(34.236.244.39) 您好!臺灣時間:2021/03/09 19:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王碩宏
研究生(外文):Shuo-Hong Wang
論文名稱:鐵插層碲化鉍單晶之電磁傳輸特性研究
論文名稱(外文):Magnetotransport properties of Fe-intercalated topological insulator(Bi2Te3) single crystal
指導教授:王立民王立民引用關係
指導教授(外文):Li-Min Wang
口試委員:黃斯衍陳昭翰
口試委員(外文):Ssu-Yen HuangJau-Han Chen
口試日期:2019-07-31
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理學研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:58
中文關鍵詞:拓撲絕緣體FexBi2Te3霍爾遷移率
DOI:10.6342/NTU201903352
相關次數:
  • 被引用被引用:0
  • 點閱點閱:59
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近體拓撲材料引發許多關注,如以具有狄拉克錐表面態的拓撲絕緣體(TI)材料Bi2Se3及Bi2Te3被用於近期熱門的拓撲超導體研究。在本研究中,我們以自我助熔法成長FexBi2Te3 (x = 0.01、0.15)單晶樣品,並分別製作淬火及應變釋放(s-r)不同製程樣品,分別探討其電磁傳輸特性。我們在淬火樣品中發現c軸晶格常數的增加以及其電子作為主要載子的特性,此結果顯示鐵原子可能插層在碲化鉍的五層原子層(QL)間的凡得瓦層。在電性的量測中,我們發現在在溫度為5 K及磁場6T下,應變釋放Fe0.01Bi2Te3樣品具有巨大的磁阻(MR)約為760%,以及淬火Fe0.01Bi2Te3樣品,具有相當大的霍爾遷移率約為44000 cm2/Vs。最後我們試著分析淬火溫度為480 °C樣品的磁阻行為,發現在溫度T*約為100 K時,磁阻會由弱反局域效應(WAL)主導磁阻轉為線性及非飽和磁阻特性。我們發現在低溫下橫向磁導率(MC)能良好地以WAL關係式來描述,故載子傳輸可能仍為拓撲表面態保護下的散射機制;而在T>T*時高磁場下類線性磁阻行為,由於其磁界磁場B*符合量子極限體系,則可以由Abrikosov的狄拉克錐態的量子傳輸來解釋。
Recently, topological materials have attracted interests. Topological insulator (TI) such as Bi2Se3 and Bi2Te3 with Dirac-cone suface states are used to study topological superconductors. In this work, we research electromagnetic transport properties of FexBi2Te3 (x=0.01, 0.15) single crystal sample prepared by self-flux method with quenching or strain-released(s-r) process. We find larger c-axis lattice constants and electron-dominant carriers in the quenched samples lead to imply that the Fe atoms are mostly located at the intercalated van der Waals gap between quintuple layers (QLs) of Bi2Te3. Large magnetoresistance (MR) of ∼760% was observed on a s-r Fe0.01Bi2Te3 sample and Hall mobility of ~44000 cm2/Vs on a quenched Fe0.01Bi2Te3 sample at 5 K under the magnetic field of 6 T.
Then we try to analyze MR behaviors in quenched Fe0.01Bi2Te3 sample with quenching temperature 480 °C, find a crossover from a weak antilocalization-dominant MR to a linear and non-saturating MR at temperatures of T*  100 K. At low temperatures, where the transverse magnetoconductivity(MC) can be well described by the WAL transport formula, so that topologically protected from backscattering is a possible mechanism. And it is found while the high-field linear-like MR at T > T* can be explained in terms of Abrikosov’s quantum transport of Dirac-cone states according to that critical field B*(T) could satisfy the regime of quantum limit.
目錄
致謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 viii
表目錄 xi
第一章 緒論 1
1-1 拓撲絕緣體 1
1-2 文獻探討 2
1-2-1 Bi2Te3文獻回顧 2
1-2-2 FexBi2Te3文獻回顧 5
1-3 研究動機 7
第二章 理論背景與原理簡介 8
2-1 磁性理論 8
2-1-1 磁性起源 8
2-1-2 順磁性物質 8
2-1-3 反磁性物質 9
2-1-4 反鐵磁性物質 10
2-1-5 鐵磁性物質 10
2-2 霍爾效應(Hall effect) 12
2-3 Segal model 13
2-4弱局域效應(Weak Localization, WL)與弱反局域效應(Weak Anti-Localization, WAL) 15
2-5 線性磁阻理論 17
2-5-1 Parish and Littlewood model (PL model) 17
2-5-2 Abrikosov量子磁阻 19
第三章 實驗方法 21
3-1 實驗流程 21
3-2 FexBi2Te3樣品合成 22
3-3 量測系統 24
3-3-1 X光繞射分析儀(X-ray Diffractometer, XRD) 24
3-3-2掃描式電子顯微鏡(SEM)與能量散射光譜儀(EDS) 25
3-3-3 SQUID量測系統 26
3-3-4 X光光電子能譜儀(X-ray photoelectron spectroscopy, XPS) 27
第四章 實驗結果與數據討論 28
4-1 樣品結構 28
4-1-1 XRD量測 28
4-1-2 EDS量測 30
4-1-3 XPS量測 32
4-2 磁性量測結果 35
4-2-2 磁化強度與磁場關係 35
4-2-2 磁化率與溫度關係 36
4-3 電性量測結果 37
4-3-1縱向電阻率(ρxx)與磁場關係 37
4-3-2縱向電阻率(ρxx)與溫度關係 39
4-3-3橫向霍爾電阻率(ρxy)與磁場關係 40
4-3-4霍爾係數(RH)與溫度關係 42
4-3-5載子濃度與溫度關係 42
4-3-6霍爾遷移率與溫度關係 43
4-4 磁阻討論 45
4-4-1 磁阻與溫度關係 45
4-4-2 磁阻與磁場關係 45
4-5 S480樣品磁阻特性適用模型分析 48
4-5-1 XMR分析 48
4-5-2 PL model分析 49
4-5-3 WAL主導磁阻分析(WAL-dominant MR) 50
4-5-4 Abrikosov’s量子磁阻分析 52
第五章 結論 54
Reference 55
[1] X. L. Qi and S.C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
[2] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).
[3] X. L. Qi,S. C. Zhang, Physics Today 63, 1, 33 (2010).
[4] C. Day, Physics Today, 61(1), 19 (2008).
[5] B. A. Bernevig and S. C. Zhang, Phys. Rev. Lett. 96, 106802 (2006).
[6] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).
[7] L. Fu and C. L. Kane, Phys. Rev. B 76, 045302 (2007).
[8] D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava and M. Z. Hasan, Nature 452, 970 (2008).
[9] Haijun Zhang, Chao-Xing Liu, Xiao-Liang Qi, Xi Dai, Zhong Fang and Shou-Cheng Zhang, Nature phys. 5, 438 (2009).
[10] Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava and M. Z. Hasan, Nature phys. 5, 398 (2009).
[11] D. Hsieh, Y. Xia, D. Qian, L. Wray, F. Meier, J. H. Dil, J. Osterwalder, L. Patthey, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Phys. Rev. Lett. 103, 146401 (2009).
[12] Y. L. Chen, J. G. Analytis, J.H. Chu, Z. K. Liu, S.K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain and Z.X. Shen, Science 325, 178 (2009).
[13] Y. Tokura, K. Yasuda, A. Tsukazaki, Nature Reviews Physics 4, 126–143 (2019).
[14] A. Singh, P. Shahi, A.K. Ghosh, J.G. Cheng, and S. Chatterjee, Journal of Alloys and Compounds 731, 297-302 (2018).
[15] Y. Y. Li, G. Wang, X. G. Zhu , M. H. Liu, C. Ye, X. Chen, Y. Y. Wang, K. He , L. L. Wang, X. C. Ma, H. J. Zhang, X. Dai, Z. Fang, X. C. Xie, Y. Liu, X. L. Qi, J. F. Jia, S. C. Zhang, and Q. K. Xue, Adv. Mater. 2010, 22, 4002 (2010).
[16] J. L. Zhang, S. J. Zhang, H. M. Weng, W. Zhang, L. X. Yang, Q. Q. Liu, S. M. Feng, X. C. Wang, R. C. Yu, L. Z. Cao, L. Wang, W. G. Yang, H. Z. Liu, W. Y. Zhao, S. C. Zhang, X. Dai, Z. Fang, and C. Q. Jin, PNAS January 4, 108 (1) 24-28 (2011)
[17] J. Zhang, S. Zhang, Pa. Kong, L. Yang, C. Jin, Q. Liu, X. Wang, and J. Yu, Journal of Applied Physics 123, 125901 (2018).
[18] H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang and S. C. Zhang, Nature Physics volume 5, pages 438–442 (2009).
[19] Y. S. Hor, A. J. Williams, J. G. Checkelsky, P. Roushan, J. Seo, Q. Xu, H. W. Zandbergen, A. Yazdani, N. P. Ong, and R. J. Cava, Phys. Rev. Lett. 104, 057001 (2010).
[20] Shruti, V. K. Maurya, P. Neha, P. Srivastava, and S. Patnaik, Phys. Rev. B 92, 020506(R) (2015).
[21] Z. Liu, X. Ya, J. Shao, M. Zuo, L. Pi, S. Tan, C. Zhang, Y. Zhang,J. Am. Chem. Soc.2015,137,33,10512 (2015).
[22] G. Du, Y. F. Li, J. Schneeloch, R. D. Zhong, G. D. Gu, H. Yang, Hai Lin, H. H. Wen, Sci. China Phys. Mech. Astron. 60: 037411 (2017).
[23] Y. S. Hor, J. G. Checkelsky, D. Qu, N. P. Ong, R. J. Cava, ‎J. Phys. Chem. Solids 72, 5, 2011, 525 (2011).
[24] Z. Wang, A. A. Taskin, Tobias Frölich, Markus Braden, Yoichi Ando, Chem. Mater. 2016, 28, 3, 779 (2016).
[25] X. Kou, Y. Fan, M. Lang, P. Upadhyaya, K. L. Wang, Solid State Communications 215-216 34 (2015).
[26] H. J. Kim, K. S. Kim, J. F. Wang, V. A. Kulbachinskii, K. Ogawa, M. Sasaki, A. Ohnishi, M. Kitaura, Y. Y. Wu, L. Li, I. Yamamoto, J. Azuma, M. Kamada, and V. Dobrosavljević, Phys. Rev. Lett. 110, 136601 (2013).
[27] S. Hosokawa, J. R. Stellhorn, T. Matsushita, N. Happo, K. Kimura, K. Hayashi, Y. Ebisu, T. Ozaki, H. Ikemoto, H. Setoyama, T. Okajima, Y. Yoda, H. Ishii, Y. F. Liao, M. Kitaura, and M. Sasaki, Phys. Rev. B 96, 214207 (2017).
[28] S. Nadj-Perge, I. K. Drozdov, B. A. Bernevig, and A. Yazdani, Phys. Rev. B 88, 020407(R) (2015).
[29] T. Chen, W. Liu, F. Zheng, M. Gao, X. Pan, G. v. d. Laan, and X. Wang, Adv. Mater. 27, 4823 (2015).
[30] Y. Yan, L. X. Wang, D. P. Yu, and Z. M. Liao, Appl. Phys. Lett. 103, 033106 (2013).
[31] A. Singha, R. Singha, T. Patelb, G. S. Okramb, A. Lakhanib, V. Ganeshanb, A. K. Ghoshc, S. N. Jhad, S. Patila, and S. Chatterjee, Materials Research Bulletin 98, 1 (2018).
[32] B. D. Cullity. Introduction to Magnetic Materials. New York. Addison-Wesley (1972).
[33] E. Hall, Am. J. Math. 2, 287 (1879).
[34] I. Ovsiienko, L. Matzui, I. Berkutov, I. g. Mirzoiev, T. Len, Y. Prylutskyy, O. Prokopov, and U. Ritter ,J Mater Sci 53:716–726 (2018).
[35] A. Segal, O. Shaya, M. Karpovski, and A. Gerber, Phys. Rev. B 79, 144434 (2009).
[36] S. Hikami, A. I. Larkin, Y. Nagaoka, Prog. Theor. Phys. 63, 707 (1980).
[37] H. Z. Lu, S. Q. Shen, Proc. SPIE 9167, Spintronics VII, 91672E (2014).
[38] S. Q. Shen,Phys. Rev. B 70, 081311(R) (2004).
[39] E. McCann, K. Kechedzhi, V. I. Fal’ko, H. Suzuura, T. Ando, and B. L. Altshuler, Phys. Rev. Lett. 97, 146805 (2006).
[40] J. Chen, H. J. Qin, F. Yang, J. Liu, T. Guan, F. M. Qu, G. H. Zhang, J. R. Shi, X. C. Xie, C. L. Yang, K. H. Wu, Y. Q. Li, and L. Lu, Phys. Rev. Lett. 105, 176602 (2010).
[41] H. J. Kim, K. S. Kim, J.-F. Wang, M. Sasaki, N. Satoh, A. Ohnishi, M. Kitaura, M. Yang, and L. Li, Phys. Rev. Lett. 111, 246603 (2013).
[42] R. Xu, A. Husmann, T. F. Rosenbaum, M.-L. Saboungi, J. E. Enderbya, and P. B. Littlewood, Nature (London) 390, 57 (1997).
[43] M. M. Parish and P. B. Littlewood, Nature 426, 162–165 (2003).
[44] A. A. Abrikosov, Phys. Rev. B 58, 2788 (1998).
[45] Y. Sun, S. Pyon, and T. Tamegai, Phys. Rev. B 93, 104502 (2016).
[46] See Supplemental Material at [https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.110.136601] for sample synthesis and experiments (2013).
[47] M. Kriener, Kouji Segawa, Zhi Ren, Satoshi Sasaki, Shohei Wada, Susumu Kuwabata, and Yoichi Ando, Phys. Rev. B 84, 054513 (2013).
[48] W. H. Bragg and W. L. Bragg, Proc. R. Soc. Lond. A 1913 88 (1913).
[49] J. C. Slater, J. Chem. Phys. 41, 3199 (1964).
[50] J. N. Zhou, A. Butera, H. Jiang, D. H. Yang, and J. A. Barnard, J. Appl. Phys. 85, 6151 (1999).
[51] M. Loor, G. Bendt, U. Hagemann, C. Wölper, W. Assenmacherc and S. chulz, Dalton Trans., 45,15326 (2016).
[52] C. Uher, R. L. Hockey, and E. Ben-Jacob, Phys. Rev. B 35, 4483 (1987).
[53] G. A. Bain and J. F. Berry, J. Chem. Educ.2008, 85, 4, 532 (2008).
[54] R. Mansfield, Proc. Phys. Soc. 74 599 (1959).
[55] T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. J. Cava, and N. P. Ong, Nature Materials 14, 280 (2015).
[56] D.-X. Qu, Y. S. Hor, J. Xiong, R. J. Cava, and N. P. Ong, Science 329, 821 (2010).
[57] L. Zhao, H. Deng, I. Korzhovska, Z. Chen, M. Konczykowski, A. Hruban, V. Oganesyan, and L. Krusin-Elbaum, Nature Materials 13, 580 (2014), and see the supplementary information therein for a detailed Shubnikov-de Haas oscillations of Bi2Te3 resistance.
[58] A. Kawabata, J. Phys. Soc. Jpn. 49, 628 (1980).
[59] J. M. Harris, Y. F. Yan, P. Matl, N. P. Ong, P. W. Anderson, T. Kimura, and K. Kitazawa, Phys. Rev. Lett. 75, 1391 (1995).
[60] J.-M. Zhang, W. Ming, Z. Huang, G.-B. Liu, X. Kou, Y. Fan, K. L. Wang, and Y. Yao, Phys. Rev. B 88, 235131 (2013).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔