(54.236.58.220) 您好!臺灣時間:2021/02/27 12:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳曼之
研究生(外文):Man-Chih Chen
論文名稱:探討淫羊藿甙和淫羊藿素對於急性缺血性腦中風所致傷害的預防效果
論文名稱(外文):The preventive effects of icariin and icaritin on acute cerebral ischemic stroke
指導教授:劉興華劉興華引用關係
口試委員:姜至剛楊榮森許美鈴邱振源
口試日期:2019-07-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:毒理學研究所
學門:醫藥衛生學門
學類:其他醫藥衛生學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:64
中文關鍵詞:缺血性腦中風淫羊藿甙淫羊藿素缺血再灌流傷害神經保護
DOI:10.6342/NTU201903276
相關次數:
  • 被引用被引用:0
  • 點閱點閱:23
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
腦中風(stroke)是指因血流阻斷所造成的腦部傷害。除了名列全球第二大死因外,腦中風也造成患者長期失能。根據血流阻斷的方式,又可將腦中風分為出血性腦中風(hemorrhagic stroke)和缺血性腦中風 (ischemic stroke)兩種。其中又以缺血性腦中風佔大宗,每年約造成六百萬人死亡。胞漿素原活化劑(recombinant tissue plasminogen activator, rtPA)為目前唯一被美國食品藥品管理局(FDA)核准,應用於治療缺血性腦中風的藥物。然而rt-PA仍存在許多待克服的問題,如:嚴格的施用標準和潛在的出血風險,故缺血性腦中風仍需新的醫療策略或治療方法介入。淫羊藿甙(icariin)和淫羊藿素(icaritin)為淫羊藿的主要活性類黃酮萃取物。目前,已知淫羊藿甙和淫羊藿素可在動物模式中作為神經保護劑治療阿茲海默症。此外,研究亦指出淫羊藿甙可治療腦部缺血再灌流 (ischemia-reperfusion)傷害,然而其對於缺血性腦中風的預防效果及其作用機制仍待探究。因此,本篇研究的目的為探討淫羊藿甙和淫羊藿素對於缺血性腦中風所致傷害的預防效果。為了建立急性缺血性腦中風之動物模式,本篇研究將小鼠中腦動脈(middle cerebral artery)阻塞50分鐘後再恢復血流24小時以模擬缺血再灌流傷害。結果顯示,中腦動脈阻塞前1小時預處理淫羊藿甙和淫羊藿素能預防缺血再灌流所致體重流失、神經受損、腦部梗塞以及腦組織型態學改變。此外,預處理淫羊藿甙和淫羊藿素可降低凋亡細胞數量和反轉凋亡相關蛋白的表現,神經發炎相關蛋白iNOS 和eNOS表現量亦下降,內皮-間質轉換(endothelial-mesenchymal transition)相關蛋白fibronectin和vimentin的表現量也顯著降低,而細胞衰老(cellular senescence)相關蛋白p53, p21表現亦減少。組織免疫染色(Immunohistochemical stain)結果也發現預處理淫羊藿甙和淫羊藿素可減少細胞衰老指標蛋白p21和beta-半乳糖苷酶 (beta-galactosidase)的表現。另一方面,預處理淫羊藿甙和淫羊藿素可透過提升海馬迴中神經保護相關蛋白smad2/3來對抗缺血再灌流傷害。在體外實驗的部分,本研究將小鼠微血管內皮細胞(bEnd.3)和小鼠微膠細胞(BV-2)置於缺氧箱(O2 < 1%)中2或8小時再使其恢復常氧狀態24-72小時以模擬缺氧再灌流(Hypoxia-reperfusion)傷害。而實驗結果顯示預處理淫羊藿甙和淫羊藿素可回復小鼠內皮細胞和微膠細胞的細胞存活率。此外,在預處理淫羊藿甙和淫羊藿素的小鼠內皮細胞中亦發現老化相關半乳糖酶(senescence-associated beta-galactosidase)的表現量減少。綜上所述,本研究發現預處理淫羊藿甙和淫羊藿素能有效降低缺血再灌流傷害。然而,淫羊藿甙和淫羊藿素是否在對抗缺血再灌流中扮演抗氧化的角色以及其詳細分子機轉仍待後續研究探討。
Stroke is a cerebral damage caused by the interruption of the blood supply to the brain which is the second leading cause of death in the world and an important cause of long-term disability. Based on the pathophysiological mechanism, stroke can be divided into hemorrhagic stroke and ischemic stroke. Among them, ischemic stroke is the major type which caused about 6 million deaths every year. Currently, recombinant tissue plasminogen activator (rtPA) is the only drug approved by FDA for ischemic stroke. However, the strict prescription rule and potential bleeding risk are the limitations to overcome. Therefore, new medical strategies or therapies are urgently required for ischemic stroke. Icariin (ICA) and Icaritin (ICT) are two major active flavonoid components extracted from Epimedium Herba which have been regarded as a neuroprotective agent in Alzheimer’s disease animal model. Studies also demonstrated that icariin treatment could decrease ischemia-reperfusion (I/R) injury-induced brain injury, but the preventive effects of ICA still unknown. Hence, the purpose of this study is to investigate the preventive effects of ICA and ICT on ischemic stroke. In order to establish a mouse model of ischemic stroke, mice were operated with middle cerebral artery occlusion (MCAO) for 50 min and followed by 24 h reperfusion in vivo. Our results showed that both ICA and ICT (60 mg/kg) pretreatment could decrease mice body weight loss, neurological injury, infarct volumes and tissue morphology changes induced by MCAO in acute ischemic stroke animal model. Additionally, both ICA and ICT pretreatment could also reduce the apoptotic cell numbers and reverse the apoptosis associated protein expressions. Moreover, the results of endothelial-mesenchymal transition and neuron inflammation were shown by upregulating the protein expressions of fibronectin, vimentin, iNOS and eNOS and downregulating the protein expression of CD31 after MCAO surgery, which could be significantly reversed by both ICA and ICT pretreatment. In addition, both ICA and ICT pretreatment could reverse the cellular senescence through diminishing the expressions of p53, p21 and beta-galactosidase activities in both protein expressions and IHC staining. Furthermore, both ICA and ICT pretreatment could provide neuroprotective effects by abundantly raising the smad2/3 expression to against the ischemia-reperfusion injury in hippocampus. To mimic the hypoxia-reperfusion injury, mouse microvascular endothelial cells (bEnd.3) and mouse microglia cells (BV-2) were cultured in hypoxia tank (O2 <1%) for 2 or 8 h and followed by 24 to 72 h reperfusion in vitro. The results showed that both ICA and ICT pretreatment significantly reversed the reduction of cell viability caused by hypoxia-reperfusion injury both in the bEnd.3 and BV-2 cells. Moreover, both ICA (40 μM) and ICT (2.5 μM) pretreatment could attenuate ischemia-reperfusion injury-induced cellular senescence by decreasing the beta-galactosidase activity in bEnd.3. Taken together, these results suggested that both ICA and ICT pretreatment effectively alleviate the brain injury by acute cerebral ischemic stroke. However, whether the antioxidative function is involved in the protection of both ICA and ICT against acute cerebral ischemic stroke remains further investigation in the future.
致謝 i
中文摘要 iii
Abstract v
Abbreviations vii
Contents ix
Chapter I Introduction 1
1.1 Stroke 1
1.1.1 Burden of stroke 1
1.1.2 Etiologic classification of stroke 2
1.1.3 Brain and ischemic stroke 3
1.2 Pathophysiological mechanism of ischemic stroke 4
1.2.1 Energy failure, malfunction of ion gradient and excitotoxicity 5
1.2.2 Peri-infarct depolarization 7
1.2.3 Oxidative stress 8
1.2.4 Inflammation 9
1.2.5 Programmed cell death 11
1.3 Therapy for ischemic stroke 13
1.3.1 Thrombolytic therapy 13
1.3.2 Neuroprotective agents 14
1.4 Icariin and icaritin 15
Chapter II Aims 16
Chapter III Materials and Methods 17
3.1 Chemicals 17
3.2 Acute cerebral ischemia-reperfusion (I/R) injury model 17
3.3 Neurological score assessment 18
3.4 Determination of infarct volume 20
3.5 Tissue preparation 20
3.6 Terminal deoxynucleotidyl transferase (TdT) dUTP nick end labeling (TUNEL) assay 20
3.7 Histopathological and immunohistochemical analysis 21
3.8 Double stain immunohistochemical analysis 22
3.9 Western blotting analysis 22
3.10 Cell culture 23
3.11 Hypoxia-reperfusion (H / R) treatment 24
3.12 Measurement of cell viability 24
3.13 Senescence-associated beta-galactosidase activity analysis 24
3.14 Primary antibodies 25
3.15 Statistical analysis 26
Chapter IV Results 27
4.1 The therapeutic effects of icaritin (ICT) on body weight loss, neurological severity, and infarct volume in mice after MCAO 27
4.2 The preventive effects of icariin (ICA) and icaritin (ICT) on body weight loss, neurological severity, and infarct volume in mice after MCAO 27
4.3 ICA and ICT reduced the number of apoptotic cells induced by MCAO in the cerebral hippocampus and cortex of mice 28
4.4 Both ICA and ICT alleviated the histological changes induced by MCAO in the cerebral hippocampus and cortex of mice 29
4.5 Both ICA and ICT diminished the expressions of senescence markers induced by MCAO in the cerebral hippocampus and cortex of mice 29
4.6 Both ICA and ICT altered the β-galactosidase and CD31 contents in cerebral ischemia mouse mice brain tissue 30
4.7 Both ICA and ICT reversed the expressions of apoptosis markers in mouse brain tissue caused by ischemia-reperfusion 31
4.8 Both ICA and ICT decreased inflammation and endothelial-mesenchymal transition in mouse brain tissue after ischemia-reperfusion 32
4.9 Both ICA and ICT diminished the cell senescence in mouse brain tissue induced by ischemia-reperfusion 33
4.10 Both ICA and ICT inverted the depletion of Smad2/3 in cerebral ischemia mouse brain tissue 33
4.11 Both ICA and ICT reversed the cell viability reduction induced by OGD treatment 34
4.12 Both ICA and ICT attenuated cell senescence induced by OGD treatment in bEnd.3 cells 34
Chapter V Discussion 35
Chapter VI Conclusion 40
Chapter VII References 41
Chapter VIII Figures and figure legends 49
Figure 1. The therapeutic effects of icaritin (ICT) on body weight loss, neurological severity, and infarct volume in mice after MCAO. 49
Figure 2. The preventive effectss of icariin (ICA) and icatitin (ICT) on body weight loss, neurological severity, and infarct volume in mice after MCAO. 51
Figure 3. ICA and ICT reduced the number of apoptotic cells induced by MCAO in the cerebral hippocampus and cortex of mice. 54
Figure 4. Both ICA and ICT alleviated the histological changes induced by MCAO in the cerebral hippocampus and cortex of mice. 55
Figure 5. Both ICA and ICT diminished the expressions of senescence markers induced by MCAO in the cerebral hippocampus and cortex of mice. 56
Figure 6. Both ICA and ICT altered the β-galactosidase and CD31 contents in cerebral ischemia mouse mice brain tissue. 57
Figure 7. Both ICA and ICT reversed the expressions of apoptosis markers in mouse brain tissue caused by ischemia-reperfusion. 58
Figure 8. Both ICA and ICT decreased inflammation and endothelial-mesenchymal transition in mouse brain tissue after ischemia-reperfusion. 59
Figure 9. Both ICA and ICT diminished the cell senescence in mouse brain tissue induced by ischemia-reperfusion. 61
Figure 10. Both ICA and ICT inverted the depletion of Smad2/3 in cerebral ischemia mouse brain tissue. 62
Figure 11. Both ICA and ICT reversed the cell viability reduction induced by OGD treatment. 63
Figure 12. Both ICA and ICT attenuated cell senescence induced by OGD treatment in bEnd.3 cells. 64
AAN Quality Standards Subcommittee of the American Academy of Neurology. (1996). Practice advisory: thrombolytic therapy for acute ischemic stroke-summary statement. Neurology, 47, 835-839.
ADÃES SARA. (2018). What is glutamate? An examination of the functions, pathways and excitation of the glutamate neurotransmitter. Neurohacker Collective. Retrieved from https://neurohacker.com/what-is-glutamate.
AHA American Stroke Association. (2019a). Stroke Treatments. Retrieved from https://www.stroke.org/we-can-help/survivors/just-experienced-stroke/stroke-treatments/.
AHA American Stroke Association. (2019b). Types of Stroke. Retrieved from https://www.strokeassociation.org/en/about-stroke/types-of-stroke.
Aisen PS, Schmeidler J, and Pasinetti GM. (2002). Randomized pilot study of nimesulide treatment in Alzheimer’s disease. Neurology, 58(7), 1050-1054.
Allen Claire Louise, and Bayraktutan Ulvi. (2009). Oxidative stress and its role in the pathogenesis of ischaemic stroke. International Journal of Stroke, 4(6), 461-470.
Anrather Josef, and Iadecola Costantino. (2016). Inflammation and stroke: an overview. Neurotherapeutics, 13(4), 661-670.
AsianScientist. (2018). Stroke cases in Taiwan rising, research shows. Retrieved from https://www.asianscientist.com/2018/10/health/taiwan-stroke-incidence-rising/.
Astrup J., Symon L., Branston N. M., and Lassen N. A. (1977). Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia. Stroke, 8(1), 51-57.
Bahonar Ahmad, Saadatnia Mohammad, Khorvash Fariborz, Maracy Mohammadreza, and Khosravi Alireza. (2017). Carotenoids as potential antioxidant agents in stroke prevention: A systematic review. International Journal of Preventive Medicine, 8.
Basile DP. (2007). The endothelial cell in ischemic acute kidney injury: implications for acute and chronic function. Kidney International, 72(2), 151-156.
Becker Kyra J. (1998). Inflammation and acute stroke. Current Opinion in Neurology, 11(1), 45-49.
Bergendi L., Benes L., Durackova Z., and Ferencik M. (1999). Chemistry, physiology and pathology of free radicals. Life Sciences, 65(18-19), 1865-1874.
Betteridge D. J. (2000). What is oxidative stress? Metabolism, 49(2 Suppl 1), 3-8.
Broughton Brad RS, Reutens David C, and Sobey Christopher G. (2009). Apoptotic mechanisms after cerebral ischemia. Stroke, 40(5), e331-e339.
Campagne Menno van Lookeren, and Gill Ramanjit. (1998). Increased expression of cyclin G1 and p21WAF1/CIP1 in neurons following transient forebrain ischemia: comparison with early DNA damage. Journal of Neuroscience Research, 53(3), 279-296.
Chaudhary K. R., Cho W. J., Yang F., Samokhvalov V., El-Sikhry H. E., Daniel E. E., and Seubert J. M. (2013). Effect of ischemia reperfusion injury and epoxyeicosatrienoic acids on caveolin expression in mouse myocardium. Journal of Cardiovascular Pharmacology, 61(3), 258-263.
Chen Han-sen, Chen Xi, Li Wen-ting, and Shen Jian-gang. (2018). Targeting RNS/caveolin-1/MMP signaling cascades to protect against cerebral ischemia-reperfusion injuries: potential application for drug discovery. Acta Pharmacologica Sinica, 39(5), 669.
Chen Jieli, Li Yi, Wang Lei, Zhang Zhenggang, Lu Dunyue, Lu Mei, and Chopp Michael. (2001). Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke, 32(4), 1005-1011.
Cheng Zoey, Zheng Yan Zhen, Li Yu-Qing, and Wong C Shun. (2017). Cellular senescence in mouse hippocampus after irradiation and the role of p53 and p21. Journal of Neuropatholgy and Experimental Neurology, 76(4), 260-269.
Cherubini A., Ruggiero C., Polidori M. C., and Mecocci P. (2005). Potential markers of oxidative stress in stroke. Free Radical Biology and Medicine, 39(7), 841-852.
Cole DJ, Drummond JC, Ghazal EA, and Shapiro HM. (1990). A reversible component of cerebral injury as identified by the histochemical stain 2, 3, 5-triphenyltetrazolium chloride (TTC). Acta Neuropathologica, 80(2), 152-155.
Collado M., and Serrano M. (2010). Senescence in tumours: evidence from mice and humans. Nature Reviews Cancer, 10(1), 51-57.
Curci Claudia, Castellano Giuseppe, Stasi Alessandra, Divella Chiara, Loverre Antonia, Gigante Margherita, Simone Simona, Cariello Marica, Montinaro Vincenzo, and Lucarelli Giuseppe. (2014). Endothelial-to-mesenchymal transition and renal fibrosis in ischaemia/reperfusion injury are mediated by complement anaphylatoxins and Akt pathway. Nephrology Dialysis Transplantation, 29(4), 799-808.
Dambinova Svetlana A, Khounteev Guerman A, Izykenova Galina A, Zavolokov Igor G, Ilyukhina Anna Y, and Skoromets Alexander A. (2003). Blood test detecting autoantibodies to N-methyl-D-aspartate neuroreceptors for evaluation of patients with transient ischemic attack and stroke. Clinical Chemistry, 49(10), 1752-1762.
Deb P., Sharma S., and Hassan K. M. (2010). Pathophysiologic mechanisms of acute ischemic stroke: An overview with emphasis on therapeutic significance beyond thrombolysis. Pathophysiology, 17(3), 197-218.
Dimri Goberdhan P, Lee Xinhua, Basile George, Acosta Meileen, Scott Glynis, Roskelley Calvin, Medrano Estela E, LINskENs MAARTEN, Rubelj Ivica, and Pereira-Smith Olivia. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proceedings of the National Academy of Sciences, 92(20), 9363-9367.
Dirnagl Ulrich, Iadecola Costantino, and Moskowitz Michael A. (1999). Pathobiology of ischaemic stroke: an integrated view. Trends in Neurosciences, 22(9), 391-397.
Dreier J. P., Lemale C. L., Kola V., Friedman A., and Schoknecht K. (2018). Spreading depolarization is not an epiphenomenon but the principal mechanism of the cytotoxic edema in various gray matter structures of the brain during stroke. Neuropharmacology, 134(Pt B), 189-207.
Franzin Rossana, Stasi Alessandra, Intini Angelica, Divella Chiara, Gigante Margherita, Simone Simona, Pontrelli Paola, Crovace Antonio, Battaglia Michele, Oortwijn Beatrijs, Amersfoort Edwin V., Grandaliano Giuseppe, Gesualdo Loreto, and Castellano Giuseppe. (2016). SO001C1-inhibitor abrogated ischemia/reperfusion (I/R) induced inflammaging by inhibiting senescence-associated secretory phenotype (SASP) in tubular epithelial cells (TEC). Nephrology Dialysis Transplantation, 31. Retrieved from https://doi.org/10.1093/ndt/gfw117.01.
GBD GBD 2016 Neurology Collaborators. (2019). Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurology, 18(5), 459-480.
Goldstein L. B., Adams R., Alberts M. J., Appel L. J., Brass L. M., Bushnell C. D., Culebras A., Degraba T. J., Gorelick P. B., Guyton J. R., Hart R. G., Howard G., Kelly-Hayes M., Nixon J. V., and Sacco R. L. (2006). Primary prevention of ischemic stroke: a guideline from the American Heart Association/American Stroke Association Stroke Council: cosponsored by the Atherosclerotic Peripheral Vascular Disease Interdisciplinary Working Group; Cardiovascular Nursing Council; Clinical Cardiology Council; Nutrition, Physical Activity, and Metabolism Council; and the Quality of Care and Outcomes Research Interdisciplinary Working Group: the American Academy of Neurology affirms the value of this guideline. Stroke, 37(6), 1583-1633.
Gonzalez RG. (2006). Imaging-guided acute ischemic stroke therapy: from “time is brain” to “physiology is brain”. American Journal of Neuroradiology, 27(4), 728-735.
Green AR. (2008). Pharmacological approaches to acute ischaemic stroke: reperfusion certainly, neuroprotection possibly. British Journal of Pharmacology, 153(S1), S325-S338.
Hackett Maree L, Yapa Chaturangi, Parag Varsha, and Anderson Craig S. (2005). Frequency of depression after stroke: a systematic review of observational studies. Stroke, 36(6), 1330-1340.
Hallenbeck J. M. (1996). Significance of the inflammatory response in brain ischemia. Acta Neurochirurgica, 66, 27-31.
Hata Ryuji, Gillardon Frank, Michaelidis Theologos M, and Hossmann Konstantin-Alexander. (1999). Targeted disruption of the bcl-2 gene in mice exacerbates focal ischemic brain injury. Metabolic Brain Disease, 14(2), 117-124.
Heart and Stroke Foundation of Canada Heart and Stroke Foundation. (2018). Types of stroke. Retrieved from https://www.heartandstroke.ca/stroke/what-is-stroke.
Hossmann K. A. (1996). Periinfarct depolarizations. Cerebrovascular and Brain Metabolism Reviews, 8(3), 195-208.
Hsieh F. I., and Chiou H. Y. (2014). Stroke: morbidity, risk factors, and care in taiwan. Journal of Stroke, 16(2), 59-64.
Hu Yanwu, Liu Kai, Yan Mengtong, Zhang Yang, Wang Yadi, and Ren Liqun. (2015). Effects and mechanisms of icariin on atherosclerosis. International Journal of Clinical and Experimental Medicine, 8(3), 3585.
Humphreys B. D., Valerius M. T., Kobayashi A., Mugford J. W., Soeung S., Duffield J. S., McMahon A. P., and Bonventre J. V. (2008). Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell, 2(3), 284-291.
Hwang Eunson, Lin Pei, Ngo Hien TT, Gao Wei, Wang Yu-Shuai, Yu Hong-Shan, and Yi Tae-Hoo. (2018). Icariin and icaritin recover UVB-induced photoaging by stimulating Nrf2/ARE and reducing AP-1 and NF-κB signaling pathways: a comparative study on UVB-irradiated human keratinocytes. Photochemical and Photobiological Sciences, 17(10), 1396-1408.
Iadecola Costantino. (1997). Bright and dark sides of nitric oxide in ischemic brain injury. Trends in Neurosciences, 20(3), 132-139.
Iadecola Costantino, Salkowski Cindy A, Zhang Fangyi, Aber Tracy, Nagayama Masao, Vogel Stefanie N, and Ross M Elizabeth. (1999). The transcription factor interferon regulatory factor 1 is expressed after cerebral ischemia and contributes to ischemic brain injury. Journal of Experimental Medicine, 189(4), 719-727.
IHME Institute for Health Metrics and Evaluation. (2017). What causes the most death and disability combined? Retrieved from http://www.healthdata.org/taiwan?language=41.
Jain V., Langham M. C., and Wehrli F. W. (2010). MRI estimation of global brain oxygen consumption rate. Journal of Cerebral Blood Flow and Metabolism, 30(9), 1598-1607.
Jin Rong, Yang Guojun, and Li Guohong. (2010). Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. Journal of Leukocyte Biology, 87(5), 779-789.
Kailong L., Du X., Yani H., Lin Z., Jvrong Y., Ruihua S., and Lin C. (2007). P53-Rb signaling pathway is involved in tubular cell senescence in renal ischemia/reperfusion injury. Biocell, 31(2), 213-223.
Kametsu Y., Osuga S., and Hakim A. M. (2003). Apoptosis occurs in the penumbra zone during short-duration focal ischemia in the rat. Journal of Cerebral Blood Flow and Metabolism, 23(4), 416-422.
Karaszewski Bartosz, Wardlaw Joanna M, Marshall Ian, Cvoro Vera, Wartolowska Karolina, Haga Kristin, Armitage Paul A, Bastin Mark E, and Dennis Martin S. (2009). Early brain temperature elevation and anaerobic metabolism in human acute ischaemic stroke. Brain, 132(4), 955-964.
Katan M., and Luft A. (2018). Global Burden of Stroke. Seminars in Neurology, 38(2), 208-211.
Katsura K., Kristian T., and Siesjo B. K. (1994). Energy metabolism, ion homeostasis, and cell damage in the brain. Biochemical Society Transactions, 22(4), 991-996.
Kaur Jaspreet, Zhao Zonghang, Klein Gary M, Lo Eng H, and Buchan Alastair M. (2004). The neurotoxicity of tissue plasminogen activator? Journal of Cerebral Blood Flow and Metabolism, 24(9), 945-963.
Kikuchi Kiyoshi, Uchikado Hisaaki, Morioka Motohiro, Murai Yoshinaka, and Tanaka Eiichiro. (2012). Clinical neuroprotective drugs for treatment and prevention of stroke. International Journal of Molecular Sciences, 13(6), 7739-7761.
Kim Jinu, Seok Young Mi, Jung Kyong-Jin, and Park Kwon Moo. (2009). Reactive oxygen species/oxidative stress contributes to progression of kidney fibrosis following transient ischemic injury in mice. American Journal of Physiology-Renal Physiology, 297(2), F461-F470.
Kim Jong Youl, Kawabori Masahito, and Yenari Midori A. (2014). Innate inflammatory responses in stroke: mechanisms and potential therapeutic targets. Current Medicinal Chemistry, 21(18), 2076-2097.
Kim Jong Youl, Park Joohyun, Chang Ji Young, Kim Sa-Hyun, and Lee Jong Eun. (2016). Inflammation after ischemic stroke: the role of leukocytes and glial cells. Experimental Neurobiology, 25(5), 241-251.
Kranenburg Onno, Scharnhorst Volkher, Van der Eb Alex J, and Zantema Alt. (1995). Inhibition of cyclin-dependent kinase activity triggers neuronal differentiation of mouse neuroblastoma cells. Journal of Cell Biology, 131(1), 227-234.
Lee B. Y., Han J. A., Im J. S., Morrone A., Johung K., Goodwin E. C., Kleijer W. J., DiMaio D., and Hwang E. S. (2006). Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell, 5(2), 187-195.
Lee Hyoung‐gon, Ueda Masumi, Zhu Xiongwei, Perry George, and Smith Mark A. (2006). Ectopic expression of phospho‐Smad2 in Alzheimer''s disease: Uncoupling of the transforming growth factor‐β pathway? Journal of Neuroscience Research, 84(8), 1856-1861.
Leist Marcel, and Nicotera Pierluigi. (1998). Apoptosis, excitotoxicity, and neuropathology. Experimental Cell Research, 239(2), 183-201.
Leng Tiandong, and Xiong Zhi-Gang. (2019). Treatment for ischemic stroke: From thrombolysis to thrombectomy and remaining challenges. Brain Circulation, 5(1), 8.
Liu F. F., Liu C. Y., Li X. P., Zheng S. Z., Li Q. Q., Liu Q., and Song L. (2015). Neuroprotective effects of SMADs in a rat model of cerebral ischemia/reperfusion. Neural Regeneration Research, 10(3), 438-444.
Ma H. P., Ma X. N., Ge B. F., Zhen P., Zhou J., Gao Y. H., Xian C. J., and Chen K. M. (2014). Icariin attenuates hypoxia-induced oxidative stress and apoptosis in osteoblasts and preserves their osteogenic differentiation potential in vitro. Cell Proliferation, 47(6), 527-539.
Ma Huiping, He Xirui, Yang Yan, Li Maoxing, Hao Dingjun, and Jia Zhengping. (2011). The genus Epimedium: an ethnopharmacological and phytochemical review. Journal of Ethnopharmacology, 134(3), 519-541.
Martin RL, Lloyd HGE, and Cowan AI. (1994). The early events of oxygen and glucose deprivation: setting the scene for neuronal death? Trends in Neurosciences, 17(6), 251-257.
Martin-Villalba Ana, Herr Ingrid, Jeremias Irmela, Hahne Michael, Brandt Roland, Vogel Johannes, Schenkel Johannes, Herdegen Thomas, and Debatin Klaus-Michael. (1999). CD95 ligand (Fas-L/APO-1L) and tumor necrosis factor-related apoptosis-inducing ligand mediate ischemia-induced apoptosis in neurons. Journal of Neuroscience, 19(10), 3809-3817.
Martinou Jean-Claude, Dubois-Dauphin Michel, Staple Julie K, Rodriguez Ivan, Frankowski Harald, Missotten Marc, Albertini Paola, Talabot Dominique, Catsicas Stefan, and Pietra Claudio. (1994). Overexpression of BCL-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron, 13(4), 1017-1030.
Matsuda S, Umeda M, Uchida H, Kato H, and Araki Tsutomu. (2009). Alterations of oxidative stress markers and apoptosis markers in the striatum after transient focal cerebral ischemia in rats. Journal of Neural Transmission, 116(4), 395-404.
Mies Günter, Iijima T, and Hossmann KA. (1993). Correlation between peri-infarct DC shifts and ischaemic neuronal damage in rat. Neuroreport, 4(6), 709-711.
Minamino Tohru, Miyauchi Hideaki, Yoshida Toshihiko, Ishida Yasuo, Yoshida Hideo, and Komuro Issei. (2002). Endothelial cell senescence in human atherosclerosis: role of telomere in endothelial dysfunction. Circulation, 105(13), 1541-1544.
Mir Manzoor A, Al-Baradie Raid S, and Alhussainawi Malik D. (2014). Pathophysiology of Strokes. Recent Advances in Stroke Therapeutics. Retrieved from https://www.researchgate.net/publication/273061843_Pathophysiology_of_Strokes.
Nehls DG, Park CK, and McCulloch J. (1989). Cerebral circulatory effects of Dizocilpine (MK-801) in the rat. Journal of Cerebral Blood Flow and Metabolism, 9(Suppl 1), 376.
NINDS National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. (1995). Tissue plasminogen activator for acute ischemic stroke. New England Journal of Medicine, 333(24), 1581-1587.
Niu R. (1989). Action of the drug Herba Epimedii on testosterone of the mouse plasma and its accessory sexual organ before and after processing.China journal of Chinese Materia Medica, 14(9), 530-532, 574.
O''Collins Victoria E, Macleod Malcolm R, Donnan Geoffrey A, Horky Laura L, van der Worp Bart H, and Howells David W. (2006). 1,026 experimental treatments in acute stroke. Annals of Neurology, 59(3), 467-477.
O''Neill Luke AJ, and Kaltschmidt Christian. (1997). NF-kB: a crucial transcription factor for glial and neuronal cell function. Trends in Neurosciences, 20(6), 252-258.
Ota Hidetaka, Eto Masato, Kano Mitsunobu R, Ogawa Sumito, Iijima Katsuya, Akishita Masahiro, and Ouchi Yasuyoshi. (2008). Cilostazol inhibits oxidative stress–induced premature senescence via upregulation of Sirt1 in human endothelial cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(9), 1634-1639.
Pantoni L., Garcia J. H., and Gutierrez J. A. (1996). Cerebral white matter is highly vulnerable to ischemia. Stroke, 27(9), 1641-1646; discussion 1647.
Pekny Milos, and Nilsson Michael. (2005). Astrocyte activation and reactive gliosis. Glia, 50(4), 427-434.
Pizzino G., Irrera N., Cucinotta M., Pallio G., Mannino F., Arcoraci V., Squadrito F., Altavilla D., and Bitto A. (2017). Oxidative Stress: Harms and Benefits for Human Health. Oxidative Medicine and Cellular Longevity, 2017, 8416763.
Planas Anna M, Soriano Marc A, Berruezo Meritxell, Justicia Carles, Estrada Anna, Pitarch Silvia, and Ferrer Isidre. (1996). Induction of Stat3, a signal transducer and transcription factor, in reactive microglia following transient focal cerebral ischaemia. European Journal of Neuroscience, 8(12), 2612-2618.
Purves Dale. (2009). Neuroscience. Scholarpedia, 4(8), 7204.
Radak D., Katsiki N., Resanovic I., Jovanovic A., Sudar-Milovanovic E., Zafirovic S., Mousad S. A., and Isenovic E. R. (2017). Apoptosis and Acute Brain Ischemia in Ischemic Stroke. Current Vascular Pharmacology, 15(2), 115-122.
Randolph S. A. (2016). Ischemic Stroke. Workplace Health and Safety, 64(9), 444.
Rashidian J., Iyirhiaro G. O., and Park D. S. (2007). Cell cycle machinery and stroke. Biochimica et Biophysica Acta, 1772(4), 484-493.
Richard Green A., Odergren T., and Ashwood T. (2003). Animal models of stroke: do they have value for discovering neuroprotective agents? Trends in Pharmacological Sciences, 24(8), 402-408.
Ruscher Karsten, Isaev Nikolaj, Trendelenburg George, Weih Markus, Iurato Linda, Meisel Andreas, and Dirnagl Ulrich. (1998). Induction of hypoxia inducible factor 1 by oxygen glucose deprivation is attenuated by hypoxic preconditioning in rat cultured neurons. Neuroscience Letters, 254(2), 117-120.
Saeed S. A., Shad K. F., Saleem T., Javed F., and Khan M. U. (2007). Some new prospects in the understanding of the molecular basis of the pathogenesis of stroke. Experimental Brain Research, 182(1), 1-10.
Saka Ömer, McGuire Alistair, and Wolfe Charles. (2009). Cost of stroke in the United Kingdom. Age and Ageing, 38(1), 27-32.
Samanta Debangshu, and Datta Pran K. (2012). Alterations in the Smad pathway in human cancers. Frontiers in Bioscience, 17, 1281.
Scalera Fortunato, and Bode-Böger Stefanie M. (2010). Nitric oxide–asymmetric dimethylarginine system in endothelial cell senescence. Nitric Oxide (pp. 483-511).
Schmidt-Kastner Rainald, Truettner Jessie, Zhao Weizhao, Belayev Ludmila, Krieger Charlene, Busto Raul, and Ginsberg Myron D. (2000). Differential changes of bax, caspase-3 and p21 mRNA expression after transient focal brain ischemia in the rat. Molecular Brain Research, 79(1-2), 88-101.
Schneider C. A., Rasband W. S., and Eliceiri K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671-675.
Siegel Allan, and Sapru Hreday N. (2006). Essential Neuroscience: Lippincott Williams and Wilkins.
Simonis Gregor, Strasser Ruth H, and Ebner Bernd. (2012). Reperfusion Injury in Acute Myocardial Infarction. Critical Care, 16(Suppl 2), A22.

Stanimirovic Danica B, Wong J, Shapiro A, and Durkin JP. (1997). Increase in surface expression of ICAM-1, VCAM-1 and E-selectin in human cerebromicrovascular endothelial cells subjected to ischemia-like insults. Acta Neurochirurgica, 70, 12-16.
Sugizaki Taichi, Zhu Shunshun, Guo Ge, Matsumoto Akiko, Zhao Jiabin, Endo Motoyoshi, Horiguchi Haruki, Morinaga Jun, Tian Zhe, and Kadomatsu Tsuyoshi. (2017). Treatment of diabetic mice with the SGLT2 inhibitor TA-1887 antagonizes diabetic cachexia and decreases mortality. Aging and Mechanisms of Disease, 3(1), 12.
Sun Chenghong, Yang Jian, Wang Mingzhi, Pan Lihong, Yao Jingchun, Wang Shenglan, Guo Na, Li Chunyan, and Zhang Guimin. (2018). Icaritin improves antibody-induced thrombocytopenia in a mouse model by regulating t-cell polarization. Planta Medica, 84(03), 168-175.
Sun Liyuan, Kuroiwa Toshihiko, Ishibashi Satoru, Miki Kazunori, Li Shihong, Xu Haiyan, Endo Shu, and Mizusawa Hidehiro. (2009). Two region‐dependent pathways of eosinophilic neuronal death after transient cerebral ischemia. Neuropathology, 29(1), 45-54.
Suzuki H, Abe Koji, Tojo S, Morooka S, Kimura K, Mizugaki M, and Itoyama Y. (1997). Postischemic expression of P-selectin immunoreactivity in rat brain. Neuroscience Letters, 228(3), 151-154.
Talman Virpi, and Ruskoaho Heikki. (2016). Cardiac fibrosis in myocardial infarction—from repair and remodeling to regeneration. Cell and Tissue Research, 365(3), 563-581.
Thornberry Nancy A, and Lazebnik Yuri. (1998). Caspases: enemies within. Science, 281(5381), 1312-1316.
Toni Danilo, Gallo Valentina, Falcou Anne, Argentino Corrado, and Fieschi Cesare. (2001). Treatment of cerebrovascular diseases: state of the art and perspectives. Journal of Cardiovascular Pharmacology, 38, S83-S86.
Ueda Shinsuke, Fujitsu Kazuhiko, Inomori Shigeo, and Kuwabara Takeo. (1992). Thrombotic occlusion of the middle cerebral artery. Stroke, 23(12), 1761-1766.
Volpe J. J. (2003). Cerebral white matter injury of the premature infant-more common than you think. Pediatrics, 112(1 Pt 1), 176-180.
Wang Xinluan, He Yixin, Guo Baosheng, Tsang Man-Ching, Tu Fengjuan, Dai Yi, Yao Zhihong, Zheng Lizhen, Xie Xinhui, and Wang Nan. (2015). In vivo screening for anti-osteoporotic fraction from extract of herbal formula Xianlinggubao in ovariectomized mice. PLoS One, 10(2), e0118184.
Wang Yuan, Liu Gang, Hong Dandan, Chen Fenghua, Ji Xunming, and Cao Guodong. (2016). White matter injury in ischemic stroke. Progress in Neurobiology, 141, 45-60.
Wang Zhiqiang, Zhang Xiangnan, Wang H, Qi L, and Lou Y. (2007). Neuroprotective effects of icaritin against beta amyloid-induced neurotoxicity in primary cultured rat neuronal cells via estrogen-dependent pathway. Neuroscience, 145(3), 911-922.
Watanabe K., Tanaka M., Yuki S., Hirai M., and Yamamoto Y. (2018). How is edaravone effective against acute ischemic stroke and amyotrophic lateral sclerosis? Journal of Nutritional Biochemistry, 62(1), 20-38.
Webster Keith A, Graham Regina M, Thompson John W, Spiga Maria-Grazia, Frazier Donna P, Wilson Amber, and Bishopric Nanette H. (2006). Redox stress and the contributions of BH3-only proteins to infarction. Antioxidants and Redox Signaling, 8(9-10), 1667-1676.
Wei ENOCH P, Kontos HERMES A, and Beckman JOSEPH S. (1996). Mechanisms of cerebral vasodilation by superoxide, hydrogen peroxide, and peroxynitrite. American Journal of Physiology-Heart and Circulatory Physiology, 271(3), H1262-H1266.
WHO World Health Organization. (2012). Global Health Estimates. Retrieved from http://www.who.int/healthinfo/global_burden_disease/en/
Wu X., Luo X., Zhu Q., Zhang J., Liu Y., Luo H., Cheng Y., and Xie Z. (2017). The Roles of Thrombospondins in Hemorrhagic Stroke. BioMed Research International, 2017, 8403184.
Xing C., Arai K., Lo E. H., and Hommel M. (2012). Pathophysiologic cascades in ischemic stroke. International Journal of Stroke, 7(5), 378-385.
Yang Xiao-Jing, Xi Ya-Ming, and Li Zi-Jian. (2019). Icaritin: A Novel Natural Candidate for Hematological Malignancies Therapy. BioMed Research International, 2019.
Yap SP, Shen P, Li J, Lee LS, and Yong EL. (2007). Molecular and pharmacodynamic properties of estrogenic extracts from the traditional Chinese medicinal herb, Epimedium. Journal of Ethnopharmacology, 113(2), 218-224.
Zhang Zong-Kang, Li Jie, Yan De-Xin, Leung Wing-Nang, and Zhang Bao-Ting. (2016). Icaritin inhibits collagen degradation-related factors and facilitates collagen accumulation in atherosclerotic lesions: a potential action for plaque stabilization. International Journal of Molecular Sciences, 17(2), 169.
Zhao F., Tang Y. Z., and Liu Z. Q. (2007). Protective effect of icariin on DNA against radical-induced oxidative damage. Journal of Pharmacy and Pharmacology, 59(12), 1729-1732.
Zhao Hong, Guo Yuming, Li Shu, Han Ruiqin, Ying Jianming, Zhu Hai, Wang Yuanyuan, Yin Li, Han Yuqing, and Sun Lingzhi. (2015). A novel anti-cancer agent Icaritin suppresses hepatocellular carcinoma initiation and malignant growth through the IL-6/Jak2/Stat3 pathway. Oncotarget, 6(31), 31927.
Zhu H. R., Wang Z. Y., Zhu X. L., Wu X. X., Li E. G., and Xu Y. (2010). Icariin protects against brain injury by enhancing SIRT1-dependent PGC-1alpha expression in experimental stroke. Neuropharmacology, 59(1-2), 70-76.
Zille Marietta, Farr Tracy D, Przesdzing Ingo, Müller Jochen, Sommer Clemens, Dirnagl Ulrich, and Wunder Andreas. (2012). Visualizing cell death in experimental focal cerebral ischemia: promises, problems, and perspectives. Journal of Cerebral Blood Flow and Metabolism, 32(2), 213-231.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔