中華民國 (台灣) 經濟部標準檢驗局 (CNS) (1984)。食品中水分之檢驗方法。總號5033。
中華民國 (台灣) 經濟部標準檢驗局 (CNS) (1984)。食品中粗灰分之檢驗方法。總號5034。
中華民國 (台灣) 經濟部標準檢驗局 (CNS) (1984)。食品中粗脂肪之檢驗方法。總號5036。
中華民國 (台灣) 經濟部標準檢驗局 (CNS) (1986)。食品中粗蛋白之檢驗方法。總號5035。
Bibek Ray and Arun Bhunia (2015)。基礎食品微生物學。偉明圖書有限公司。臺灣。
涂庭瑋 (2016)。以固態發酵製備猴頭菇糙米及其抗氧化性質。東海大學食品科學系。碩士學位論文。臺中。林筱茜 (2012)。台灣藜萃取物抗致突變及抗氧化能力分析。嘉南藥理科技大學保健營養系。碩士學位論文。臺南。朱格麟 (1995)。藜科植物的起源、分化和地理分布。植物分類學報 34:486-504。
郭耀綸、楊遠波、蔡碧仁、葛孟杰 (2008)。紅藜推廣手冊。行政院農業委員會林務局資料。
陳靖雅 (2016)。米糠微細化與其萃取物之理化特性及添加豆花之質地修飾。輔仁大學食品科學系。碩士學位論文。新北市。鄭伊娟 (2010)。台灣藜之開發應用成果介紹。行政院農業委員會。臺灣。
USDA Food Composition Databases.
Abderrahim, F., Huanatico, E., Segura, R., Arribas, S., Gonzalez, M. C., & Condezo-Hoyos, L. (2015). Physical features, phenolic compounds, betalains and total antioxidant capacity of coloured quinoa seeds (Chenopodium quinoa Willd.) from Peruvian Altiplano. Food Chemistry, 183, 83-90.
Alvarez-Jubete, L., Wijngaard, H., Arendt, E., & Gallagher, E. (2010). Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa buckwheat and wheat as affected by sprouting and baking. Food Chemistry, 119(2), 770-778.
Apak, R., Ozyurek, M., Guclu, K., & Capanoglu, E. (2016). Antioxidant activity/capacity measurement. 3. Reactive oxygen and nitrogen species (ROS/RNS) scavenging assays, oxidative stress biomarkers, and chromatographic/chemometric assays. Journal of agricultural and food chemistry, 64(5), 1046-1070.
Azeke, M. A., Greiner, R., & JANY, K. D. (2011). Purification and characterization of two intracellular phytases from the tempeh fungus Rhizopus oligosporus. Journal of food biochemistry, 35(1), 213-227.
Banerjee, R., Mukherjee, G., & Patra, K. C. (2005). Microbial transformation of tannin-rich substrate to gallic acid through co-culture method. Bioresource Technology, 96(8), 949-953.
Baumann, U., & Bisping, B. (1995). Proteolysis during tempe fermentation. Food microbiology, 12, 39-47.
Bertero, H., De la Vega, A., Correa, G., Jacobsen, S., & Mujica, A. (2004). Genotype and genotype-by-environment interaction effects for grain yield and grain size of quinoa (Chenopodium quinoa Willd.) as revealed by pattern analysis of international multi-environment trials. Field Crops Research, 89(2-3), 299-318.
Bohn, T., Davidsson, L., Walczyk, T., & Hurrell, R. F. (2004). Phytic acid added to white-wheat bread inhibits fractional apparent magnesium absorption in humans. The American journal of clinical nutrition, 79(3), 418-423.
Box, G. E., & Wilson, K. B. (1951). On the experimental attainment of optimum conditions. Journal of the Royal Statistical Society: Series B (Methodological), 13(1), 1-38.
Cai, S., Gao, F., Zhang, X., Wang, O., Wu, W., Zhu, S., Zhang, D., Zhou, F., & Ji, B. (2014). Evaluation of γ-aminobutyric acid, phytate and antioxidant activity of tempeh-like fermented oats (Avena sativa L.) prepared with different filamentous fungi. Journal of food science and technology, 51(10), 2544-2551.
Chancharoonpong, C., Hsieh, P. C., & Sheu, S. C. (2012). Enzyme production and growth of Aspergillus oryzae S. on soybean koji fermentation. Apcbee Procedia, 2, 57-61.
Chauve, M., Mathis, H., Huc, D., Casanave, D., Monot, F., & Ferreira, N. L. (2010). Comparative kinetic analysis of two fungal β-glucosidases. Biotechnology for biofuels, 3(1), 3.
Chen, H. (2013). Modern solid state fermentation. Netherlands: Springer.
Chu, C.-C., Chen, S.-Y., Chyau, C.-C., Fu, Z.-H., Liu, C.-C., & Duh, P.-D. (2016). Protective effect of Djulis (Chenopodium formosanum) and its bioactive compounds against carbon tetrachloride-induced liver injury, in vivo. Journal of Functional Foods, 26, 585-597.
Chuang, K.-J., Chen, Z.-J., Cheng, C.-L., & Hong, G.-B. (2018). Investigation of the antioxidant capacity, insecticidal ability and oxidation stability of Chenopodium formosanum seed extract. International journal of molecular sciences, 19(9), 2726.
Dhakal, R., Bajpai, V. K., & Baek, K.-H. (2012). Production of GABA (γ-aminobutyric acid) by microorganisms: a review. Brazilian Journal of Microbiology, 43(4), 1230-1241.
Diana, M., Quílez, J., & Rafecas, M. (2014). Gamma-aminobutyric acid as a bioactive compound in foods: a review. Journal of Functional Foods, 10, 407-420.
Duliński, R., Starzyńska-Janiszewska, A., Byczyński, Ł., & Błaszczyk, U. (2017). Myo-inositol phosphates profile of buckwheat and quinoa seeds: Effects of hydrothermal processing and solid-state fermentation with Rhizopus oligosporus. International Journal of Food Properties, 20(9), 2088-2095.
Escribano, J., Cabanes, J., Jiménez-Atiénzar, M., Ibañez-Tremolada, M., Gómez-Pando, L. R., García-Carmona, F., & Gandía-Herrero, F. (2017). Characterization of betalains, saponins and antioxidant power in differently colored quinoa (Chenopodium quinoa) varieties. Food Chemistry, 234, 285-294.
Evstatieva, Y., Nikolova, D., Ilieva, S., Getov, L., & Savov, V. (2010). Identification and characterization of α-amylase and endoxylanase, produced by Aspergillus mutant strains. Biotechnology & Biotechnological Equipment, 24(sup1), 613-617.
Filho, A. M. M., Pirozi, M. R., Borges, J. T. D. S., Pinheiro Sant''Ana, H. M., Chaves, J. B. P., & Coimbra, J. S. D. R. (2017). Quinoa: nutritional, functional, and antinutritional aspects. Critical Reviews in Food Science and Nutrition, 57(8), 1618-1630.
Fischer, S., Wilckens, R., Jara, J., Aranda, M., Valdivia, W., Bustamante, L., Graf, F., & Obal, I. (2017). Protein and antioxidant composition of quinoa (Chenopodium quinoa Willd.) sprout from seeds submitted to water stress, salinity and light conditions. Industrial Crops and Products, 107, 558-564.
Fleming, J. (1995). Quinoa (Chenopodium quinoa). Cereals and pseudocereals, 3-83.
Galano, A., Mazzone, G., Alvarez-Diduk, R., Marino, T., Alvarez-Idaboy, J. R., & Russo, N. (2016). Food antioxidants: chemical insights at the molecular level. Annual review of food science and technology, 7, 335-352.
Gawlik-Dziki, U., Świeca, M., Sułkowski, M., Dziki, D., Baraniak, B., & Czyż, J. (2013). Antioxidant and anticancer activities of Chenopodium quinoa leaves extracts–in vitro study. Food and Chemical Toxicology, 57, 154-160.
Gómez-Caravaca, A. M., Iafelice, G., Lavini, A., Pulvento, C., Caboni, M. F., & Marconi, E. (2012). Phenolic compounds and saponins in quinoa samples (Chenopodium quinoa Willd.) grown under different saline and nonsaline irrigation regimens. Journal of agricultural and food chemistry, 60(18), 4620-4627.
Gordillo-Bastidas, E., Díaz-Rizzolo, D., Roura, E., Massanés, T., & Gomis, R. (2016). Quinoa (Chenopodium quinoa Willd), from nutritional value to potential health benefits: an integrative review. J. Nutr. Food Sci, 6(497), 10.4172.
Graf, B. L., Rojas‐Silva, P., Rojo, L. E., Delatorre‐Herrera, J., Baldeón, M. E., & Raskin, I. (2015). Innovations in health value and functional food development of quinoa (Chenopodium quinoa Willd.). Comprehensive reviews in food science and food safety, 14(4), 431-445.
Gupta, S., Lee, J. J., & Chen, W. N. (2018). Analysis of improved nutritional composition of potential functional food (Okara) after probiotic solid-state fermentation. Journal of agricultural and food chemistry, 66(21), 5373-5381.
Hsu, B., Lin, S., Inbaraj, B. S., & Chen, B. (2017). Simultaneous determination of phenolic acids and flavonoids in Chenopodium formosanum Koidz.(djulis) by HPLC-DAD-ESI–MS/MS. Journal of pharmaceutical and biomedical analysis, 132, 109-116.
Hur, J., Nguyen, T. T. H., Park, N., Kim, J., & Kim, D. (2018). Characterization of quinoa (Chenopodium quinoa) fermented by Rhizopus oligosporus and its bioactive properties. AMB Express, 8(1), 143.
Huynh, N., Van Camp, J., Smagghe, G., & Raes, K. (2014). Improved release and metabolism of flavonoids by steered fermentation processes: a review. International journal of molecular sciences, 15(11), 19369-19388.
Jacobsen, S.E., Mujica, A., & Jensen, C. (2003). The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors. Food Reviews International, 19(1-2), 99-109.
Jennessen, J., Schnürer, J., Olsson, J., Samson, R. A., & Dijksterhuis, J. (2008). Morphological characteristics of sporangiospores of the tempe fungus Rhizopus oligosporus differentiate it from other taxa of the R. microsporus group. Mycological research, 112(5), 547-563.
Jones, E., & Jennings, D. (1965). The effect of cations on the growth of fungi. New Phytologist, 64(1), 86-100.
Krull, R., & Bley, T. (2015). Filaments in bioprocesses (Vol. 149): Springer.
Kumar, V., Sinha, A. K., Makkar, H. P., & Becker, K. (2010). Dietary roles of phytate and phytase in human nutrition: A review. Food Chemistry, 120(4), 945-959.
Lee, I. H., Hung, Y. H., & Chou, C. C. (2008). Solid-state fermentation with fungi to enhance the antioxidative activity, total phenolic and anthocyanin contents of black bean. International Journal of Food Microbiology, 121(2), 150-156.
Lin, C. H., Wei, Y. T., & Chou, C. C. (2006). Enhanced antioxidative activity of soybean koji prepared with various filamentous fungi. Food microbiology, 23(7), 628-633.
Miszkiewicz, H., Bizukojc, M., Rozwandowicz, A., & Bielecki, S. (2004). Physiological properties and enzymatic activities of Rhizopus oligosporus in solid state fermentations. Electronic Journal of Polish Agricultural Universities, 7.
Nawar, W. (1996). Lipids in food chemistry. Marcel Dekker Inc, New York (USA), 225-319.
Nout, M., & Kiers, J. (2005). Tempe fermentation, innovation and functionality: update into the third millenium. Journal of applied microbiology, 98(4), 789-805.
Okada, T., Sugishita, T., Murakami, T., Murai, H., Saikusa, T., Horino, T., Onoda, A., Kajimoto, O., Takahashi, R., & Takahashi, T. (2000). Effect of the defatted rice germ enriched with GABA for sleeplessness, depression, autonomic disorder by oral administration. Journal of the Japanese Society for Food Science and Technology, 47(8), 596-603.
Pandey, A. (2003). Solid-state fermentation. Biochemical Engineering Journal, 13(2-3), 81-84.
Park, J. H., Lee, Y. J., Kim, Y. H., & Yoon, K. S. (2017). Antioxidant and antimicrobial activities of Quinoa (Chenopodium quinoa Willd.) seeds cultivated in Korea. Preventive nutrition and food science, 22(3), 195.
Pisoschi, A. M., & Pop, A. (2015). The role of antioxidants in the chemistry of oxidative stress: A review. European journal of medicinal chemistry, 97, 55-74.
Prego, I., Maldonado, S., & Otegui, M. (1998). Seed structure and localization of reserves in Chenopodium quinoa. Annals of Botany, 82(4), 481-488.
Purwadaria, H. K., Fardiaz, D., Kardono, L. B. S., & McElhatton, A. (2016). Tempe from traditional to modern practices Modernization of Traditional Food Processes and Products (pp. 145-160): Springer.
Repo-Carrasco-Valencia, R., Hellström, J. K., Pihlava, J.-M., & Mattila, P. H. (2010). Flavonoids and other phenolic compounds in Andean indigenous grains: Quinoa (Chenopodium quinoa), kañiwa (Chenopodium pallidicaule) and kiwicha (Amaranthus caudatus). Food Chemistry, 120(1), 128-133.
Rodrigues, T. H., Pinto, G. A., & Gonçalves, L. R. (2008). Effects of inoculum concentration, temperature, and carbon sources on tannase production during solid state fermentation of cashew apple bagasse. Biotechnology and Bioprocess Engineering, 13(5), 571-576.
Sandhu, K. S., & Punia, S. (2017). Enhancement of bioactive compounds in barley cultivars by solid substrate fermentation. Journal of Food Measurement and Characterization, 11(3), 1355-1361.
Schmidt, C. G., & Furlong, E. B. (2012). Effect of particle size and ammonium sulfate concentration on rice bran fermentation with the fungus Rhizopus oryzae. Bioresource Technology, 123, 36-41.
Shahidi, F., & Zhong, Y. (2010). Lipid oxidation and improving the oxidative stability. Chemical Society Reviews, 39(11), 4067-4079.
Sinha, A. (2007). Botany for degree students FUNGI: S. Chand Publishing.
Sparringa, R., Kendall, M., Westby, A., & Owens, J. (2002). Effects of temperature, pH, water activity and CO2 concentration on growth of Rhizopus oligosporus NRRL 2710. Journal of applied microbiology, 92(2), 329-337.
Starzyńska-Janiszewska, A., Duliński, R., Stodolak, B., Mickowska, B., & Wikiera, A. (2016). Prolonged tempe-type fermentation in order to improve bioactive potential and nutritional parameters of quinoa seeds. Journal of Cereal Science, 71, 116-121.
Starzyńska-Janiszewska, A., Stodolak, B., Gómez-Caravaca, A. M., Mickowska, B., Martin-Garcia, B., & Byczyński, Ł. (2019). Mould starter selection for extended solid-state fermentation of quinoa. LWT, 99, 231-237.
Starzyńska‐Janiszewska, A., Bączkowicz, M., Sabat, R., Stodolak, B., & Witkowicz, R. (2017). Quinoa Tempe as a Value‐Added Food: Sensory, Nutritional, and Bioactive Parameters of Products from White, Red, and Black Seeds. Cereal Chemistry, 94(3), 491-496.
Starzyńska‐Janiszewska, A., Stodolak, B., Duliński, R., Bączkowicz, M., Mickowska, B., Wikiera, A., & Byczyński, Ł. (2016). Effect of solid‐state fermentation tempe type on antioxidant and nutritional parameters of buckwheat groats as compared with hydrothermal processing. Journal of Food Processing and Preservation, 40(2), 298-305.
Stenvert, N., & Moss, R. (1974). The separation and technological significance of the outer layers of the wheat grain. Journal of the Science of Food and Agriculture, 25(6), 629-635.
Stikic, R., Glamoclija, D., Demin, M., Vucelic-Radovic, B., Jovanovic, Z., Milojkovic-Opsenica, D., Jacobsen, S.-E., & Milovanovic, M. (2012). Agronomical and nutritional evaluation of quinoa seeds (Chenopodium quinoa Willd.) as an ingredient in bread formulations. Journal of Cereal Science, 55(2), 132-138.
Stuardo, M., & San Martín, R. (2008). Antifungal properties of quinoa (Chenopodium quinoa Willd) alkali treated saponins against Botrytis cinerea. Industrial Crops and Products, 27(3), 296-302.
Tajabadi, N., Ebrahimpour, A., Baradaran, A., Rahim, R. A., Mahyudin, N. A., Manap, M. Y. A., Bakar, F. A., & Saari, N. (2015). Optimization Of γ-Aminobutyric acid production by Lactobacillus plantarum Taj-Apis362 from honeybees. Molecules, 20(4), 6654-6669.
Tang, Y., Li, X., Zhang, B., Chen, P. X., Liu, R., & Tsao, R. (2015). Characterisation of phenolics, betanins and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food Chemistry, 166, 380-388.
Tang, Y., & Tsao, R. (2017). Phytochemicals in quinoa and amaranth grains and their antioxidant, anti‐inflammatory and potential health beneficial effects: a review. Molecular nutrition & food research.
Thanh, N., & Nout, M. (2002). Rhizopus oligosporus biomass, sporangiospore yield and viability as influenced by harvesting age and processing conditions. Food microbiology, 19(1), 91-96.
Tsai, P.-J., Chen, Y.-S., Sheu, C.-H., & Chen, C.-Y. (2011). Effect of nanogrinding on the pigment and bioactivity of djulis (Chenopodium formosanum Koidz.). Journal of agricultural and food chemistry, 59(5), 1814-1820.
Varzakas, T. (1998). Rhizopus oligosporus mycelial penetration and enzyme diffusion in soya bean tempe. Process Biochemistry, 33(7), 741-747.
Veberic, R., Jakopic, J., & Stampar, F. (2008). Internal fruit quality of figs (Ficus Carica L.) in the northern mediterranean region. Italian Journal of Food Science, 20(2).
Vong, W. C., Hua, X. Y., & Liu, S.-Q. (2018). Solid-state fermentation with Rhizopus oligosporus and Yarrowia lipolytica improved nutritional and flavour properties of okara. LWT, 90, 316-322.
Walker, G. M., & White, N. A. (2017). Introduction to fungal physiology. Fungi: biology and applications, 1-35.
Wu, G. (2015). Nutritional properties of quinoa. Quinoa: Improvement and Sustainable Production, 193-210.
Wu, G., Morris, C. F., & Murphy, K. M. (2017). Quinoa starch characteristics and their correlations with the texture profile analysis (TPA) of cooked quinoa. Journal of food science, 82(10), 2387-2395.
Wu, G., Ross, C. F., Morris, C. F., & Murphy, K. M. (2017). Lexicon development, consumer acceptance, and drivers of liking of quinoa varieties. Journal of food science, 82(4), 993-1005.
Xu, N., Wei, L., & Liu, J. (2017). Biotechnological advances and perspectives of gamma-aminobutyric acid production. World Journal of Microbiology and Biotechnology, 33(3), 64.
Yin, Z., Wu, W., Sun, C., Lei, Z., Chen, H., Liu, H., Chen, W., Ma, J., Min, T., & Zhang, M. (2018). Comparison of releasing bound phenolic acids from wheat bran by fermentation of three Aspergillus species. International journal of food science & technology, 53(5), 1120-1130.
Yolmeh, M., & Jafari, S. M. (2017). Applications of response surface methodology in the food industry processes. Food and Bioprocess Technology, 10(3), 413-433.
Zhang, Q., Pan, J., Wang, Y., Lubet, R., & You, M. (2013). Beetroot red (betanin) inhibits vinyl carbamate‐and benzo (a) pyrene‐induced lung tumorigenesis through apoptosis. Molecular carcinogenesis, 52(9), 686-691.
Zhu, Y., Cheng, Y., Wang, L., Fan, J., & Li, L. (2008). Enhanced antioxidative activity of Chinese traditionally fermented Okara (Meitauza) prepared with various microorganism. International Journal of Food Properties, 11(3), 519-529.