(3.215.180.226) 您好!臺灣時間:2021/03/06 16:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:簡世勇
研究生(外文):Shih-Yung Chien
論文名稱:高壓加工技術與香蜂草精油對於病原性大腸桿菌在牛絞肉中的殺菌模型建構
論文名稱(外文):Modeling the Inactivation of Pathogenic Escherichia coli in Ground Beef by High Pressure Processing and Melissa Officinalis L. Essential Oil
指導教授:沈立言沈立言引用關係沈秀樹
指導教授(外文):Lee-Yan SheenShiowshuh Sheen
口試委員:李允中陳家揚蔡宗佑陳宏彰
口試委員(外文):Yeun-Chung LeeChia-Yang ChenTsung-Yu TsaiHong-Jhang Chen
口試日期:2019-06-26
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:食品科技研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:81
中文關鍵詞:高壓加工技術香蜂草病原性大腸桿菌牛絞肉模型建構
DOI:10.6342/NTU201903790
相關次數:
  • 被引用被引用:0
  • 點閱點閱:89
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
高靜水壓技術(High hydrostatic pressure)是一項非加熱的加工技術,能夠減少食品中病原菌及造成腐敗的微生物數量,進而達到食品加工、保存及殺菌的目的。近年來高靜水壓技術已大量應用於食品工業上。香蜂草(Melissa officinalis L.)為歐美廣泛使用之天然芳香與藥用保健植物,廣泛使用於傳統治療,其活性成分主要來自於精油(essential oil)與酚類化合物(phenolic compound),有抗憂鬱、鎮靜、抗痙攣、抗發炎等效果。腸致病性大腸桿菌,例如大腸桿菌O157:H7在美國是爆發許多食品中毒事件的元凶之一。最近,致腎盂腎炎大腸桿菌(Uropathogenic E. coli, UPEC)也成為一個食源性風險,藉由食用肉品而引起人們的尿道感染。本研究將新鮮牛絞肉利用高壓(300-400 MPa)與0.5%,1.0%和2.0%的香蜂草精油或其相似的化學成分(Citral、Geraniol,Caryophyllene,化學成分混合:各1/3 Citral、Geraniol,Caryophyllene)共同處理後,將樣品保存於4 ℃,並連續七天偵測病原性大腸桿菌數目。此外,再以新鮮牛絞肉接種大腸桿菌O157:H7或UPEC在不同的加壓條件(250-350 MPa; 10-20分鐘)和檸檬醛濃度(0.75-1.25%)處理,來建構數學方程式,以預測不同條件下,可殺滅的致病性大腸桿菌數目。結果顯示,病原性大腸桿菌計數減少的程度取決於壓力和香蜂草精油或相似的化學成分的濃度與加壓時間。並且發現在低溫貯藏過程中,牛絞肉中的大腸桿菌數目會隨著儲存時間的推移而減少。而二次線性迴歸方程式與非線性模型的建構可用來描述和預測大腸桿菌O157與UPEC的減少,其數學預測模型的準確度皆高於85 %,經由這些模型實驗驗證,可以幫助食品行業和監管機構在大腸桿菌O157:H7與UPEC的風險管理。
High hydrostatic pressure (High Pressure Processing, HPP) is an emerging non-thermal technology that can inactivate pathogenic and spoilage microorganisms in food, and extend the shelf life of foods and becomes more popular in food operation nowadays. Melissa officinalis L., widely used in conventional treatment, the bioactive ingredients mainly from essential oil and phenolic compounds to possess antidepressant, sedative, antispasmodic, anti-inflammatory effects. The essential oils (EOs) from aromatic and medicinal plants have attracted attention and interest as potential natural antimicrobials in food preservation. This work addresses the inactivation achieved with pathogenic Escherichia coli by combined applications of high pressure processing (HPP) and Melissa officinalis leaf essential oils (natural EOs) or their similar chemical constituents (CCs, natural and artificial) in fresh ground beef stored at 4 °C for 7 days. Ground meat pressurized from 250 to 400 MPa for 15min were combined with 0.5%, 1.0% and 2.0% of EOs (Melissa officinalis leaf essential oils) and CCs (Citral, Geraniol, Caryophyllene, Mixture: 1/3 w/w of Citral, Geraniol, and Caryophyllene). In E. coli, the extent of inactivation or cell count reduction depended on the pressure (at 15 min) and the concentrations of the EOs or CCs. However, Caryophyllene alone was found almost not lethal to E. coli under HPP. For 24 h under refrigeration, 1% of citral with 250MPa caused a reduction of 2.5 log10 CFU/g. Further, 1% of citral, mixture, and EOs with 300 - 350 MPa could reduce ca. 3-6 log CFU/g of E. coli. And then, to reduce and/or eliminate the risk of E. coli O157: H7 and UPEC, the impact (lethality as log CFU/g reduction) of combined HPP and antimicrobial (e.g. citral) was studied using a hurdle concept. Ground beef inoculated with E. coli O157: H7 or UPEC were treated at different HPP conditions (250-350 MPa; 10-20 min) and citral concentration (0.75-1.25 %) following a central composite experimental design. Quadratic linear regression equations were developed to describe and predict the reductions of E. coli O157: H7 (R2 = 0.93, p < 0.001) and UPEC (R2 = 0.92, p < 0.001). Dimensionless nonlinear models consisting of three impact factors were also developed and compared with the linear models. These models were experimentally validated. Antimicrobial citral showed positively enhancing the HPP inactivation which may reduce the high pressure level applied on meats and therefore, reduce the operation cost and quality damages. The models may assist the food industry and regulatory agencies in risk assessment of E. coli O157: H7 and UPEC on ground meats. The inactivation potential continues its impact during the low temperature storage, i.e. showing cell counts reduction as time progresses. Similar results were observed for Salmonella survival in ground chicken meats. The High Pressure level imposed on foods (meats) during HPP, therefore, can be reduced (≤ 350 MPa) with the addition of antimicrobials to much reduce the pressure damage on food texture/quality without scarifying the microbial food safety concerns.
中文摘要 I
Abstract II
List of Figures VII
List of Tables IX
Chapter 1 Introduction 1
Chapter 2 Background and literature review 4
2.1 Ground beef 4
2.1.1 Types of ground beef 4
2.1.2 Ground beef manufacturing process 5
2.2 High Hydrostatic Pressure 7
2.2.1 Principles of high-pressure processing 7
2.2.2 Historical background 8
2.2.3 Effect of HPP on the inactivation of microorganisms 9
2.2.4 HPP on meat products 14
2.3 Melissa officinalis Essential Oils 18
2.3.1 What is an essential oil 18
2.3.2 Chemistry of volatile oils 20
2.3.3 History and origin of the plant 21
2.3.4 Description of the plant 22
2.3.5 Essential oil in food systems 23
2.4 Food applications of natural antimicrobial compounds 24
2.5 ‎Escherichia coli (E. coli) 26
2.5.1 E. coli O157: H7 26
2.5.2 Uropathogenic E. coli (UPEC) 27
2.6 Sheen’s model construction 28
Chapter 3 Materials and Methods 30
3.1 Supercritical fluids extraction procedure 30
3.2 Essential oil Analysis 30
3.3 Ground beef sample preparation 31
3.4 E. coli cultures and cocktail preparation 31
3.5 Sample preparation with E. coli cocktail and antimicrobials 33
3.6 High Pressure Processing (HPP) treatments 33
3.7 Cell structure images using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) 34
3.8 Experimental Design 36
3.9 Sample preparations for HPP treatment 37
3.10 E. coli O157: H7 and UPEC enumeration 37
3.11 Statistical analysis and model development 38
3.12 Model validation 38
Chapter 4 Results and Discussions 39
4.1 The chemical components of the essential oil 39
4.2 Impact of HPP on E. coli O157: H7 and UPEC inactivation 41
4.3 Pathogenic E. coli survival under HPP and essential oil stresses in ground beef 42
4.4 Pathogenic E. coli survival in ground beef during storage (4 °C) - post treatment 43
4.5 E. coli cell damage observed with SEM and TEM 52
4.6 HPP and citral effects on E. coli O157: H7 and UPEC reduction on ground beef 54
4.7 Response surface models for E. coli O157: H7 and UPEC reductions 57
4.8 Dimensionless non-linear model development for E. coli O157: H7 and UPEC 61
4.9 Model validation 63
Chapter 5 Conclusion 65
Reference 66
Abdellatif, F.; Boudjella, H.; Zitouni, A.; Hassani, A. Chemical composition and antimicrobial activity of the essential oil from leaves of Algerian Melissa officinalis L. EXCLI J. 2014, 13, 772–781.
Alpas, H.; Kalchayanand, N.; Bozoglu, F.; Sikes, A., Dunne, C. P., Ray, B. Variation in resistance to hydrostatic pressure among strains of food-borne pathogens. J. Appl. Environ. Microbiol. 1999, 65, 4248-4251.
Angelov, G.; Penchev, P.; Condoret, J. S.; Camy, S. Optimizing the process of supercritical extraction of lemon balm (Melissa Officinalis L.). C. R. Acad. Bulg. Sci. 2010, 63, pp-1141-1146.
Bajpai, V. K.; Baek, K. H.; Kang, S. C. Control of Salmonella in foods by using essential oils: a review. Food Res. Int. 2012, 45, 722-734.
Bajovic, B.; Bolumar, T.; Heinz, V. Quality considerations with high pressure processing of fresh and value added meat products. Meat Sci. 2012, 92, 280-289.
Bak, K. H.; Lindahl, G.; Karlsson, A. H.; Orlien, V. Effect of high pressure, temperature, and storage on the color of porcine longissimus dorsi. Meat Sci. 2012, 92, 374-381.
Balasubramanian, S.; Balasubramaniam, V. M. Compression heating influence of pressure transmitting fluids on bacteria inactivation during high pressure processing. Food Res. Int. 2003, 36, 661-668.
Welti-Chanes, J.; López-Malo, A.; Palou, E., Bermúdez, D.; Guerrero-Beltrán, J. A.; Barbosa-Cánovas, G. V. Fundamentals and applications of high pressure processing to foods. Novel food processing technologies. CRC Press. 2005, 157-181.
Bièche, C.; De Lamballerie, M.; Chevret, D.; Federighi, M.; Tresse, O. Dynamic proteome changes in Campylobacter jejuni 81-176 after high pressure shock and subsequent recovery. J. Proteomics. 2012, 75, 1144-1156.
Black, E. P.; Huppertz, T.; Fitzgerald, G. F.; Kelly, A. L. Baroprotection of vegetative bacteria by milk constituents: a study of Listeria innocua. Int. Dairy J. 2007, 17, 104-110.
Bover-Cid, S.; Belletti, N.; Garriga, M.; Aymerich, T. Model for Listeria monocytogenes inactivation on dry-cured ham by high hydrostatic pressure processing. Food Microbiol. 2011, 28, 804-809.
Bozoglu, F.; Alpas, H.; Kaletunç, G. Injury recovery of foodborne pathogens in high hydrostatic pressure treated milk during storage. FEMS Immunol. Med. Microbiol. 2004, 40, 243-247.
Brenes, A.; Roura, E. Essential oils in poultry nutrition: Main effects and modes of action. Anim. Feed Sci. Technol. 2010, 158, 1-14.
Burt, S. Essential oils: their antibacterial properties and potential applications in foods-a review. Int. J. Food Microbiol. 2004, 94, 223-253.
Calo, J. R.; Crandall, P. G.; O''Bryan, C. A.; Ricke, S. C. Essential oils as antimicrobials in food systems–A review. Food Control. 2015, 54, 111-119.
Callaway, T. R.; Carroll, J. A.; Arthington, J. D.; Edrington, T. S.; Anderson, R. C.; Ricke, S. C.; Nisbet, D. J. Citrus products and their use against bacteria: Potential health and cost benefits. In Nutrients, Dietary Supplements, and Nutriceuticals. Humana Press. 2011, 277-286.
Carlez, A.; Veciana-Nogues, T.; Cheftel, J. C. Changes in colour and myoglobin of minced beef meat due to high pressure processing. LWT-Food Sci. Technol. 1995, 28, 528-538.
Carson, C. F.; Mee, B. J.; Riley, T. V.; Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrob. Agents Chemother. 2002, 46, 1914-1920.
Chalova, V. I.; Crandall, P. G.; Ricke, S. C. Microbial inhibitory and radical scavenging activities of cold‐pressed terpeneless Valencia orange (Citrus sinensis) oil in different dispersing agents. J. Sci. Food Agric. 2010, 90, 870-876.
Chan, J. T.; Omana, D. A.; Betti, M. Application of high pressure processing to improve the functional properties of pale, soft, and exudative (PSE)-like turkey meat. Innov. Food Sci. Emerg. Technol. 2011, 12, 216-225.
Cheftel, J. C. Review: High-pressure, microbial inactivation and food preservation/Revision: Alta-presion, inactivacion microbiologica y conservacion de alimentos. Food Sci. Technol. Int1. 1995, 1, 75-90.
Cheftel, J. C.; Culioli, J. Effects of high pressure on meat: a review. Meat Sci. 1997, 46, 211-236.
Chilton, P.; Isaacs, N. S.; Mackey, B.; Stenning, R. The effects of high hydrostatic pressure on bacteria. High pressure research in the biosciences and biotechnology. Leuven University Press. 1997, 225-228.
Claeys, W. L.; Indrawati, A. M.; Hendrickx, M. E. Review: are intrinsic TTIs for thermally processed milk applicable for high-pressure processing assessment? Innov. Food Sci. Emerg. Technol. 2003, 4, 1-14.
Del Nobile, M. A.; Lucera, A.; Costa, C.; Conte, A. Food applications of natural antimicrobial compounds. Front Microbiol. 2012, 3, 287.
Ebel, E.; Schlosser, W.; Kause, J.; Orloski, K.; Roberts, T.; Narrod, C.; Powell, M.. Draft risk assessment of the public health impact of Escherichia coli O157: H7 in ground beef. J. Food Prot. 2004, 67, 1991-1999.
Erney, D. LEMON BALM. Organic Gardening, 1998, 45, 60.
Erickson, M. C.; Doyle, M. P. Food as a vehicle for transmission of Shiga toxin–producing Escherichia coli. J. Food Prot. 2007, 70, 2426-2449.
Espina, L.; Garcia-Gonzalo, D.; Laglaoui, A.; Mackey, B. M.; Pagan, R. Synergistic combinations of high hydrostatic pressure and essential oils or their constituents and their use in preservation of fruit juices. Int. J. Food Microbiol. 2013, 161, 23–30.
No, E. R. 853/2004. Regulation (EC) No 853/2004 of the European Parliament and of the Council of 29 April 2004 laying down specific hygiene rules for food of animal origin. Official Journal of the European Union L. 2011, 139(30.4).
Farr, D. High pressure technology in the food industry. Trends Food Sci. Technol. 1990, 1, 14-16.
Feyaerts, J.; Rogiers, G.; Corthouts, J.; Michiels, C.; Thiol-reactive natural antimicrobials and high pressure treatment synergistically enhance bacterial inactivation. Innov. Food Sci. Emerg. Technol. 2015, 27, 26-34.
Firouzi, R.; Shekarforoush, S. S.; Nazer, A. H. K.; Borumand, Z.; Jooyandeh, A. R. Effects of essential oils of oregano and nutmeg on growth and survival of Yersinia enterocolitica and Listeria monocytogenes in barbecued chicken. J. Food Prot. 2007, 70, 2626-2630.
Fisher, K.; Phillips, C. Potential antimicrobial uses of essential oils in food: is citrus the answer? Trends Food Sci. Technol. 2008, 19, 156-164.
Flores-Mireles, A. L.; Walker, J. N.; Caparon, M.; Hultgren, S. J. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol. 2015, 13, 269-284.
Fisher, K.; Phillips, C. A. The effect of lemon, orange and bergamot essential oils and their components on the survival of Campylobacter jejuni, Escherichia coli O157, Listeria monocytogenes, Bacillus cereus and Staphylococcus aureus in vitro and in food systems. J. Appl. Microbiol. 2006, 101, 1232-1240.
Friedly, E. C.; Crandall, P. G.; Ricke, S. C.; Roman, M.; O''Bryan, C.; Chalova, V. I. In vitro antilisterial effects of citrus oil fractions in combination with organic acids. J. Food Sci. 2009, 74, 67-72.
Friedman, M.; Henika, P. R.; Levin, C. E.; Mandrell, R. E. Antibacterial activities of plant essential oils and their components against Escherichia coli O157: H7 and Salmonella enterica in apple juice. J. Agric. Food Chem. 2004, 52, 6042-6048.
Foxman, B. Epidemiology of urinary tract infections: incidence, morbidity, and economic costs. Dis. Mon. 2003, 49, 53-70.
Ganesh, V.; Hettiarachchy, N. S.; Ravichandran, M.; Johnson, M. G.; Griffis, C. L.; Martin, E. M.; Ricke, S. C. Electrostatic sprays of food‐grade acids and plant extracts are more effective than conventional sprays in decontaminating Salmonella Typhimurium on spinach. J. Food Sci. 2010, 75, 574-579.
Gänzle, M.; Liu, Y. Mechanisms of pressure-mediated cell death and injury in Escherichia coli: from fundamentals to food applications. Front. Microbiol. 2015, 24, http://doi.org/10.3389/fmicb.2015.00599
Gervilla, R.; Capellas, M.; Ferragut, V.; Guamis, B. Effect of high hydrostatic pressure on Listeria innocua 910 CECT inoculated into ewe''s milk. J. Food Prot. 1997, 60, 33-37.
Grieve, M. A Modern Herbal. 1971. vols. I & II, pub.
Gyawali, R.; Ibrahim, S. A. Natural products as antimicrobial agents. Food Control. 2014, 46, 412-429.
Hauben, K. J. A.; Bernaerts, K.; Michiels, C. W. Protective effect of calcium on inactivation of Escherichia coli by high hydrostatic pressure. J. Appl. Microbiol. 1998, 85, 678-684.
Hayman, M. M.; Kouassi, G. K.; Anantheswaran, R. C.; Floros, J. D.; Knabel, S. J.. Effect of water activity on inactivation of Listeria monocytogenes and lactate dehydrogenase during high pressure processing. Int. J. Food Microbiol. 2008, 124, 21-26.
Hazel, J. R.; Williams, E. E. The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. Prog. Lipid Res. 1990, 29, 167-227.
Hite, B. H. The effect of pressure in the preservation of milk: a preliminary report (Vol. 58). West Virginia Agricultural Experiment Station. 1899
Hsu, H.; Sheen, S.; Sites, J.; Cassidy, J.; Scullen, B.; Sommers, C. Effect of high pressure processing on the survival of Shiga Toxin-producing Escherichia coli (Big Six vs. O157: H7) in ground beef. Food Microbiol. 2015, 48, 1-7.
Huang, H. W.; Lung, H. M., Yang, B. B.; Wang, C. Y. Responses of microorganisms to high hydrostatic pressure processing. Food Control. 2014, 40, 250-259.
Hugas, M.; Garriga, M.; Monfort, J. M. New mild technologies in meat processing: high pressure as a model technology. Meat Sci. 2002, 62, 359-371.
Jadhav, S.; Hussain, A.; Devi, S.; Kumar, A.; Parveen, S.; Gandham, N.; Ahmed, N.. Virulence characteristics and genetic affinities of multiple drug resistant uropathogenic Escherichia coli from a semi urban locality in India. PLoS ONE. 2011, 6, e18063.
Jayasena, D. D.; Jo, C. Essential oils as potential antimicrobial agents in meat and meat products: A review. Trends Food Sci. Technol. 2013, 34, 96–108.
Jofré, A.; Aymerich, T.; Bover-Cid, S.; Garriga, M. Inactivation and recovery of Listeria monocytogenes, Salmonella enterica and Staphylococcus aureus after high hydrostatic pressure treatments up to 900 MPa. Int. Microbiol. 2010, 13, 105–112.
Johnson, J. R.; Gajewski, A.; Lesse, A. J.; Russo, T. A. Extraintestinal pathogenic Escherichia coli as a cause of invasive nonurinary infections. J. Clin. Microbiol. 2003, 41, 5798-5802.
Juan, B.; Trujillo, A. J.; Guamis, V.; Buffa, M.; Ferragut, V. Rheological, textural and sensory characteristics of high-pressure treated semi-hard ewes’ milk cheese. Int. Dairy J. 2007, 17, 248-254.
Kalita, A.; Hu, J.; Torres, A. G. Recent advances in adherence and invasion of pathogenic Escherichia coli. Curr. Opin. Infect. Dis. 2014, 27, 459-464.
Kato, M.; Hayashi, R. Effects of high pressure on lipids and biomembranes for understanding high-pressure-induced biological phenomena. Biosci. Biotechnol. Biochem. 1999, 63, 1321-1328.
Kawamura-Sato, K.; Yoshida, R.; Shibayama, K.; Ohta, M. Virulence genes, quinolone and fluoroquinolone resistance, and phylogenetic background of uropathogenic Escherichia coli strains isolated in Japan. Jpn. J. Infect. Dis. 2010, 63, 113-115.
Kim, J. M.; Marshall, M. R.; Cornell, J. A.; JF III, P. R. E. S. T. O. N.; Wei, C. I.. Antibacterial activity of carvacrol, citral, and geraniol against Salmonella typhimurium in culture medium and on fish cubes. J. Food Sci. 1995, 60, 1364-1368.
Knorr, D. Effects of high-hydrostatic-pressure processes on food safety and quality. Food Technol. 1993, 47, 156-161.
Kruk, Z. A.; Yun, H.; Rutley, D. L.; Lee, E. J.; Kim, Y. J.; Jo, C. The effect of high pressure on microbial population, meat quality and sensory characteristics of chicken breast fillet. Food Control. 2011, 22(1), 6-12.
Lambert, R. J. W.; Skandamis, P. N.; Coote, P. J.; Nychas, G. J. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J. Appl. Microbiol. 2001, 91, 453-462.
Li, H.; Gänzle, M. Effect of hydrostatic pressure and antimicrobials on survival of Listeria monocytogenes and enterohaemorrhagic Escherichia coli in beef. Innov. Food Sci. Emerg. Technol. 2016, 38, 321-327
Linton, M.; McClements, J. M. J.; Patterson, M. F. Changes in the microbiological quality of vacuum-packaged, minced chicken treated with high hydrostatic pressure. Innov. Food Sci. Emerg. Technol. 2004, 5, 151-159.
Liu, Y.; Betti, M.; Gänzle, M. G. High pressure inactivation of Escherichia coli, Campylobacter jejuni, and spoilage microbiota on poultry meat. J. Food Prot. 2012, 75, 497-503.
Lucera, A.; Costa, C.; Conte, A.; Del Nobile, M. A. Food applications of natural antimicrobial compounds. Front. Microbiol. 2012, 3, 287.
Ma, H.; Ledward, D. A. High pressure processing of fresh meat-Is it worth it? Meat Sci. 2013, 95, 897-903.
McArdle, R.; Marcos, B.; Kerry, J. P.; Mullen, A. Monitoring the effects of high pressure processing and temperature on selected beef quality attributes. Meat Sci. 2010, 86, 629-634.
Mimica-Dukic, N.; Bozin, B.; Sokovic, M.; Simin, N.; Antimicrobial and antioxidant activities of Melissa officinalis L. (Lamiaceae) essential oil. J. Agric. Food Chem. 2004, 52, 2485-2489.
Molina-Höppner, A.; Doster, W.; Vogel, R. F.; Gänzle, M. G. Protective effect of sucrose and sodium chloride for Lactococcus lactis during sublethal and lethal high-pressure treatments. J. Appl. Environ. Microbiol. 2004, 70, 2013-2020.
Montgomery, D. C. Design and analysis of experiments. John wiley & sons. 2017.
Moradkhani, H.; Sargsyan, E.; Bibak, H.; Naseri, B.; Sadat-Hosseini, M.; Fayazi-Barjin, A.; Meftahizade, H. Melissa officinalis L., a valuable medicine plant: A review. J. Med. Plant Res. 2010, 4, 2753-2759.
Moreira, M. R.; Ponce, A. G.; Del Valle, C. E.; Roura, S. I. Inhibitory parameters of essential oils to reduce a foodborne pathogen. LWT-Food Sci. Technol. 2005, 38, 565-570.
Mor-Mur, M.; Yuste, J. High pressure processing applied to cooked sausage manufacture: physical properties and sensory analysis. Meat Sci. 2003, 65, 1187-1191.
Mújica-Paz, H.; Valdez-Fragoso, A.; Samson, C. T.; Welti-Chanes, J.; Torres, J. A. High-pressure processing technologies for the pasteurization and sterilization of foods. Food Bioproc. Tech. 2011, 4, 969-985
NACMCF (National Advisory Committee on Microbiological Criteria for Foods). Requisite scientific parameters for establishing the equivalence of alternative methods of pasteurization. J. Food Prot. 2006, 69, 1190-1216.
Nannapaneni, R.; Chalova, V. I.; Crandall, P. G.; Ricke, S. C.; Johnson, M. G.; O''Bryan, C. A. Campylobacter and Arcobacter species sensitivity to commercial orange oil fractions. Int. J. Food Microbiol. 2009, 129, 43-49.
Nimet, G.; Da Silva, E. A.; Palú, F.; Dariva, C.; dos Santos Freitas, L.; Neto, A. M.; Cardozo Filho, L. Extraction of sunflower (Heliantus annuus L.) oil with supercritical CO2 and subcritical propane: experimental and modeling. Chem. Eng. J. 2011, 168, 262-268.
Niven, G. W.; Miles, C. A.; Mackey, B. M. The effects of hydrostatic pressure on ribosome conformation in Escherichia coli: an in vivo study using differential scanning calorimetry. Microbiology. 1999, 145, 419-425.
Nguyen, L. T.; Tay, A.; Balasubramaniam, V. M.; Legan, J. D.; Turek, E. J.; Gupta, R. Evaluating the impact of thermal and pressure treatment in preserving textural quality of selected foods. LWT-Food Sci. Technol. 2010, 43, 525-534.
Oey, I.; Lille, M., Van Loey, A.; Hendrickx, M. Effect of high-pressure processing on colour, texture and flavour of fruit-and vegetable-based food products: a review. Trends Food Sci. Technol. 2008, 19, 320-328.
Oger, P. M.; Jebbar, M. The many ways of coping with pressure. Res. Microbiol. 2010, 161, 799-809.
Ogihara, H.; Yatuzuka, M.; Horie, N.; Furukawa, S.; Yamasaki, M. Synergistic effect of high hydrostatic pressure treatment and food additives on the inactivation of Salmonella enteritidis. Food Control. 2009, 20, 963–966.
Orlien, V.; Hansen, E.; Skibsted, L. H. Lipid oxidation in high-pressure processed chicken breast muscle during chill storage: critical working pressure in relation to oxidation mechanism. Eur. Food Res. Technol. 2000, 211, 99-104.
Patora, J.; Majda, T.; Gora, J.; Klimek, B. Variability in the content and composition of essential oil from Lemon balm (Melissa officinalis L.) cultivated in Poland. Acta. Pol. Pharm. Drug Res. 2003, 60, 395-400.
Patterson, M. F.; Quinn, M.; Simpson, R.; Gilmour, A. Sensitivity of vegetative pathogens to high hydrostatic pressure treatment in phosphate-buffered saline and foods. J. Food Prot. 1995, 58, 524-529.
Patterson, M. F. Microbiology of pressure‐treated foods. J. Appl. Microbiol. 2005, 98, 1400-1409.
Peev, G.; Penchev, P.; Peshev, D.; Angelov, G. Solvent extraction of rosmarinic acid from lemon balm and concentration of extracts by nanofiltration: Effect of plant pre-treatment by supercritical carbon dioxide. Chem. Eng. Res. Des. 2011, 89, 2236-2243.
Piatti, G.; Mannini, A.; Balistreri, M.; Schito, A. M. Virulence factors in urinary Escherichia coli strains: phylogenetic background and quinolone and fluoroquinolone resistance. J. Clin. Microbiol. 2008, 46, 480-487.
Prakash, B.; Kedia, A., Mishra, P. K.; Dubey, N. K. Plant essential oils as food preservatives to control moulds, mycotoxin contamination and oxidative deterioration of agri-food commodities–Potentials and challenges. Food Control. 2015, 47, 381-391.
Raloff, J. Food for thought: Global food trends. Science news online. 2003, 5.
Rao, P. S.; Chakraborty, S.; Kaushik, N.; Kaur, B. P.; Hulle, N. S. High hydrostatic pressure processing of food materials. Introduction to Advanced Food Process Engineering, JK Sahu, Ed., ed London: CRC Press, UK. 2014, 151-186.
Rendueles, E.; Omer, M. K.; Alvseike, O.; Alonso-Calleja, C.; Capita, R.; Prieto, M. Microbiological food safety assessment of high hydrostatic pressure processing: a review. LWT-Food Sci. Technol. 2011, 44, 1251-1260.
Ricke, S. C.; Kundinger, M. M.; Miller, D. R.; Keeton, J. T. Alternatives to antibiotics: chemical and physical antimicrobial interventions and foodborne pathogen response. Poult. Sci. 2005, 84, 667-675.
Ritz, M.; Pilet, M. F.; Jugiau, F.; Rama, F.; Federighi, M. Inactivation of Salmonella Typhimurium and Listeria monocytogenes using high‐pressure treatments: destruction or sublethal stress? Lett. Appl. Microbiol. 2006, 42, 357-362.
Ritz, M.; Tholozan, J. L.; Federighi, M.; Pilet, M. F. Morphological and physiological characterization of Listeria monocytogenes subjected to high hydrostatic pressure. Appl. Environ. Microbiol. 2001, 67, 2240-2247.
Rodriguez, E.; Arques, J. L.; Nunez, M.; Gaya, P.; Medina, M. Combined effect of high-pressure treatments and bacteriocin-producing lactic acid bacteria on inactivation of Escherichia coli O157: H7 in raw-milk cheese. Appl. Environ. Microbiol. 2005, 71, 3399-3404.
Robbers, J. E.; Tyler, V. E. Tyler''s herbs of choice. The therapeutic use of phytomedicinals. Haworth Press Inc. 1999.
Taherpour, A.; Maroofi, H.; Rafie, Z.; Larijani, K.; Chemical composition analysis of the essential oil of Melissa officinalis L. from Kurdistan, Iran by HS/SPME method and calculation of the biophysicochemical coefficients of the components. Nat. Prod. Res. 2012, 26, 152-160.
Turhan, H. Lemon balm. Handbook of herbs and spices. Woodhead publishing. 2006. 390-397.
Ruiz-Capillas, C.; Carballo, J.; Jiménez-Colmenero, F. Consequences of high-pressure processing of vacuum-packaged frankfurters on the formation of polyamines: Effect of chilled storage. Food chemistry, 2007, 104, 202-208.
Russo, T. A.; Johnson, J. R. Medical and economic impact of extraintestinal infections due to Escherichia coli: focus on an increasingly important endemic problem. Microbes Infect. 2003, 5, 449-456.
Sagarzazu, N.; Cebrián, G.; Condón, S.; Mackey, B.; Mañas, P. High hydrostatic pressure resistance of Campylobacter jejuni after different sublethal stresses. J. Appl. Microbiol. 2010, 109, 146-155.
Saldo, J.; McSweeney, P. L. H.; Sendra, E.; Kelly, A. L.; Guamis, B. Proteolysis in caprine milk cheese treated by high pressure to accelerate cheese ripening. Int. Dairy J. 2002, 12, 35-44.
Sari, A. O.; Ceylan, A. Yield characteristics and essential oil composition of Lemon balm (Melissa officinalis L.) grown in the Aegean region of Turkey. Turk. J. Agric. For. 2002, 26, 217-224
Shimada, S.; Andou, M.; Naito, N., Yamada, N.; Osumi, M.; Hayashi, R. Effects of hydrostatic pressure on the ultrastructure and leakage of internal substances in the yeast Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 1993, 40, 123-131.
Smith-Palmer, A.; Stewart, J.; Fyfe, L. Antimicrobial properties of plant essential oils and essences against five important food-borne pathogens. Lett. Appl. Microbiol. 1998, 26, 118-122.
Silva, S. D.; Sato, A.; Lage, C. L. S.; Gil, S.; da Silva, R. A.; Azevedo, D. D. A.; Esquibel, M. A., Essential oil composition of Melissa officinalis L. in vitro produced under the influence of growth regulators. J. Braz. Chem. Soc. 2005, 16, 1387-1390.
Smith, J. L.; Fratamico, P. M.; Gunther, N. W. Extraintestinal pathogenic Escherichia coli. Foodborne Pathog. Dis. 2007, 4, 134-163.
Sikes, A. L.; Tobin, A. B.; Tume, R. K. Use of high pressure to reduce cook loss and improve texture of low-salt beef sausage batters. Innov. Food Sci. Emerg. Technol. 2009, 10, 405-412.
Sikkema, J.; De Bont, J. A.; Poolman, B. Mechanisms of membrane toxicity of hydrocarbons. Microbiol. Rev. 1995, 59, 201-222.
Sirsat, S. A.; Muthaiyan, A.; Ricke, S. C. Optimization of the RNA extraction method for transcriptome studies of Salmonella inoculated on commercial raw chicken breast samples. BMC Res. Notes. 2011, 4, 60.
Smeller, L. Pressure–temperature phase diagrams of biomolecules. BBA - Protein Structure and Molecular Enzymology. 2002, 1595, 11-29.
Smelt, J. P. P. M. Recent advances in the microbiology of high pressure processing. Trends Food Sci. Technol. 1998, 9, 152-158.
Smid, E.J.; Gorris, L.G.M.; Natural antimicrobials for food preservation. In Handbook of Food Preservation ed. Rahman, M.S. New York: Dekker. 1999. 285-308.
Rao, P. S.; Chakraborty, S., Kaushik, N., Kaur, B. P.; Hulle, N. S. High Hydrostatic Pressure Processing of Food Materials. Introduction to Advanced Food Process Engineering, JK Sahu, Ed., ed London: CRC Press, UK, 2014, 151-186.
Rhee, M. S.; Lee, S. Y.; Dougherty, R. H.; Kang, D. H. Antimicrobial effects of mustard flour and acetic acid against Escherichia coli O157: H7, Listeria monocytogenes, and Salmonella enterica serovar Typhimurium. Appl. Environ. Microbiol. 2003. 69, 2959-2963.
Sadraei, H.; Ghannadi, A.; Malekshahi, K. Relaxant effect of essential oil of Melissa officinalis and citral on rat ileum contractions. Fitoterapia. 2003, 74, 445-452.
Sun, X. D.; Holley, R. A. High hydrostatic pressure effects on the texture of meat and meat products. J. Food Sci. 2010, 75, 17-23.
Tamplin, M. L.; Paoli, G.; Marmer, B. S.; Phillips, J. Models of the behavior of Escherichia coli O157: H7 in raw sterile ground beef stored at 5 to 46 °C. Int. J. Food Microbiol. 2005, 100, 335-344.
Tartof, S. Y.; Solberg, O. D.; Manges, A. R.; Riley, L. W. Analysis of a uropathogenic Escherichia coli clonal group by multilocus sequence typing. J. Clin. Microbiol. 2005, 43, 5860-5864.
Thakur, B. R.; Nelson, P. E. High‐pressure processing and preservation of food. Food Rev. Inter. 2009, 14, 427-447.
Tholozan, J. L.; Ritz, M.; Jugiau, F.; Federighi, M.; Tissier, J. P. Physiological effects of high hydrostatic pressure treatments on Listeria monocytogenes and Salmonella typhimurium. J. Appl. Microbiol. 2001, 88, 202-212.
Trujillo, A. J.; Capellas, M.; Buffa, M., Royo, C.; Gervilla, R.; Felipe, X.; Guamis, B. Application of high pressure treatment for cheese production. Food Res. Int. 2000, 33, 311-316.
USDA Foreign Agricultural Service (FAS). Livestock and Poultry: World Markets and Trade. Washington, DC April. 2012.
USDA Food Safety and Inspection Service (FSIS). Risk Profile for Pathogenic Non-O157 Shiga Toxin-Producing Escherichia coli. Office of Public Health Science, Office of Policy and Program Development, Food Safety and Inspection Service, United States Department of Agriculture, Washington, DC, USA. 2012.
Velazquez, G.; Gandhi, K.; Torres, J. A. Hydrostatic pressure processing: a review. Biotam. 2002, 12, 71-78.
Vidović, S.; Mujić, I.; Zeković, Z.; Lepojević, Ž.; Milošević, S.; Jokić, S. Extraction of fatty acids from Boletus edulis by subcritical and supercritical carbon dioxide. J. Am. Oil Chem. Soc. 2011, 88, 1189-1196.
Wang, L.; Pan, J.; Xie, H.; Yang, Y.; Lin, C. Inactivation of Staphylococcus aureus and Escherichia coli by the synergistic action of high hydrostatic pressure and dissolved CO2. Int. J. Food Microbiol. 2010, 144, 118-125..
Wiles, T. J.; Kulesus, R. R.; Mulvey, M. A. Origins and virulence mechanisms of uropathogenic Escherichia coli. Exp. Mol. Pathol. 2008, 85, 11-19.
Wilson, D. R.; Dabrowski, L.; Stringer, S.; Moezelaar, R.; Brocklehurst, T. F. High pressure in combination with elevated temperature as a method for the sterilisation of food. Trends Food Sci. Technol. 2008, 19, 289-299.
Wouters, P. C.; Glaasker, E.; Smelt, J. P. Effects of high pressure on inactivation kinetics and events related to proton efflux in Lactobacillus plantarum. Appl. Environ. Microbiol. 1998, 64, 509-514.
Yuste, J.; Mor-Mur, M.; Capellas, M.; Guamis, B.; Pla, R. Mechanically recovered poultry meat sausages manufactured with high hydrostatic pressure. Poult. Sci. 1999, 78, 914-921.
Yuste, J.; Capellas, M.; Fung, D. Y.; Mor-Mur, M. Inactivation and sublethal injury of foodborne pathogens by high pressure processing: evaluation with conventional media and thin agar layer method. Food Res. Int. 2004, 37, 861-866.
Zhou, S.; Sheen, S.; Pang, Y. H.; Liu, L.; Yam, K. L. Modeling the impact of vapor thymol concentration, temperature, and modified atmosphere condition on growth behavior of Salmonella on raw shrimp. J. Food Prot. 2015, 78, 293-301.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔