跳到主要內容

臺灣博碩士論文加值系統

(44.220.181.180) 您好!臺灣時間:2024/09/14 13:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:簡則宇
研究生(外文):Tse-Yu Chien
論文名稱:以固態發酵開發機能性臺灣藜產品
論文名稱(外文):Solid-State Fermentation for Development of Functional Chenopodium formosanum Product
指導教授:鄭光成鄭光成引用關係
指導教授(外文):Kuan-Chen Cheng
口試委員:陳錦樹蔡宗佑許仁駿楊麗嬋
口試委員(外文):Chin-Shuh ChenTsung-Yu TsaiRen-Jun HsuLi-Chan Yang
口試日期:2019-07-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:食品科技研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:90
中文關鍵詞:臺灣藜固態發酵絲狀真菌總多酚抗氧化
DOI:10.6342/NTU201902773
相關次數:
  • 被引用被引用:9
  • 點閱點閱:450
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
臺灣藜 (Chenopodium formosanum) 為臺灣假穀類原生種植物,其高營養價值及生物活性成分於健康之效益已被證實,具用於加工生產機能性食品之潛力。本研究以臺灣藜作為固態發酵原料,透過比較不同基質、接種之絲狀真菌及培養時間建立發酵製程,以抗氧化活性為目標最適化後進行機能性、營養性及質地等多項分析。實驗結果選定Rhizopus microsporus var. oligosporus BCRC 31996作為發酵株菌,以121oC處理之脫殼穀粒作為基質,抗氧化能力評估結果配合外觀質地觀察並比較文獻後訂立發酵時間為四日。透過反應曲面法 (Response surface methodology, RSM) 優化,於最適培養溫度35.3oC、添加碳源濃度1.31%及無機鹽濃度0.3%,可得最佳TEAC (trolox equivalent antioxidant capacity) 值20.58 mM。最適化產物之總多酚與總類黃酮含量分別為7.42 GAE mg/g dm、2.28 QE mg/g dm,與發酵前穀粒相比分別增加約2及1.8倍含量。γ-胺基丁酸 (GABA) 增加至283.57 µg/g,與最適化前相比增加5.8倍。營養特性部分,游離胜肽提升至46.18 mg/g,植酸含量下降至1.47 mg/g,降低44%含量。質地分析結果中,以臺灣藜為發酵基質相較於國外三種藜麥者,具最低硬度。經本研究建立之臺灣藜發酵模型產物具成為機能性食品之潛力。
Djulis (Chenopodium formosanum) is a native pseudocereal plant in Taiwan. Djulis has shown its potential to be processed to functional food due to its high nutritional value and the proved health benefits of its bioactive compounds. In this study, Djulis grains were used as a raw material for solid-state fermentation. The fermentation process was established by comparing different substrates, filamentous fungi and culture time. The antioxidant activity was optimized and the product was analyzed for functional and nutritional properties as well as texture. In result, Rhizopus microsporus var. oligosporus BCRC 31996 was chosen as a culture starter and dehulled grains with pretreatment of 121oC as matrix. Due to the results of antioxidant capacity evaluation, the appearance and texture observation, the fermentation time was set to four days. Optimized by Response Surface Methodology (RSM), the optimum TEAC (trolox equivalent antioxidant capacity) value was 20.58 mM at an optimum culture temperature of 35.3 oC, carbon source concentration of 1.31%, and inorganic salt concentration of 0.3%. The total phenolics and total flavonoid content of the optimized product were 7.42 GAE mg/g dm and 2.28 QE mg/g dm, respectively, which increased by about 2 and 1.8 times. γ-Aminobutyric acid (GABA) increased to 283.57 µg/g, which elevated by 5.8 times, compared to non-optimized product. In the nutritional properties, the free peptide was increased to 46.18 mg/g, and the phytic acid content was decreased to 1.47 mg/g, which decreased by 44%. In the results of texture analysis, the product using Djulis grains as the fermentation substrate had the lowest hardness compared to three kinds of foreign quinoa grains. The Djulis-fermented product established by this study demonstrated the potential to become a functional food.
謝誌 I
摘要 II
Abstract III
目錄 IV
圖目錄 IX
表目錄 XI
List of figures XII
List of tables XIV
一、 前言 1
二、 文獻回顧 2
2.1 藜麥與臺灣藜 2
2.1.1 藜科分類 2
2.1.2 藜麥與臺灣藜簡介 2
2.1.3 營養成分 4
2.1.4 機能性成分 8
2.1.4.1 總酚類化合物 12
2.1.4.2 總類黃酮 12
2.1.4.3 γ-胺基丁酸(GABA) 12
2.2 固態發酵 13
2.2.1 固態發酵特性 13
2.3 絲狀真菌 15
2.3.1 絲狀真菌分類 15
2.3.2 Rhizopus oligosporus 15
2.3.3 Aspergillus awamori 15
2.4 抗氧化活性 18
2.4.1 自由基與活性氧 18
2.4.2 抗氧化物及其作用機制 19
2.5 反應曲面法 (Response surface methodology, RSM) 20
三、 研究目的與架構 22
3.1 研究目的 22
3.2 研究架構 23
四、 材料與方法 25
4.1 材料 25
4.1.1 原料 25
4.1.2 實驗菌株 25
4.1.3 培養基配製藥品 25
4.1.4 分析實驗藥品 25
4.1.5 培養基製備 27
4.1.6 儀器設備 27
4.2 方法 29
4.2.1 菌株活化 29
4.2.2 種菌培養與孢子懸浮液製作 29
4.2.3 基質預處理 29
4.2.4 固態發酵流程 29
4.2.5 臺灣藜萃取 29
4.2.6 抗氧化活性測定 30
4.2.6.1 DPPH自由基清除能力 (2,2-Diphenyl-1picryl-hydrazyl radical (DPPH)- scavenging ability) 30
4.2.6.2 總抗氧化能力 (6-Hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid (Trolox) equivalent antioxidant capacity, TEAC) 30
4.2.7 物理特性分析 31
4.2.7.1 色度測量 31
4.2.7.2 掃描式電子顯微鏡 (Scanning electron microscope, SEM) ...............................................................................................31
4.2.8 反應曲面法 31
4.2.9 機能性成分分析 32
4.2.9.1 總多酚 32
4.2.9.2 總類黃酮 33
4.2.9.3 GABA 33
4.2.10 營養特性分析 35
4.2.10.1 游離胺基酸 35
4.2.10.2 植酸含量 35
4.2.11 酵素活性分析 37
4.2.11.1 粗酵素溶液萃取 37
4.2.11.2 β-glucosidase 37
4.2.11.3 phytase 37
4.2.12 一般成分分析 (Proximate analysis) 37
4.2.12.1 水分 37
4.2.12.2 灰分 38
4.2.12.3 粗脂肪 39
4.2.12.4 粗蛋白 40
4.2.12.5 碳水化合物 41
4.2.13 質地分析 41
4.3 統計分析 42
五、 結果與討論 43
5.1 發酵模型建立 43
5.1.1 基質種類與預處理條件挑選 43
5.1.2 麴菌挑選 45
5.1.3 發酵時間訂立 48
5.1.4 發酵過程物理特性 50
5.2 最適化培養條件之探討 53
5.2.1 水分添加量之探討 53
5.2.2 基質初始pH調整之探討 53
5.2.3 接菌濃度之探討 56
5.2.4 培養溫度之探討 56
5.2.5 碳源之探討 59
5.2.6 無機鹽之探討 59
5.3 反應曲面法實驗結果 63
5.4 發酵及最適化前後產物比較 67
5.4.1 總酚與總黃酮比較 67
5.4.2 抗氧化活性比較 70
5.4.3 GABA含量比較 72
5.4.4 一般成分分析 73
5.4.5 營養特性比較 75
5.5 質地分析 76
六、 結論與未來展望 79
七、 參考文獻 80
八、 附錄 XIV
中華民國 (台灣) 經濟部標準檢驗局 (CNS) (1984)。食品中水分之檢驗方法。總號5033。
中華民國 (台灣) 經濟部標準檢驗局 (CNS) (1984)。食品中粗灰分之檢驗方法。總號5034。
中華民國 (台灣) 經濟部標準檢驗局 (CNS) (1984)。食品中粗脂肪之檢驗方法。總號5036。
中華民國 (台灣) 經濟部標準檢驗局 (CNS) (1986)。食品中粗蛋白之檢驗方法。總號5035。
Bibek Ray and Arun Bhunia (2015)。基礎食品微生物學。偉明圖書有限公司。臺灣。
涂庭瑋 (2016)。以固態發酵製備猴頭菇糙米及其抗氧化性質。東海大學食品科學系。碩士學位論文。臺中。
林筱茜 (2012)。台灣藜萃取物抗致突變及抗氧化能力分析。嘉南藥理科技大學保健營養系。碩士學位論文。臺南。
朱格麟 (1995)。藜科植物的起源、分化和地理分布。植物分類學報 34:486-504。
郭耀綸、楊遠波、蔡碧仁、葛孟杰 (2008)。紅藜推廣手冊。行政院農業委員會林務局資料。
陳靖雅 (2016)。米糠微細化與其萃取物之理化特性及添加豆花之質地修飾。輔仁大學食品科學系。碩士學位論文。新北市。
鄭伊娟 (2010)。台灣藜之開發應用成果介紹。行政院農業委員會。臺灣。
USDA Food Composition Databases.
Abderrahim, F., Huanatico, E., Segura, R., Arribas, S., Gonzalez, M. C., & Condezo-Hoyos, L. (2015). Physical features, phenolic compounds, betalains and total antioxidant capacity of coloured quinoa seeds (Chenopodium quinoa Willd.) from Peruvian Altiplano. Food Chemistry, 183, 83-90.
Alvarez-Jubete, L., Wijngaard, H., Arendt, E., & Gallagher, E. (2010). Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa buckwheat and wheat as affected by sprouting and baking. Food Chemistry, 119(2), 770-778.
Apak, R., Ozyurek, M., Guclu, K., & Capanoglu, E. (2016). Antioxidant activity/capacity measurement. 3. Reactive oxygen and nitrogen species (ROS/RNS) scavenging assays, oxidative stress biomarkers, and chromatographic/chemometric assays. Journal of agricultural and food chemistry, 64(5), 1046-1070.
Azeke, M. A., Greiner, R., & JANY, K. D. (2011). Purification and characterization of two intracellular phytases from the tempeh fungus Rhizopus oligosporus. Journal of food biochemistry, 35(1), 213-227.
Banerjee, R., Mukherjee, G., & Patra, K. C. (2005). Microbial transformation of tannin-rich substrate to gallic acid through co-culture method. Bioresource Technology, 96(8), 949-953.
Baumann, U., & Bisping, B. (1995). Proteolysis during tempe fermentation. Food microbiology, 12, 39-47.
Bertero, H., De la Vega, A., Correa, G., Jacobsen, S., & Mujica, A. (2004). Genotype and genotype-by-environment interaction effects for grain yield and grain size of quinoa (Chenopodium quinoa Willd.) as revealed by pattern analysis of international multi-environment trials. Field Crops Research, 89(2-3), 299-318.
Bohn, T., Davidsson, L., Walczyk, T., & Hurrell, R. F. (2004). Phytic acid added to white-wheat bread inhibits fractional apparent magnesium absorption in humans. The American journal of clinical nutrition, 79(3), 418-423.
Box, G. E., & Wilson, K. B. (1951). On the experimental attainment of optimum conditions. Journal of the Royal Statistical Society: Series B (Methodological), 13(1), 1-38.
Cai, S., Gao, F., Zhang, X., Wang, O., Wu, W., Zhu, S., Zhang, D., Zhou, F., & Ji, B. (2014). Evaluation of γ-aminobutyric acid, phytate and antioxidant activity of tempeh-like fermented oats (Avena sativa L.) prepared with different filamentous fungi. Journal of food science and technology, 51(10), 2544-2551.
Chancharoonpong, C., Hsieh, P. C., & Sheu, S. C. (2012). Enzyme production and growth of Aspergillus oryzae S. on soybean koji fermentation. Apcbee Procedia, 2, 57-61.
Chauve, M., Mathis, H., Huc, D., Casanave, D., Monot, F., & Ferreira, N. L. (2010). Comparative kinetic analysis of two fungal β-glucosidases. Biotechnology for biofuels, 3(1), 3.
Chen, H. (2013). Modern solid state fermentation. Netherlands: Springer.
Chu, C.-C., Chen, S.-Y., Chyau, C.-C., Fu, Z.-H., Liu, C.-C., & Duh, P.-D. (2016). Protective effect of Djulis (Chenopodium formosanum) and its bioactive compounds against carbon tetrachloride-induced liver injury, in vivo. Journal of Functional Foods, 26, 585-597.
Chuang, K.-J., Chen, Z.-J., Cheng, C.-L., & Hong, G.-B. (2018). Investigation of the antioxidant capacity, insecticidal ability and oxidation stability of Chenopodium formosanum seed extract. International journal of molecular sciences, 19(9), 2726.
Dhakal, R., Bajpai, V. K., & Baek, K.-H. (2012). Production of GABA (γ-aminobutyric acid) by microorganisms: a review. Brazilian Journal of Microbiology, 43(4), 1230-1241.
Diana, M., Quílez, J., & Rafecas, M. (2014). Gamma-aminobutyric acid as a bioactive compound in foods: a review. Journal of Functional Foods, 10, 407-420.
Duliński, R., Starzyńska-Janiszewska, A., Byczyński, Ł., & Błaszczyk, U. (2017). Myo-inositol phosphates profile of buckwheat and quinoa seeds: Effects of hydrothermal processing and solid-state fermentation with Rhizopus oligosporus. International Journal of Food Properties, 20(9), 2088-2095.
Escribano, J., Cabanes, J., Jiménez-Atiénzar, M., Ibañez-Tremolada, M., Gómez-Pando, L. R., García-Carmona, F., & Gandía-Herrero, F. (2017). Characterization of betalains, saponins and antioxidant power in differently colored quinoa (Chenopodium quinoa) varieties. Food Chemistry, 234, 285-294.
Evstatieva, Y., Nikolova, D., Ilieva, S., Getov, L., & Savov, V. (2010). Identification and characterization of α-amylase and endoxylanase, produced by Aspergillus mutant strains. Biotechnology & Biotechnological Equipment, 24(sup1), 613-617.
Filho, A. M. M., Pirozi, M. R., Borges, J. T. D. S., Pinheiro Sant''Ana, H. M., Chaves, J. B. P., & Coimbra, J. S. D. R. (2017). Quinoa: nutritional, functional, and antinutritional aspects. Critical Reviews in Food Science and Nutrition, 57(8), 1618-1630.
Fischer, S., Wilckens, R., Jara, J., Aranda, M., Valdivia, W., Bustamante, L., Graf, F., & Obal, I. (2017). Protein and antioxidant composition of quinoa (Chenopodium quinoa Willd.) sprout from seeds submitted to water stress, salinity and light conditions. Industrial Crops and Products, 107, 558-564.
Fleming, J. (1995). Quinoa (Chenopodium quinoa). Cereals and pseudocereals, 3-83.
Galano, A., Mazzone, G., Alvarez-Diduk, R., Marino, T., Alvarez-Idaboy, J. R., & Russo, N. (2016). Food antioxidants: chemical insights at the molecular level. Annual review of food science and technology, 7, 335-352.
Gawlik-Dziki, U., Świeca, M., Sułkowski, M., Dziki, D., Baraniak, B., & Czyż, J. (2013). Antioxidant and anticancer activities of Chenopodium quinoa leaves extracts–in vitro study. Food and Chemical Toxicology, 57, 154-160.
Gómez-Caravaca, A. M., Iafelice, G., Lavini, A., Pulvento, C., Caboni, M. F., & Marconi, E. (2012). Phenolic compounds and saponins in quinoa samples (Chenopodium quinoa Willd.) grown under different saline and nonsaline irrigation regimens. Journal of agricultural and food chemistry, 60(18), 4620-4627.
Gordillo-Bastidas, E., Díaz-Rizzolo, D., Roura, E., Massanés, T., & Gomis, R. (2016). Quinoa (Chenopodium quinoa Willd), from nutritional value to potential health benefits: an integrative review. J. Nutr. Food Sci, 6(497), 10.4172.
Graf, B. L., Rojas‐Silva, P., Rojo, L. E., Delatorre‐Herrera, J., Baldeón, M. E., & Raskin, I. (2015). Innovations in health value and functional food development of quinoa (Chenopodium quinoa Willd.). Comprehensive reviews in food science and food safety, 14(4), 431-445.
Gupta, S., Lee, J. J., & Chen, W. N. (2018). Analysis of improved nutritional composition of potential functional food (Okara) after probiotic solid-state fermentation. Journal of agricultural and food chemistry, 66(21), 5373-5381.
Hsu, B., Lin, S., Inbaraj, B. S., & Chen, B. (2017). Simultaneous determination of phenolic acids and flavonoids in Chenopodium formosanum Koidz.(djulis) by HPLC-DAD-ESI–MS/MS. Journal of pharmaceutical and biomedical analysis, 132, 109-116.
Hur, J., Nguyen, T. T. H., Park, N., Kim, J., & Kim, D. (2018). Characterization of quinoa (Chenopodium quinoa) fermented by Rhizopus oligosporus and its bioactive properties. AMB Express, 8(1), 143.
Huynh, N., Van Camp, J., Smagghe, G., & Raes, K. (2014). Improved release and metabolism of flavonoids by steered fermentation processes: a review. International journal of molecular sciences, 15(11), 19369-19388.
Jacobsen, S.E., Mujica, A., & Jensen, C. (2003). The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors. Food Reviews International, 19(1-2), 99-109.
Jennessen, J., Schnürer, J., Olsson, J., Samson, R. A., & Dijksterhuis, J. (2008). Morphological characteristics of sporangiospores of the tempe fungus Rhizopus oligosporus differentiate it from other taxa of the R. microsporus group. Mycological research, 112(5), 547-563.
Jones, E., & Jennings, D. (1965). The effect of cations on the growth of fungi. New Phytologist, 64(1), 86-100.
Krull, R., & Bley, T. (2015). Filaments in bioprocesses (Vol. 149): Springer.
Kumar, V., Sinha, A. K., Makkar, H. P., & Becker, K. (2010). Dietary roles of phytate and phytase in human nutrition: A review. Food Chemistry, 120(4), 945-959.
Lee, I. H., Hung, Y. H., & Chou, C. C. (2008). Solid-state fermentation with fungi to enhance the antioxidative activity, total phenolic and anthocyanin contents of black bean. International Journal of Food Microbiology, 121(2), 150-156.
Lin, C. H., Wei, Y. T., & Chou, C. C. (2006). Enhanced antioxidative activity of soybean koji prepared with various filamentous fungi. Food microbiology, 23(7), 628-633.
Miszkiewicz, H., Bizukojc, M., Rozwandowicz, A., & Bielecki, S. (2004). Physiological properties and enzymatic activities of Rhizopus oligosporus in solid state fermentations. Electronic Journal of Polish Agricultural Universities, 7.
Nawar, W. (1996). Lipids in food chemistry. Marcel Dekker Inc, New York (USA), 225-319.
Nout, M., & Kiers, J. (2005). Tempe fermentation, innovation and functionality: update into the third millenium. Journal of applied microbiology, 98(4), 789-805.
Okada, T., Sugishita, T., Murakami, T., Murai, H., Saikusa, T., Horino, T., Onoda, A., Kajimoto, O., Takahashi, R., & Takahashi, T. (2000). Effect of the defatted rice germ enriched with GABA for sleeplessness, depression, autonomic disorder by oral administration. Journal of the Japanese Society for Food Science and Technology, 47(8), 596-603.
Pandey, A. (2003). Solid-state fermentation. Biochemical Engineering Journal, 13(2-3), 81-84.
Park, J. H., Lee, Y. J., Kim, Y. H., & Yoon, K. S. (2017). Antioxidant and antimicrobial activities of Quinoa (Chenopodium quinoa Willd.) seeds cultivated in Korea. Preventive nutrition and food science, 22(3), 195.
Pisoschi, A. M., & Pop, A. (2015). The role of antioxidants in the chemistry of oxidative stress: A review. European journal of medicinal chemistry, 97, 55-74.
Prego, I., Maldonado, S., & Otegui, M. (1998). Seed structure and localization of reserves in Chenopodium quinoa. Annals of Botany, 82(4), 481-488.
Purwadaria, H. K., Fardiaz, D., Kardono, L. B. S., & McElhatton, A. (2016). Tempe from traditional to modern practices Modernization of Traditional Food Processes and Products (pp. 145-160): Springer.
Repo-Carrasco-Valencia, R., Hellström, J. K., Pihlava, J.-M., & Mattila, P. H. (2010). Flavonoids and other phenolic compounds in Andean indigenous grains: Quinoa (Chenopodium quinoa), kañiwa (Chenopodium pallidicaule) and kiwicha (Amaranthus caudatus). Food Chemistry, 120(1), 128-133.
Rodrigues, T. H., Pinto, G. A., & Gonçalves, L. R. (2008). Effects of inoculum concentration, temperature, and carbon sources on tannase production during solid state fermentation of cashew apple bagasse. Biotechnology and Bioprocess Engineering, 13(5), 571-576.
Sandhu, K. S., & Punia, S. (2017). Enhancement of bioactive compounds in barley cultivars by solid substrate fermentation. Journal of Food Measurement and Characterization, 11(3), 1355-1361.
Schmidt, C. G., & Furlong, E. B. (2012). Effect of particle size and ammonium sulfate concentration on rice bran fermentation with the fungus Rhizopus oryzae. Bioresource Technology, 123, 36-41.
Shahidi, F., & Zhong, Y. (2010). Lipid oxidation and improving the oxidative stability. Chemical Society Reviews, 39(11), 4067-4079.
Sinha, A. (2007). Botany for degree students FUNGI: S. Chand Publishing.
Sparringa, R., Kendall, M., Westby, A., & Owens, J. (2002). Effects of temperature, pH, water activity and CO2 concentration on growth of Rhizopus oligosporus NRRL 2710. Journal of applied microbiology, 92(2), 329-337.
Starzyńska-Janiszewska, A., Duliński, R., Stodolak, B., Mickowska, B., & Wikiera, A. (2016). Prolonged tempe-type fermentation in order to improve bioactive potential and nutritional parameters of quinoa seeds. Journal of Cereal Science, 71, 116-121.
Starzyńska-Janiszewska, A., Stodolak, B., Gómez-Caravaca, A. M., Mickowska, B., Martin-Garcia, B., & Byczyński, Ł. (2019). Mould starter selection for extended solid-state fermentation of quinoa. LWT, 99, 231-237.
Starzyńska‐Janiszewska, A., Bączkowicz, M., Sabat, R., Stodolak, B., & Witkowicz, R. (2017). Quinoa Tempe as a Value‐Added Food: Sensory, Nutritional, and Bioactive Parameters of Products from White, Red, and Black Seeds. Cereal Chemistry, 94(3), 491-496.
Starzyńska‐Janiszewska, A., Stodolak, B., Duliński, R., Bączkowicz, M., Mickowska, B., Wikiera, A., & Byczyński, Ł. (2016). Effect of solid‐state fermentation tempe type on antioxidant and nutritional parameters of buckwheat groats as compared with hydrothermal processing. Journal of Food Processing and Preservation, 40(2), 298-305.
Stenvert, N., & Moss, R. (1974). The separation and technological significance of the outer layers of the wheat grain. Journal of the Science of Food and Agriculture, 25(6), 629-635.
Stikic, R., Glamoclija, D., Demin, M., Vucelic-Radovic, B., Jovanovic, Z., Milojkovic-Opsenica, D., Jacobsen, S.-E., & Milovanovic, M. (2012). Agronomical and nutritional evaluation of quinoa seeds (Chenopodium quinoa Willd.) as an ingredient in bread formulations. Journal of Cereal Science, 55(2), 132-138.
Stuardo, M., & San Martín, R. (2008). Antifungal properties of quinoa (Chenopodium quinoa Willd) alkali treated saponins against Botrytis cinerea. Industrial Crops and Products, 27(3), 296-302.
Tajabadi, N., Ebrahimpour, A., Baradaran, A., Rahim, R. A., Mahyudin, N. A., Manap, M. Y. A., Bakar, F. A., & Saari, N. (2015). Optimization Of γ-Aminobutyric acid production by Lactobacillus plantarum Taj-Apis362 from honeybees. Molecules, 20(4), 6654-6669.
Tang, Y., Li, X., Zhang, B., Chen, P. X., Liu, R., & Tsao, R. (2015). Characterisation of phenolics, betanins and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food Chemistry, 166, 380-388.
Tang, Y., & Tsao, R. (2017). Phytochemicals in quinoa and amaranth grains and their antioxidant, anti‐inflammatory and potential health beneficial effects: a review. Molecular nutrition & food research.
Thanh, N., & Nout, M. (2002). Rhizopus oligosporus biomass, sporangiospore yield and viability as influenced by harvesting age and processing conditions. Food microbiology, 19(1), 91-96.
Tsai, P.-J., Chen, Y.-S., Sheu, C.-H., & Chen, C.-Y. (2011). Effect of nanogrinding on the pigment and bioactivity of djulis (Chenopodium formosanum Koidz.). Journal of agricultural and food chemistry, 59(5), 1814-1820.
Varzakas, T. (1998). Rhizopus oligosporus mycelial penetration and enzyme diffusion in soya bean tempe. Process Biochemistry, 33(7), 741-747.
Veberic, R., Jakopic, J., & Stampar, F. (2008). Internal fruit quality of figs (Ficus Carica L.) in the northern mediterranean region. Italian Journal of Food Science, 20(2).
Vong, W. C., Hua, X. Y., & Liu, S.-Q. (2018). Solid-state fermentation with Rhizopus oligosporus and Yarrowia lipolytica improved nutritional and flavour properties of okara. LWT, 90, 316-322.
Walker, G. M., & White, N. A. (2017). Introduction to fungal physiology. Fungi: biology and applications, 1-35.
Wu, G. (2015). Nutritional properties of quinoa. Quinoa: Improvement and Sustainable Production, 193-210.
Wu, G., Morris, C. F., & Murphy, K. M. (2017). Quinoa starch characteristics and their correlations with the texture profile analysis (TPA) of cooked quinoa. Journal of food science, 82(10), 2387-2395.
Wu, G., Ross, C. F., Morris, C. F., & Murphy, K. M. (2017). Lexicon development, consumer acceptance, and drivers of liking of quinoa varieties. Journal of food science, 82(4), 993-1005.
Xu, N., Wei, L., & Liu, J. (2017). Biotechnological advances and perspectives of gamma-aminobutyric acid production. World Journal of Microbiology and Biotechnology, 33(3), 64.
Yin, Z., Wu, W., Sun, C., Lei, Z., Chen, H., Liu, H., Chen, W., Ma, J., Min, T., & Zhang, M. (2018). Comparison of releasing bound phenolic acids from wheat bran by fermentation of three Aspergillus species. International journal of food science & technology, 53(5), 1120-1130.
Yolmeh, M., & Jafari, S. M. (2017). Applications of response surface methodology in the food industry processes. Food and Bioprocess Technology, 10(3), 413-433.
Zhang, Q., Pan, J., Wang, Y., Lubet, R., & You, M. (2013). Beetroot red (betanin) inhibits vinyl carbamate‐and benzo (a) pyrene‐induced lung tumorigenesis through apoptosis. Molecular carcinogenesis, 52(9), 686-691.
Zhu, Y., Cheng, Y., Wang, L., Fan, J., & Li, L. (2008). Enhanced antioxidative activity of Chinese traditionally fermented Okara (Meitauza) prepared with various microorganism. International Journal of Food Properties, 11(3), 519-529.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊