, Preto J. An overview of sub-cellular mechanisms involved in the action of TTFields. Int J Env Res Pub He. 2016;13(11):1128.
105.Kessler AF, Frombling GE, Gross F, Hahn M, Dzokou W, Ernestus RI, et al. Effects of tumor treating fields (TTFields) on glioblastoma cells are augmented by mitotic checkpoint inhibition. Cell Death Discov. 2018;4:12.
106.Clark PA, Gaal JT, Strebe JK, Pasch CA, Deming DA, Kuo JS, et al. The effects of tumor treating fields and temozolomide in MGMT expressing and non-expressing patient-derived glioblastoma cells. J Clin Neurosci. 2017;36:120-4.
107.Sun YS. Direct-current electric field distribution in the brain for tumor treating field applications: a simulation study. Comput Math Methods Med. 2018;2018:13.
108.Stupp R, Wong ET, Kanner AA, Steinberg D, Engelhard H, Heidecke V, et al. NovoTTF-100A versus physician’s choice chemotherapy in recurrent glioblastoma: a randomised phase III trial of a novel treatment modality. Eur J Cancer. 2012;48(14):2192-202.
109.Printz C. Electrical device for patients with glioblastoma met with support, skepticism: Some question the device''s efficacy, others tout it as a new standard of care. Cancer. 2015;121(7):969-70.
110.Hottinger AF, Pacheco P, Stupp R. Tumor treating fields: a novel treatment modality and its use in brain tumors. Neuro Oncol. 2016;18(10):1338-49.
111.Robinson VS, Garner AL, Loveless AM, Neculaes VB. Calculated plasma membrane voltage induced by applying electric pulses using capacitive coupling. Biomed Phys Eng Expr. 2017;3(2).
112.Frelinger AL, Gerrits AJ, Garner AL, Torres AS, Caiafa A, Morton CA, et al. Modification of pulsed electric field conditions results in distinct activation profiles of platelet-rich plasma. Plos One. 2016;11(8):e0160933.
113.Lu CH, Lin SH, Hsieh CH, Chen WT, Chao CY. Enhanced anticancer effects of low-dose curcumin with non-invasive pulsed electric field on PANC-1 cells. Oncotargets Ther. 2018;11:4723-32.
114.Hsieh CH, Lu CH, Kuo YY, Lin GB, Chao CY. The protective effect of non-invasive low intensity pulsed electric field and fucoidan in preventing oxidative stress-induced motor neuron death via ROCK/Akt pathway. Plos One. 2019;14(3):e0214100.
115.Hara A, Ogawa Y. Electric field therapy device. DK Patents. 1995. Patent No.170589.
116.Harakawa S, Inoue N, Hori T, Tochio K, Kariya T, Takahashi K, et al. Effects of a 50 Hz electric field on plasma lipid peroxide level and antioxidant activity in rats. Bioelectromagnetics. 2005;26(7):589-94.
117.Hara A, Ogawa Y. Electric field therapy apparatus. US Patents. 1989. Patent No.4802470.
118.Hara A, Uenaka N. Electric potential therapy apparatus and control method of optimal dose amount for human body area. EP Patents. 2002. Patent No. 1216725.
119.Overgaard J. The current and potential role of hyperthermia in radiotherapy. Int J Radiat Oncol. 1989;16(3):535-49.
120.Roti JLR. Cellular responses to hyperthermia (40-46 degrees C): Cell killing and molecular events. Int J Hyperther. 2008;24(1):3-15.
121.Oei AL, Vriend LEM, Crezee J, Franken NAP, Krawczyk PM. Effects of hyperthermia on DNA repair pathways: one treatment to inhibit them all. Radiat Oncol. 2015;10:165.
122.Huang SH, Yang KJ, Wu JC, Chang KJ, Wang SM. Effects of hyperthermia on the cytoskeleton and focal adhesion proteins in a human thy carcinoma cell line. J Cell Biochem. 1999;75(2):327-37.
123.Calderwood SK, Theriault JR, Gong JL. How is the immune response affected by hyperthermia and heat shock proteins? Int J Hyperther. 2005;21(8):713-6.
124.Ponce AM, Vujaskovic Z, Yuan F, Needham D, Dewhirst MW. Hyperthermia mediated liposomal drug delivery. Int J Hyperther. 2006;22(3):205-13.
125.Song CW, Shakil A, Osborn JL, Iwata K. Tumour oxygenation is increased by hyperthermia at mild temperatures. Int J Hyperther. 2009;25(2):91-5.
126.Hildebrandt B, Wust P, Ahlers O, Dieing A, Sreenivasa G, Kerner T, et al. The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol. 2002;43(1):33-56.
127.Kaur P, Hurwitz MD, Krishnan S, Asea A. Combined hyperthermia and radiotherapy for the treatment of cancer. Cancers (Basel). 2011;3(4):3799-823.
128.Griffin RJ, Dings RP, Jamshidi-Parsian A, Song CW. Mild temperature hyperthermia and radiation therapy: role of tumor vascular thermotolerance and relevant physiological factors. Int J Hyperthermia. 2010;26(3):256-263.
129.Schildkopf P1, Ott OJ, Frey B, Wadepohl M, Sauer R, Fietkau R, et al. Biological rationales and clinical applications of temperature controlled hyperthermia--implications for multimodal cancer treatments. Curr Med Chem. 2010;17(27):3045-57.
130.Au JLS, Wientjes MG. Combination intravesical hyperthermia and chemotherapy for bladder cancer. Oncology (Williston Park). 2010;24(12):1155-60.
131.Adachi S, Kokura S, Okayama T, Ishikawa T, Takagi T, Handa O, et al. Effect of hyperthermia combined with gemcitabine on apoptotic cell death in cultured human pancreatic cancer cell lines. Int J Hyperthermia. 2009;25(3):210-9.
132.Refaat T, Sachdev S, Sathiaseelan V, Helenowski I, Abdelmoneim S, Pierce MC, et al. Hyperthermia and radiation therapy for locally advanced or recurrent breast cancer. Breast. 2015;24(4):418-25.
133.Bakshandeh-Bath A, Stoltz AS, Homann N, Wagner T, Stolting S, Peters SO. Preclinical and clinical aspects of carboplatin and gemcitabine combined with whole-body hyperthermia for pancreatic adenocarcinoma. Anticancer Res. 2009;29(8):3069-77.
134.Tschoep-Lechner KE, Milani V, Berger F, Dieterle N, Abdel-Rahman S, Salat C, et al. Gemcitabine and cisplatin combined with regional hyperthermia as second-line treatment in patients with gemcitabine-refractory advanced pancreatic cancer. Int J Hyperther. 2013;29(1):8-16.
135.Kim JH, Kim SH, Alfieri AA, Young CW. Quercetin, an inhibitor of lactate transport and a hyperthermic sensitizer of Hela-Cells. Cancer Res. 1984;44(1):102-6.
136.Cui ZG, Piao JL, Kondo T, Ogawa R, Tsuneyama K, Zhao QL, et al. Molecular mechanisms of hyperthermia-induced apoptosis enhanced by docosahexaenoic acid: Implication for cancer therapy. Chem-Biol Interact. 2014;215:46-53.
137.Zhao PJ, Jiang H, Su D, Feng JG, Ma SL, Zhu XH. Inhibition of cell proliferation by mild hyperthermia at 43 degrees C with Paris Saponin I in the lung adenocarcinoma cell line PC-9. Mol Med Rep. 2015;11(1):327-32.
138.Cui ZG, Piao JL, Rehman MUR, Ogawa R, Li P, Zhao QL, et al. Molecular mechanisms of hyperthermia-induced apoptosis enhanced by withaferin A. Eur J Pharmacol. 2014;723:99-107.
139.Christophi C, Winkworth A, Muralihdaran V, Evans P. The treatment of malignancy by hyperthermia. Surgical oncology. 1998;7(1-2):83-90.
140.Dewey WC. Arrhenius relationships from the molecule and cell to the clinic. Int J Hyperther. 2009;25(1):3-20.
141.Overgaard K, Overgaard J. Investigations on the possibility of a thermic tumour therapy—I. Eur J Cancer. 1972;8(1):65-78.
142.Lu CH, Chen WT, Hsieh CH, Kuo YY, Chao CY. Thermal cycling-hyperthermia in combination with polyphenols, epigallocatechin gallate and chlorogenic acid, exerts synergistic anticancer effect against human pancreatic cancer PANC-1 cells. Plos One. 2019;14(5):e0217676.
143.Lu CH CW, Hsieh CH, Kuo YY, Chao CY. Thermal cycling-hyperthermia in combination with polyphenols, epigallocatechin gallate and chlorogenic acid, exerts synergistic anticancer effect against human pancreatic cancer PANC-1 cells. bioRxiv. 2019. doi: 10.1101/548552.
144.Hsiao YH, Kuo SJ, Tsai HD, Chou MC, Yeh GP. Clinical application of high-intensity focused ultrasound in cancer therapy. J Cancer. 2016;7(3):225-31.
145.Partanen A, Yarmolenko PS, Viitala A, Appanaboyina S, Haemmerich D, Ranjan A, et al. Mild hyperthermia with magnetic resonance-guided high-intensity focused ultrasound for applications in drug delivery. Int J Hyperther. 2012;28(4):320-36.
146.Frazier N, Payne A, de Bever J, Dillon C, Panda A, Subrahmanyam N, et al. High intensity focused ultrasound hyperthermia for enhanced macromolecular delivery. J Control Release. 2016;241:186-93.
147.Partanen A, Tillander M, Yarmolenko PS, Wood BJ, Dreher MR, Kohler MO. Reduction of peak acoustic pressure and shaping of heated region by use of multifoci sonications in MR-guided high-intensity focused ultrasound mediated mild hyperthermia. Med Phys. 2013;40(1):013301.
148.Payne A, Vyas U, Todd N, de Bever J, Christensen DA, Parker DL. The effect of electronically steering a phased array ultrasound transducer on near-field tissue heating. Med Phys. 2011;38(9):4971-81.
149.Chaplin V, Caskey CF. Multi-focal HIFU reduces cavitation in mild-hyperthermia. J Ther Ultrasound. 2017;5:12.
150.Vaity C, Al-Subaie N, Cecconi M. Cooling techniques for targeted temperature management post-cardiac arrest. Crit Care. 2015;19:103.
151.Kunwar A, Barik A, Pandey R, Priyadarsini KI. transport of liposomal and albumin loaded curcumin to living cells: an absorption and fluorescence spectroscopic study. Biochim Biophys Acta. 2006;1760(10):1513-20.
152.Ramachandran RP, Madhivanan S, Sundararajan R, Lin CW-Y, Sankaranarayanan K. In: Sundararajan R, editor. An in vitro study of electroporation of leukemia and cervical cancer cells. Electroporation-Based Therapies for Cancer: From Basics to Clinical Applications. Cambridge: Woodhead Publishing Ltd; 2014:161-183.
153.Camarillo IG, Xiao F, Madhivanan S, Salameh T, Nichols M, Reece LM, et al. Low and high voltage electrochemotherapy for breast cancer: an in vitro model study. In: Sundararajan R, editor. Electroporation-Based Therapies for Cancer: From Basics to Clinical Applications. Cambridge: Woodhead Publishing Ltd; 2014:55-102.
154.Parasramka MA, Gupta SV. Synergistic effect of garcinol and curcumin on antiproliferative and apoptotic activity in pancreatic cancer cells. J Oncol. 2012;2012:709739.
155.Jutooru I, Chadalapaka G, Lei P, Safe S. Inhibition of NF kappa B and pancreatic cancer cell and tumor growth by curcumin is dependent on specificity protein down-regulation. J Biol Chem. 2010;285(33):25332-44.
156.Osterman CJD, Lynch JC, Leaf P, Gonda A, Bennit HRF, Griffiths D, et al. Curcumin modulates pancreatic adenocarcinoma cell-derived exosomal function. Plos One. 2015;10(7):e0132845.
157.Saczko J, Kamińska I, Kotulska M, Bar J, Choromańska A, Rembiałkowska N, et al. Combination of therapy with 5-fluorouracil and cisplatin with electroporation in human ovarian carcinoma model in vitro. Biomed Pharmacother. 2014;68(5):573-80.
158.Vásquez JL, Gehl J, Hermann GG. Electroporation enhances mitomycin C cytotoxicity on T24 bladder cancer cell line: a potential improvement of intravesical chemotherapy in bladder cancer. Bioelectrochemistry. 2012;88:127-33.
159.Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N. Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta. 2013;1833(12):3448-59.
160.Ferreira CG, Span SW, Peters GJ, Kruyt FAE, Giaccone G. Chemotherapy triggers apoptosis in a caspase-8-dependent and mitochondria-controlled manner in the non-small cell lung cancer cell line NCI-H460. Cancer Res. 2000;60(24):7133-41.
161.Elmore S. Apoptosis: A review of programmed cell death. Toxicol Pathol. 2007;35(4):495-516.
162.Raisova M, Hossini AM, Eberle J, Riebeling C, Wieder T, Sturm I, et al. The Bax/Bcl-2 ratio determines the susceptibility of human melanoma cells to CD95/Fas-mediated apoptosis. J Invest Dermatol. 2001;117(2):333-40.
163.Youns M, Fathy GM. Upregulation of extrinsic apoptotic pathway in curcumin-mediated antiproliferative effect on human pancreatic carcinogenesis. J Cell Biochem. 2013;114(12):2654-65.
164.Rosemberg Y, Korenstein R. Incorporation of macromolecules into cells and vesicles by low electric fields: induction of endocytotic-like processes. Bioelectroch Bioener. 1997;42(2):275-81.
165.Kotnik T, Frey W, Sack M, Haberl Meglic S, Peterka M, Miklavcic D. Electroporation-based applications in biotechnology. Trends Biotechnol. 2015;33(8):480-8.
166.Antov Y, Barbul A, Mantsur H, Korenstein R. Electroendocytosis: exposure of cells to pulsed low electric fields enhances adsorption and uptake of macromolecules. Biophys J. 2005;88(3):2206-23.
167.DeBruin KA, Krassowska W. Modeling electroporation in a single cell. I. Effects Of field strength and rest potential. Biophys J. 1999;77(3):1213-24.
168.Gowrishankar TR, Pliquett U, Lee RC. Dynamics of membrane sealing in transient electropermeabilization of skeletal muscle membranes. Ann N Y Acad Sci. 1999;888:195-210.
169.Korchak HM, Rich AM, Wilkenfeld C, Rutherford LE, Weissmann G. A carbocyanine dye, DiOC6(3), acts as a mitochondrial probe in human neutrophils. Biochem Biophys Res Commun. 1982;108(4):1495-501.
170.Gomes A, Fernandes E, Lima JL. Fluorescence probes used for detection of reactive oxygen species. J Biochem Biophys Methods. 2005;65(2-3):45-80.
171.Ware MJ, Nguyen LP, Law JJ, Krzykawska-Serda M, Taylor KM, Cao HST, et al. A new mild hyperthermia device to treat vascular involvement in cancer surgery. Sci Rep. 2017;7(1):11299.
172.Dewey WC, Hopwood LE, Sapareto SA, Gerweck LE. Cellular responses to combinations of hyperthermia and radiation. Radiology. 1977;123(2):463-74.
173.Raaphorst GP, Freeman ML, Dewey WC. Radiosensitivity and recovery from radiation damage in cultured CHO cells exposed to hyperthermia at 42.5 or 45.5 degrees C. Radiat Res. 1979;79(2):390-402.
174.Curley SA, Palalon F, Sanders KE, Koshkina NV. The effects of non-invasive radiofrequency treatment and hyperthermia on malignant and nonmalignant Cells. Int J Env Res Pub He. 2014;11(9):9142-53.
175.Lim CU, Zhang Y, Fox MH. Cell cycle dependent apoptosis and cell cycle blocks induced by hyperthermia in HL-60 cells. Int J Hyperthermia. 2006;22(1):77-91.
176.Hatashita M, Taniguchi M, Baba K, Koshiba K, Sato T, Jujo Y, et al. Sinodielide A exerts thermosensitizing effects and induces apoptosis and G2/M cell cycle arrest in DU145 human prostate cancer cells via the Ras/Raf/MAPK and PI3K/Akt signaling pathways. Int J Mol Med. 2014;33(2):406-14.
177.Jessus C, Beach D. Oscillation of MPF is accompanied by periodic association between Cdc25 and Cdc2-cyclin-B. Cell. 1992;68(2):323-32.
178.Fisher D, Krasinska L, Coudreuse D, Novak B. Phosphorylation network dynamics in the control of cell cycle transitions. J Cell Sci. 2012;125(Pt 20):4703-11.
179.Ahmed K, Tabuchi Y, Kondo T. Hyperthermia: an effective strategy to induce apoptosis in cancer cells. Apoptosis. 2015;20(11):1411-9.
180.Rodríguez M, Estrela J, Ortega Á. Natural polyphenols and apoptosis induction in cancer therapy. J Carcinog Mutag S. 2013;6:1-10.
181.Yamagata K, Izawa Y, Onodera D, Tagami M. Chlorogenic acid regulates apoptosis and stem cell marker-related gene expression in A549 human lung cancer cells. Mol Cell Biochem. 2018;441(1-2):9-19.
182.Tait SWG, Green DR. Mitochondrial regulation of cell death. Csh Perspect Biol. 2013;5(9):a008706.
183.Gross A, McDonnell JM, Korsmeyer SJ. BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 1999;13(15):1899-911.
184.Orrenius S. Reactive oxygen species in mitochondria-mediated cell death. Drug Metab Rev. 2007;39(2-3):443-55.
185.Jin H, Zhao Y, Yang J, Zhang X, Ma S. Hyperthermia enhances the sensitivity of pancreatic cancer SW1990 cells to gemcitabine through ROS/JNK signaling. Oncol Lett. 2018;16(5):6742-8.
186.Cesna V, Sukovas A, Jasukaitiene A, Naginiene R, Barauskas G, Dambrauskas Z, et al. Narrow line between benefit and harm: Additivity of hyperthermia to cisplatin cytotoxicity in different gastrointestinal cancer cells. World journal of gastroenterology. 2018;24(10):1072.
187.Mohamed F, Marchettini P, Stuart OA, Urano M, Sugarbaker PH. Thermal enhancement of new chemotherapeutic agents at moderate hyperthermia. Annals of surgical oncology. 2003;10(4):463-8.
188.Zhao P, Jiang H, Su D, Feng J, Ma S, Zhu X. Inhibition of cell proliferation by mild hyperthermia at 43 C with Paris Saponin I in the lung adenocarcinoma cell line PC-9. Mol Med Rep. 2015;11(1):327-32.
189.Feng Q, Sun L, Teng B, Yanping X. Growth inhibitory effect of triptolide combined with hyperthermia on Hep-2 cells. Journal of Jilin University (Medicine Edition). 2006;(05).
190.Kampinga HH. Cell biological effects of hyperthermia alone or combined with radiation or drugs: a short introduction to newcomers in the field. Int J Hyperther. 2006;22(3):191-6.
191.Adachi S, Kokura S, Okayama T, Ishikawa T, Takagi T, Handa O, et al. Effect of hyperthermia combined with gemcitabine on apoptotic cell death in cultured human pancreatic cancer cell lines. Int J Hyperther. 2009;25(3):210-9.
192.Huanwen W, Zhiyong L, Xiaohua S, Xinyu R, Kai W, Tonghua L. Intrinsic chemoresistance to gemcitabine is associated with constitutive and laminin-induced phosphorylation of FAK in pancreatic cancer cell lines. Mol Cancer. 2009;8:125.
193.Pflaum J, Schlosser S, Muller M. P53 family and cellular stress responses in cancer. Front Oncol. 2014;4:285.
194.Hoeferlin LA, Oleinik NV, Krupenko NI, Krupenko SA. Activation of p21-dependent G1/G2 arrest in the absence of DNA damage as an antiapoptotic response to metabolic stress. Genes Cancer. 2011;2(9):889-99.
195.Dash BC, El-Deiry WS. Phosphorylation of p21 in G2/M promotes cyclin B-Cdc2 kinase activity. Mol Cell Biol. 2005;25(8):3364-87.
196.Baig S, Seevasant I, Mohamad J, Mukheem A, Huri HZ, Kamarul T. Potential of apoptotic pathway-targeted cancer therapeutic research: where do we stand? Cell Death Dis. 2016;7:e2058.
197.Gross A, McDonnell JM, Korsmeyer SJ. BCL-2 family members and the mitochondria in apoptosis. Gene Dev. 1999;13(15):1899-911.
198.Miyashita T, Krajewski S, Krajewska M, Wang HG, Lin HK, Liebermann DA, et al. Tumor-suppressor p53 is a regulator of Bcl-2 and Bax gene-expression in-vitro and in-vivo. Oncogene. 1994;9(6):1799-805.
199.Sauer H, Wartenberg M, Hescheler J. Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Physiol Biochem. 2001;11(4):173-86.
200.Boonstra J, Post JA. Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells. Gene. 2004;337:1-13.
201.Rakshit S, Mandal L, Pal BC, Bagchi J, Biswas N, Chaudhuri J, et al. Involvement of ROS in chlorogenic acid-induced apoptosis of Bcr-Abl(+) CML cells. Biochem Pharmacol. 2010;80(11):1662-75.
202.Macip S, Igarashi M, Berggren P, Yu J, Lee SW, Aaronson SA. Influence of induced reactive oxygen species in p53-mediated cell fate decisions. Mol Cell Biol. 2003;23(23):8576-85.
203.Johnson TM, Yu ZX, Ferrans VJ, Lowenstein RA, Finkel T. Reactive oxygen species are downstream mediators of p53-dependent apoptosis. P Natl Acad Sci USA. 1996;93(21):11848-52.
204.Liu B, Chen YM, Clair DKS. ROS and p53: a versatile partnership. Free Radical Bio Med. 2008;44(8):1529-35.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔