(3.237.97.64) 您好!臺灣時間:2021/03/03 04:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡霆
研究生(外文):Ting Tsai
論文名稱:利用量子電腦處理組態交互作用問題
論文名稱(外文):Mapping Configuration Interaction Problems to a QuantumComputer
指導教授:管希聖
指導教授(外文):Hsi-Sheng Goan
口試委員:蔡政達張慶瑞
口試日期:2019-07-18
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理學研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:41
中文關鍵詞:量子變分特徵解演算法嘈雜中型量子分子模擬量子電腦量子演算法
DOI:10.6342/NTU201903121
相關次數:
  • 被引用被引用:0
  • 點閱點閱:114
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
利用量子電腦計算分子能階的想法源自於1982年理查·費曼所說的「“大自然不是古典的,如果你想要模擬大自然,你最好把它變成是量子力學的,而這是一個精彩的好問題,因為它看起來並不是那麼容易。”而在1996年Seth Lloyd利用量子相位估算法(PEA)計算出分子系統的基態能階,理論上PEA是量子電腦計算這類問題最具效率的方式,然而在”嘈雜中型量子”(NISQ)電腦因為誤差、雜訊、退相干時間. . .因素,執行上受到諸多的限制,即便小分子的模擬也相當的困難。2015年IBM在量子運算上取得關鍵性突破,如何發揮NISQ電腦的效能變成重要議題,近年基於NISQ電腦諸多限制下開發出「量子變分特徵解演算法」(VQE)。而我們從組態交互作用為出發點,比較不同的Hamiltonian轉換方法以及不同的最佳化方法下的結果,分析這些方法所帶來的優劣。
The idea of using quantum computer to calculate the energies of molecules is came from Richard Feynman. In 1982, he mentioned “Nature isn’t classical, dammit, and if you want to make a simulation of nature, you’d better make it quantum mechanical, and by golly it’s a wonderful problem, because it doesn’t look so easy.” In 1996, Seth Lloyd used the quantum phase estimation algorithm (PEA) to calculate the ground state energy of a molecule. In theory, PEA is the most efficient method to solve this type of problems. However, the power of Noisy Intermediate Scale Quantum (NISQ) computer available in the next five to ten years is limited by error rate, noise, decoherent time, etc. Even for a small molecule, PEA is hard to implement effectively. Due to the breakthrough improvement on quantum devices made by IBM, how to make NISQ devices perform well becomes very important. Based on the limitation of NISQ devices, variational-quantum-eigensolver (VQE) is developed. In this thsis, we start from configuration interaction, discuss results with different encoding and optimization methods for the VQE to find elecreonic structure of molecules, and analyze pros and cons of the different methods.
摘要 I
Abstract II
List of Figures V
List of Tables VIII
1 Introduction 1
2 Transforming Hamiltonian into Pauli Matrices 4
2.1 Jordan-Wigner transformation (local transformation) . . . . . . . . . 5
2.2 The parity transformation . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 The non-local transformation . . . . . . . . . . . . . . . . . . . . . . 7
2.3.1 Parity set(P) . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Updadte set(U) . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.3 Flip set(F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3 Quantum eigensolver 12
3.1 Qubit and quantum gate . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Unitary couple cluster to VQE . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Spin-adapted configurations . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.6 Excited states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4 Conclusion 32
Bibliography 34
A Tapering off qubits 37
A.1 H2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
A.2 H2O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
A. Aspuru-Guzik, A. D. Dutoi, P. J. Love, and M. Head-Gordon. Simulated quantum computation of molecular energies. Science, 309(5741):1704–1707, 2005.
A.Szabo and N. Ostlund. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory. 01 1989.
R. Babbush, N. Wiebe, J. McClean, J. McClain, H. Neven, and G. K.-L. Chan. Low-depth quantum simulation of materials. Phys. Rev. X, 8:011044, Mar 2018.
R. J. Bartlett and M. Musia l. Coupled-cluster theory in quantum chemistry. Rev. Mod. Phys., 79:291–352, Feb 2007.
S. Bravyi, J. M. Gambetta, A. Mezzacapo, and K. Temme. Tapering off qubits to simulate fermionic hamiltonians. 01 2017.
B. Cooper and P. J. Knowles. Benchmark studies of variational, unitary and extended coupled cluster methods. The Journal of Chemical Physics, 133(23):234102, 2010.
D. Cremer. From configuration interaction to coupled cluster theory: The quadratic configuration interaction approach. Wiley Interdisciplinary Reviews: Computational Molecular Science, 3(5):482–503, 2013.
C.-R. DIMA, Mircea. Efficient Range Minimum Queries using Binary Indexed Trees, volume 9, pages 39–44. 2015.
J. R. Fontalvo, R. Babbush, J. McClean, C. Hempel, P. J. Love, and A. AspuruGuzik. Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz. Quantum Science and Technology, 4:14008, 2018.
H. Grimsley, S. Economou, E. Barnes, and N. Mayhall. Adapt-vqe: An exact variational algorithm for fermionic simulations on a quantum computer. 2018.
W. J. Hehre, R. F. Stewart, and J. A. Pople. Self-consistent molecular-orbital methods. i. use of gaussian expansions of slater-type atomic orbitals. The Journal of Chemical Physics, 51(6):2657–2664, 1969.
O. Higgott, D. Wang, and S. Brierley. Variational quantum computation of excited states, 05 2018.
A. Kandala, K. Temme, A. Corcoles, A. Mezzacapo, J. M. Chow, and J. M. Gambetta. Error mitigation extends the computational reach of a noisy quantum processor. Nature, 567:491–495, 03 2019.
M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, New York, NY, USA, 10th edition, 2011.
P. J. J. O’Malley, R. Babbush, I. D. Kivlichan, J. Romero, J. R. McClean, R. Barends, J. Kelly, P. Roushan, A. Tranter, N. Ding, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, A. G. Fowler, E. Jeffrey, E. Lucero, A. Megrant, J. Y. Mutus, M. Neeley, C. Neill, C. Quintana, D. Sank, A. Vainsencher, J. Wenner, T. C. White, P. V. Coveney, P. J. Love, H. Neven, A. Aspuru-Guzik, and J. M. Martinis. Scalable quantum simulation of molecular energies. Phys. Rev. X, 6:031007, Jul 2016.
J. Preskill. Quantum Computing in the NISQ era and beyond. Quantum, 2:79, Aug. 2018.
M. Schuld, V. Bergholm, C. Gogolin, J. Izaac, and N. Killoran. Evaluating analytic gradients on quantum hardware. Phys. Rev. A, 99:032331, Mar 2019.
J. T. Seeley, M. J. Richard, and P. J. Love. The bravyi-kitaev transformation for quantum computation of electronic structure. The Journal of Chemical Physics, 137(22):224109, 2012.
R. X. A. D. S. K. Teng Bian, Daniel Murphy. Quantum computing methods for electronic states of the water molecule. Molecular Physics, 117:2069–2082, Feb 2019.
A. Tranter, P. J. Love, F. Mintert, and P. V. Coveney. A comparison of the bravyi kitaev and jordan wigner transformations for the quantum simulation of quantum chemistry. Journal of Chemical Theory and Computation, 14(11):5617–5630, 2018. PMID: 30189144.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔