(3.238.186.43) 您好!臺灣時間:2021/02/25 02:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳冠文
研究生(外文):Kuan-Wen Chen
論文名稱:介電質微波加熱之特性探討: 極化電荷之屏蔽效應與微波共振現象
論文名稱(外文):An Investigation on Microwave Dielectric Heating: Polarization charge shielding Effect and Microwave Resonance Phenomenon
指導教授:朱國瑞朱國瑞引用關係
口試委員:柯俊成陳漢穎鄭復興
口試日期:2019-07-05
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理學研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:49
中文關鍵詞:介電質微波加熱極化電荷屏蔽效應複變數借電常數介電質耗損漢姆霍茲方程式拉普拉斯方程式平面波均勻靜電場常波長極限介電質電磁共振腔
DOI:10.6342/NTU201900802
相關次數:
  • 被引用被引用:0
  • 點閱點閱:38
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
介電質微波加熱是個歷史悠久的研究議題,其應用也出現在許多研究領域中。以加熱均勻性、加熱效率、熱點、微波化學合成技術與害蟲防治等為探討主題的論文更是不計其數。然而,就我們目前所知,關於極化電荷屏蔽效應的討論卻是罕見於文獻資料中。

在本文中,我們首先以在均勻靜電場中的介電質物體這個物理問題介紹即化電荷屏蔽效應。接著,我們考慮平面波入射介電質物體作為微波加熱的簡化模型。利用變數分離法來解析解出圓球與圓柱坐標系的漢姆霍茲方程式。本文依照此方程式的標準解法,但為求完整性,我們列出各個步驟。當電磁波波長遠大於物體尺寸時,極化電荷屏蔽效應將大幅降低物體內電場大小。此外,若考慮細長型的介電質,物體主軸的方向會對屏蔽效應有極大的影響。在最後一章,我們探討微波共振效應,此效應發生於波長略等於物體尺寸時。
Dielectric heating by microwave has been studied for a long period and its applications are widely used in a variety of research fields. There are a plenty of papers discussing about the uniformity of heating, heating rate, hotspot, microwave synthesis, pest control, etc. However, best to our knowledge, it seems that the shielding effect of polarization charges have been overlooked.

In this thesis, we first introduce the shielding effect of polarization charges by reviewing the problem of dielectric objects immersed in static uniform E-field. Next, we focus on the problem of dielectric objects hit by uniform plane waves which serves as a simplified model of microwave dielectric heating; solve the Helmholtz equations with separation of variables in spherical and cylindrical coordinates. The procedure of solving the Helmholtz equations is standard, but for completeness we point out the steps. We find out that when the wavelength is much longer than the geometry size of the object, shielding effects take place. And for elongate objects, orientations of objects have a great influence on polarization charge shielding. When wavelength has the same order as the size of the object, microwave resonance phenomenon will occur.
致謝 i
中文摘要 ii
Abstract iii
Contents iv
List of Figures vi
List of Tables viii
Chapter 1 Introduction -1
1.1 Microwave Dielectric Heating -1
1.2 Penetration Depth -2
1.3 Polarization Charges Shielding Effect -3
1.4 Dielectric Objects with High Permittivity as Resonant Cavities -6
Chapter 2 Static Cases: Analytical Analysis -7
2.1 A Dielectric Sphere Immersed in a Uniform Electric Field -7
2.2 A Dielectric Cylinder with Infinite Length Immersed in a Uniform Electric Field -9
2.3 Comparison between the Two Cases -11
Chapter 3 Dielectric Objects with simple geometry hit by plane waves: Analytical Analysis -13
3.1 Dielectric Sphere -13
3.2 Dielectric Cylinder with Infinite Length -17
Chapter 4 Long-Wavelength-Limit: Demonstration of Polarization Charges Shielding Effect -21
4.1 Dielectric Sphere -21
4.2 Dielectric Cylinder with Infinite Length -24
4.3 Microwave Heating on Water Spheres: Observation of the Shielding Effect of Polarization Charge -26
4.4 Microwave Heating on Water Cylinder: The Orientation Effect -28
Chapter 5 Dielectric Electromagnetic Resonators -31
5.1 Resonant Modes of Water Spheres Excited by 2.45 GHz Plane Wave -31
5.2 Spectral Responses and Quality Factors -33
Appendix A Detailed derivation of equations in chapter 3 -35
A.1 Evaluation of fields components from vector potentials: Sphere -35
A.2 Find the coefficients bn, cn, dn, and en satisfying the boundary conditions: Sphere -39
A.3 Find the coefficients an and cn satisfying the boundary conditions of TM mode: Cylinder -40
A.4 Find the coefficients bn and dn satisfying the boundary conditions of TE mode: Cylinder -41
Appendix B Detailed derivation of equations in chapter 1 -43
B.1 Penetration depth -43
Appendix C Special thanks -45
REFERENCE -46
[1]D. Michael, P. Mingos, and D. R. Baghurst, “Applications of Microwave Dielectric Heating Effects to Synthetic in Chemistry,” Chem. Soc. Rev., 20, 1-47, 1991
[2]J. T. Senise and L. A. Jermolovicius, “Microwave Chemistry – A Fertile Field for Scientific Research and Industrial Application,” Journal of Microwaves and Optoelectronics, Vol. 3, July 2004
[3]A. de la Hoz, A. Diaz-Ortiz, and A. Moreno, “Microwaves in Organic Synthesis. Thermal and Non-thermal Microwave Effects,” Chem. Soc. Rev., 34, 164-178, 2005
[4]D. Gangrade, S. D. Lad, and A. L. Mehta, “Overview on Microwave Synthesis – Important Tool for Green Chemistry,” Int. J. Res. Pharm. Sci., 5(2), 37-42, 2015
[5]D. Guan, M. Cheng, Y. Wang, and J. Tang, “Dielectric Properties of Mashed Potatoes Relevant to Microwave and Radio-frequency Pasteurization and Sterilization Processes,” Journal of Food Science, Vol. 69, 2004
[6]S. P. Singh, “An Analysis of Dielectric Parameters and Parameters and Penetration Depth of Tomato Sauces,” J. Food Process. Technol., 2018
[7]M. S. Venkatesh, and G. S. V. Rahavan, “An Overview of Microwave Processing and Dielectric Properties of Agri-food Materials,” Biosystems Engineering, 88(1), 1-18, 2004
[8]S. O. Nelson, “Review and Assessment of Radio-frequency and Microwave Energy for Stored-grain Insect Control,” Transactions of the A.S.A.E., Vol. 39(4), 1475-1484, 1996
[9]M. Kraus, F. Holzer, C. Hoyer, U. Trommler, F.-D. Kopinke, and U. Roland, “Chemical-free Pest Control by Means of Dielectric Heating with Radio Waves: Selective Heating,” Chem. Eng. Technol., 41, 116-123, 2018
[10]J. M. Osepchuk, “A History of Microwave Heating Applications,” IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-32, NO. 9, September 1984
[11]R. F. Harrington, Time-Harmonic Electromagnetic Fields, IEEE Press, 2001, pp-23-25
[12]S. O. Nelson, and A. W. Kraszewski, “Dielectric Properties of Materials and Measurement Techniques,” in Drying Technology, Marcel Dekker, Inc., 1990, pp-1123-1142.
[13]D. K. Cheng, Field and Wave Electromagnetics, 2nd ed., Addison-Wesley Publishing Company, 1989, pp-105.
[14]J. D. Jackson, Classical Electrodynamics, 3rd ed., John Wiley & Sons, Inc.,1999, pp-151-154.
[15]Steven Dufresne, “History of the Capacitor – The Pioneering Years,” hackaday.com, July 12, 2016. [Online]. Available: https://hackaday.com/2016/07/12/history-of-the-capacitor-the-pioneering-years/
[16]楊信男,蕭如珀, 物理奇才奇事:智慧巨光照亮自然奧秘, 五南圖書, 2014
[17]J. H. Gladstone, Michael Faraday, Cambridge Library Collection, 2014.
[18]R. Feynman, The Feynman Lectures on Physics, Volume II, Addison-Wesley Publishing Company, 2006, pp-10-1-10-2
[19]J. D. Jackson, Classical Electrodynamics, 3rd ed., John Wiley & Sons, Inc.,1999, pp-157-159.
[20]J. D. Jackson, Classical Electrodynamics, 3rd ed., John Wiley & Sons, Inc.,1999, pp-172.
[21]R. F. Harrington, Time-Harmonic Electromagnetic Fields, IEEE Press, 2001, Chapter 5 & 6.
[22]P. Chow, “An Analytical Study on the Boundary Value Problem for Wave Propagation along a Circular Cylinder,” M.S. thesis, National Taiwan University, Taiwan, Taipei, 2018.
[23]R. F. Harrington, Time-Harmonic Electromagnetic Fields, IEEE Press, 2001, pp-289-291.
[24]M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., 1972, pp-174.
[25]M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., 1972, pp-360-361.
[26]C. Gabriel, S. Gabriel, E. H. Grant, B. S. J. Halstead, and M. P. Mingos, “Dielectric Parameters Relevant to Microwave Dielectric Heating,” Chemical Society Reviews, Vol. 27, 1998.
[27]M. S. Lin, S. M. Lin, W. Y. Chiang, L. R. Barnett, and K. R. Chu, “Effects of Polarization-Charge Shielding in Microwave Heating,” Physics of Plasmas 22, 083302, 2015.
[28]M. Gastine, L. Courtois, and J. L. Dormann, “Electromagnetic Resonance of Free Dielectric Spheres,” IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-15, No. 12, Dec., 1967
[29]A. OKATA and L. F. Barash, “The Dielectric Microwave Resonator,” Proceedings of The IRE, Oct., 1962.
[30]P. Affolter and B. Eliasson, “Electromagnetic Resonances and Q-Factors of Lossy Dielectric Spheres,” IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-21, No. 9, Sep., 1973.
[31]W. J. Sarjeant and E. Brannen, “On Eigenmodes and Forced Resonance-Modes of Dielectric Spheres,” Proceedings of The IEEE, Sep., 1968.
[32]K. R. Chu, C. S. Kou, J. M. Chen, Y. C. Tsai, C. Cheng, S. S. Bor, and L. H. Chang, “Spectral Domain Analysis of Open Cavities,” International Journal of Infrared and Millimeter Waves, Vol. 13, No. 10, 1992
[33]R. F. Harrington, Time-Harmonic Electromagnetic Fields, IEEE Press, 2001, Chapter 3.
[34]K. R. Chu, Class Lecture Notes, Classical Electrodynamics I, Department of Physics, National Taiwan University, Taipei, 2018.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔