跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/18 22:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:彭芝皜
研究生(外文):Chih-Hao Peng
論文名稱:中國橄欖萃取物於不同葡萄糖濃度下造成人類大腸癌細胞生長情形差異及其相關機制之探討
論文名稱(外文):Study on Chinese olive (Canarium album L.) mediated differential growth properties in human colon cancer cells upon different glucose concentration and the underlying molecular mechanism
指導教授:謝淑貞謝淑貞引用關係
口試委員:黃智興郭靜娟廖憶純
口試日期:2019-07-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:食品科技研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:68
中文關鍵詞:大腸癌中國橄欖萃取物葡萄糖脂肪酸氧化
DOI:10.6342/NTU201903949
相關次數:
  • 被引用被引用:0
  • 點閱點閱:136
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中國橄欖(Canarium album L.)的果實或其他部位分離出來的純物質已被證實具有許多生理機能效果,例如護肝、抗氧化等,但目前中國橄欖萃取物對癌細胞影響的研究甚少,而本研究室先前的研究指出,中國橄欖水萃物殘渣,甲醇萃取之乙酸乙酯區分層(COE)具有抑制以小鼠大腸癌細胞CT26誘發之腫瘤及大腸癌細胞增生之功效。在腫瘤形成初期,癌細胞快速增生,內層癌細胞距離血管較遠,難以獲得氧氣及葡萄糖,因此本研究擬進一步探討COE於不同葡萄糖環境中抑制大腸癌細胞的功效以及相關機制。我們使用人類大腸癌細胞HCT116作為模式,分別於高濃度(4.5 g/L)及低濃度(1 g/L)葡萄糖的環境下培養,並給予不同劑量的COE,比較其對細胞存活率、癌化能力、爬行能力的影響。我們發現,的COE在高葡萄糖下能夠有效抑制HCT116,但是在低葡萄糖中,抑制效果反而較差,群落生成試驗中也看到低葡萄糖中COE的抑制能力顯著較差,轉移能力則是不受葡萄糖濃度影響。進一步檢測其中可能的分子機制時發現,在低葡萄糖環境中COE透過大幅增加AMPK磷酸化而提昇其活性,因而藉著增加乙酰輔酶A羧化酶(acetyl-CoA carboxylase,ACC)磷酸化而降低其活性,並使得脂肪酸氧化(fatty acid oxidation,FAO)相關基因表現大幅增加,高葡萄糖中則較不顯著,推斷此為COE在不同葡萄糖濃度中造成不同生長效應的主因。而當COE劑量超過400 μg/ml時開始造成粒線體損傷,推測增加的FAO因而無法透過粒線體產生ATP,因此有毒殺HCT116的效應。雖然近年來有越來越多文獻指出植萃物(phytochemicals)具有抑制癌細胞的潛力,本研究結果顯示出某些植化素在使用上當注意其對不同狀態的癌細胞可能有相反的效應,必須謹慎應用。
The pure compounds isolated from the fruit or other parts of Chinese olive (Canarium album L.) have been proven to have many physiological functions such as liver protection, and anti-oxidation. However, little is known about the effects of Chinese olive extracts on cancer cells. Previous research in our lab indicates that the ethyl acetate fraction of ethanol extract of Chinese olive water extract residue (COE) exhibits anti-tumor effect in both cell and animal models. In the early stage of tumor formation, cancer cells rapidly proliferate, thus makes the inner cancer cells lack the supply of oxygen and glucose. Therefore, this study intends to investigate the anti-tumor effect of COE in either high or low glucose. We have treated HCT116 cells with different concentration of COE at different glucose concentrations, and examined the efficacy of COE on cell viability, colony formation, and migration. We found that COE at effectively inhibit HCT116 cell growth in high glucose. However, in low glucose, the inhibitory effect is rather poor. Also, in clonogenic assay, less inhibitory effect of COE in low glucose was observed. Furthermore, in low glucose, COE could further activate AMPK and the consequent inactivation of ACC as well as the enhancement of fatty acid oxidation (FAO) related genes. This phenomenon was less significant in high glucose, which caused opposite growth effects in different glucose levels upon COE treatment. COE dose exceeds 400 μg/ml would damage mitochondrial and leads to apoptosis, which can no longer rescue cells by the additional function of COE on increasing FAO mediated energy production. Although more and more studies point out that phytochemicals have the potential to inhibit cancer cells, here the results suggested that the opposite effects upon different concentration of glucose should be considered before using phytochemicals for cancer therapy.
謝誌 I
摘要 II
ABSTRACT III
目錄 V
圖目錄 VIII
表目錄 IX
縮寫表 X
第一章 前言 1
第二章 文獻回顧 2
第一節 癌症及其代謝 2
1. 癌化(carcinogenesis) 2
2. 有氧糖解(Warburg Effect) 2
3. 戊糖磷酸化路徑(pentose phosphate pathway) 3
4. AMPK(AMP-activated protein kinase) 路徑 4
5. 脂肪酸代謝(Fatty acid oxidation,FAO) 4
第二節 大腸直腸癌 7
1. 大腸直腸癌分級 7
2. 葡萄糖濃度對大腸直腸癌的影響 8
第三節 粒線體 9
1. 癌細胞的粒線體 9
2. 粒線體失能(mitochondrial dysfunction) 10
第四節 中國橄欖 12
1. 中國橄欖中的成分 12
2. 中國橄欖的生物活性 12
3. 其他橄欖屬(Canarium)相關研究 13
第三章 研究目標與實驗架構 15
第一節 研究目標 15
第二節 實驗架構 16
第四章 材料與方法 17
第一節 實驗材料 17
第二節 實驗方法 21
1. 細胞培養 21
2. 細胞存活率試驗 21
3. 細胞生長曲線 22
4. 細胞凋亡檢測 22
5. BCA蛋白定量法 22
6. 粒線體膜電位檢測 23
7. 細胞總RNA萃取 24
8. DNA/RNA電泳 24
9. 反轉錄 25
10. 即時定量聚合酶連鎖反應 25
11. 群落生成(克隆試驗) 26
12. 傷口癒合試驗 26
13. 西方墨點法 26
14. 統計方法 29
第五章 實驗結果 30
第一節 不同葡萄糖濃度下COE對HCT116生長情形及惡性程度的影響 30
第二節 不同葡萄糖濃度中COE促進脂肪酸氧化的程度不同 39
第三節 COE在不同葡萄糖濃度環境中造成不同程度的細胞凋亡 45
第四節 不同劑量的COE對粒線體造成不同影響,與葡萄糖濃度無關 52
第六章 討論 57
第七章 結論 60
參考文獻 61
1.Malarkey, D. E.; Hoenerhoff, M.; Maronpot, R. R., Carcinogenesis: Mechanisms and manifestations. In Haschek and Rousseaux''s Handbook of Toxicologic Pathology, Elsevier: 2013; pp 107-146.
2.Hanahan, D.; Weinberg, R. A., The hallmarks of cancer. cell 2000, 100, 57-70.
3.Pitot, H. C., The molecular biology of carcinogenesis. Cancer 1993, 72, 962-70.
4.Tennant, D. A.; Durán, R. V.; Gottlieb, E., Targeting metabolic transformation for cancer therapy. Nature reviews cancer 2010, 10, 267.
5.Helmlinger, G.; Yuan, F.; Dellian, M.; Jain, R. K., Interstitial pH and pO 2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nature medicine 1997, 3, 177.
6.Vander Heiden, M. G.; Cantley, L. C.; Thompson, C. B., Understanding the Warburg effect: the metabolic requirements of cell proliferation. science 2009, 324, 1029-1033.
7.Cairns, R.; Harris, I.; McCracken, S.; Mak, T. In Cancer cell metabolism, Cold Spring Harbor symposia on quantitative biology, 2011; Cold Spring Harbor Laboratory Press: 2011; pp 299-311.
8.Gatenby, R.; Smallbone, K.; Maini, P.; Rose, F.; Averill, J.; Nagle, R. B.; Worrall, L.; Gillies, R., Cellular adaptations to hypoxia and acidosis during somatic evolution of breast cancer. British journal of cancer 2007, 97, 646.
9.Gillies, R. J.; Robey, I.; Gatenby, R. A., Causes and consequences of increased glucose metabolism of cancers. Journal of Nuclear Medicine 2008, 49, 24S.
10.Kruger, N. J.; von Schaewen, A., The oxidative pentose phosphate pathway: structure and organisation. Current opinion in plant biology 2003, 6, 236-246.
11.Jiang, P.; Du, W.; Wu, M., Regulation of the pentose phosphate pathway in cancer. Protein & cell 2014, 5, 592-602.
12.Düvel, K.; Yecies, J. L.; Menon, S.; Raman, P.; Lipovsky, A. I.; Souza, A. L.; Triantafellow, E.; Ma, Q.; Gorski, R.; Cleaver, S., Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Molecular cell 2010, 39, 171-183.
13.Schwartzenberg-Bar-Yoseph, F.; Armoni, M.; Karnieli, E., The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer research 2004, 64, 2627-2633.
14.Hitosugi, T.; Zhou, L.; Elf, S.; Fan, J.; Kang, H.-B.; Seo, J. H.; Shan, C.; Dai, Q.; Zhang, L.; Xie, J., Phosphoglycerate mutase 1 coordinates glycolysis and biosynthesis to promote tumor growth. Cancer cell 2012, 22, 585-600.
15.Patra, K. C.; Wang, Q.; Bhaskar, P. T.; Miller, L.; Wang, Z.; Wheaton, W.; Chandel, N.; Laakso, M.; Muller, W. J.; Allen, E. L., Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer cell 2013, 24, 213-228.
16.Nogueira, V.; Hay, N., Molecular pathways: reactive oxygen species homeostasis in cancer cells and implications for cancer therapy. Clinical Cancer Research 2013, 19, 4309-4314.
17.Schafer, Z. T.; Grassian, A. R.; Song, L.; Jiang, Z.; Gerhart-Hines, Z.; Irie, H. Y.; Gao, S.; Puigserver, P.; Brugge, J. S., Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature 2009, 461, 109.
18.Jeon, S.-M.; Chandel, N. S.; Hay, N., AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature 2012, 485, 661.
19.Jeon, S.-M.; Hay, N., The dark face of AMPK as an essential tumor promoter. Cellular logistics 2012, 2, 197-202.
20.Carracedo, A.; Cantley, L. C.; Pandolfi, P. P., Cancer metabolism: fatty acid oxidation in the limelight. Nature reviews Cancer 2013, 13, 227.
21.Carracedo, A.; Weiss, D.; Leliaert, A. K.; Bhasin, M.; De Boer, V. C.; Laurent, G.; Adams, A. C.; Sundvall, M.; Song, S. J.; Ito, K., A metabolic prosurvival role for PML in breast cancer. The Journal of clinical investigation 2012, 122, 3088-3100.
22.Pike, L. S.; Smift, A. L.; Croteau, N. J.; Ferrick, D. A.; Wu, M., Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells. Biochimica et Biophysica Acta (BBA)-Bioenergetics 2011, 1807, 726-734.
23.Wu, J. S., Rectal cancer staging. Clinics in colon and rectal surgery 2007, 20, 148-157.
24.Deng, L.; Gui, Z.; Zhao, L.; Wang, J.; Shen, L., Diabetes mellitus and the incidence of colorectal cancer: an updated systematic review and meta-analysis. Digestive diseases and sciences 2012, 57, 1576-1585.
25.Huang, Y.-C.; Lin, J.-K.; Chen, W.-S.; Lin, T.-C.; Yang, S.-H.; Jiang, J.-K.; Chang, S.-C.; Lan, Y.-T.; Wang, H.-S.; Liu, C.-Y., Diabetes mellitus negatively impacts survival of patients with colon cancer, particularly in stage II disease. Journal of cancer research and clinical oncology 2011, 137, 211-220.
26.Vasconcelos-Dos-Santos, A.; Loponte, H.; Mantuano, N.; Oliveira, I.; De Paula, I.; Teixeira, L.; de-Freitas-Junior, J.; Gondim, K.; Heise, N.; Mohana-Borges, R., Hyperglycemia exacerbates colon cancer malignancy through hexosamine biosynthetic pathway. Oncogenesis 2017, 6, e306.
27.Lau, M.-F.; Vellasamy, S.; Chua, K.-H.; Sabaratnam, V.; Kuppusamy, U. R., Rosiglitazone diminishes the high-glucose-induced modulation of 5-fluorouracil cytotoxicity in colorectal cancer cells. EXCLI journal 2018, 17, 186.
28.Chen, Y.-C.; Ou, M.-C.; Fang, C.-W.; Lee, T.-H.; Tzeng, S.-L., High Glucose Concentrations Negatively Regulate the IGF1R/Src/ERK Axis through the MicroRNA-9 in Colorectal Cancer. Cells 2019, 8, 326.
29.Masur, K.; Vetter, C.; Hinz, A.; Tomas, N.; Henrich, H.; Niggemann, B.; Zänker, K., Diabetogenic glucose and insulin concentrations modulate transcriptom and protein levels involved in tumour cell migration, adhesion and proliferation. British journal of cancer 2011, 104, 345.
30.Stojanovski, D.; Johnston, A. J.; Streimann, I.; Hoogenraad, N. J.; Ryan, M. T., Import of nuclear-encoded proteins into mitochondria. Exp. Physiol. 2003, 88, 57-64.
31.Wallace, D. C., Mitochondrial genetics: a paradigm for aging and degenerative diseases? Science (New York, N.Y.) 1992, 256, 628-32.
32.Nicholls, D. G., Mitochondrial membrane potential and aging. Aging Cell 2004, 3, 35-40.
33.Morais, R.; Zinkewich-Péotti, K.; Parent, M.; Wang, H.; Babai, F.; Zollinger, M., Tumor-forming ability in athymic nude mice of human cell lines devoid of mitochondrial DNA. Cancer research 1994, 54, 3889-3896.
34.Cavalli, L. R.; Varella-Garcia, M.; Liang, B. C., Diminished tumorigenic phenotype after depletion of mitochondrial DNA. Cell growth and differentiation 1997, 8, 1189-1198.
35.Brandon, M.; Baldi, P., and; Wallace, D., Mitochondrial mutations in cancer. Oncogene 2006, 25, 4647.
36.Petros, J. A.; Baumann, A. K.; Ruiz-Pesini, E.; Amin, M. B.; Sun, C. Q.; Hall, J.; Lim, S.; Issa, M. M.; Flanders, W. D.; Hosseini, S. H., mtDNA mutations increase tumorigenicity in prostate cancer. Proceedings of the National Academy of Sciences 2005, 102, 719-724.
37.Weinberg, S. E.; Chandel, N. S., Targeting mitochondria metabolism for cancer therapy. Nature chemical biology 2015, 11, 9.
38.Wallace, D. C., Mitochondria and cancer. Nature Reviews Cancer 2012, 12, 685.
39.Boland, M. L.; Chourasia, A. H.; Macleod, K. F., Mitochondrial dysfunction in cancer. Frontiers in oncology 2013, 3, 292.
40.Wei, H.; Peng, W.; Mao, Y., Chemical constituents of fruit from Canarium album. Journal of Chinese Material Medicine 1999, 24, 421-423.
41.Ding, B., Pharmacology of Qingguo pills on relieving cough. China Traditional Patent Medicine 1999, 21, 27-28.
42.Yuan, J.; Liu, X.; Tang, Z., Research on antimicrobial activity and functional compounds in Canarium album Raeusch. China Journal of Food Science 2001, 22, 82-84.
43.Ssonko, U.; Xia, W., Processing technology for cloudy Chinese olive juice beverage. China Journal of Food Industry 2005, 2, 5-7.
44.He, Z.; Xia, W., Nutritional composition of the kernels from Canarium album L. Food chemistry 2007, 102, 808-811.
45.He, Z.; Xia, W., Analysis of phenolic compounds in Chinese olive (Canarium album L.) fruit by RPHPLC–DAD–ESI–MS. Food Chemistry 2007, 105, 1307-1311.
46.Kuo, C.-T.; Liu, T.-H.; Hsu, T.-H.; Lin, F.-Y.; Chen, H.-Y., Antioxidant and antiglycation properties of different solvent extracts from Chinese olive (Canarium album L.) fruit. Asian Pacific journal of tropical medicine 2015, 8, 1013-1021.
47.Hsieh, S.-C.; Hsieh, W.-J.; Chiang, A.-N.; Su, N.-W.; Yeh, Y.-T.; Liao, Y.-C., The methanol-ethyl acetate partitioned fraction from Chinese olive fruits inhibits cancer cell proliferation and tumor growth by promoting apoptosis through the suppression of the NF-κB signaling pathway. Food & function 2016, 7, 4797-4803.
48.Yeh, Y.-T.; Chiang, A.-N.; Hsieh, S.-C., Chinese olive (Canarium album L.) fruit extract attenuates metabolic dysfunction in diabetic rats. Nutrients 2017, 9, 1123.
49.Mogana, R.; Wiart, C., Canarium L.: a phytochemical and pharmacological review. Journal of Pharmacy Research 2011, 4, 2482-2489.
50.Prasad, K. N.; Chew, L. Y.; Khoo, H. E.; Kong, K. W.; Azlan, A.; Ismail, A., Antioxidant capacities of peel, pulp, and seed fractions of Canarium odontophyllum Miq. fruit. BioMed Research International 2010, 2010.
51.Moshi, M.; Innocent, E.; Masimba, P.; Otieno, D.; Weisheit, A.; Mbabazi, P.; Lynes, M.; Meachem, K.; Hamilton, A.; Urassa, I., Antimicrobial and brine shrimp toxicity of some plants used in traditional medicine in Bukoba District, north-western Tanzania. Tanzania Journal of Health Research 2009, 11.
52.Mogana, R.; Teng-Jin, K.; Wiart, C., In vitro antimicrobial, antioxidant activities and phytochemical analysis of Canarium patentinervium Miq. from Malaysia. Biotechnology research international 2011, 2011.
53.Anand, K.; Gupta, V.; Rangari, V.; Singh, B.; Chandan, B., Structure and hepatoprotective activity of a biflavonoid from Canarium manii. Planta medica 1992, 58, 493-495.
54.Tamai, M.; Watanabe, N.; Someya, M.; Kondoh, H.; Omura, S.; Ling, Z. P.; Chang, R.; Ming, C. W., New hepatoprotective triterpenes form Canarium album. Planta medica 1989, 55, 44-47.
55.Chaffer, C. L.; Weinberg, R. A., A perspective on cancer cell metastasis. science 2011, 331, 1559-1564.
56.Bacac, M.; Stamenkovic, I., Metastatic cancer cell. Annu. Rev. pathmechdis. Mech. Dis. 2008, 3, 221-247.
57.Hardie, D. G.; Ross, F. A.; Hawley, S. A., AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nature reviews Molecular cell biology 2012, 13, 251.
58.林孟儒. 中國橄欖甲醇萃取-乙酸乙酯區分層之促葡萄糖攝取功效探討. 臺灣大學, 2013.
59.葉昱德. 中國橄欖萃取物對脂質與醣類代謝相關機制的探討. 臺灣大學, 2018.
60.Zorova, L. D.; Popkov, V. A.; Plotnikov, E. Y.; Silachev, D. N.; Pevzner, I. B.; Jankauskas, S. S.; Babenko, V. A.; Zorov, S. D.; Balakireva, A. V.; Juhaszova, M., Mitochondrial membrane potential. Analytical biochemistry 2018, 552, 50-59.
61.Hawley, S. A.; Boudeau, J.; Reid, J. L.; Mustard, K. J.; Udd, L.; Mäkelä, T. P.; Alessi, D. R.; Hardie, D. G., Complexes between the LKB1 tumor suppressor, STRADα/β and MO25α/β are upstream kinases in the AMP-activated protein kinase cascade. Journal of biology 2003, 2, 28.
62.Woods, A.; Dickerson, K.; Heath, R.; Hong, S.-P.; Momcilovic, M.; Johnstone, S. R.; Carlson, M.; Carling, D., Ca2+/calmodulin-dependent protein kinase kinase-β acts upstream of AMP-activated protein kinase in mammalian cells. Cell metabolism 2005, 2, 21-33.
63.Shaw, R. J.; Kosmatka, M.; Bardeesy, N.; Hurley, R. L.; Witters, L. A.; DePinho, R. A.; Cantley, L. C., The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proceedings of the National Academy of Sciences 2004, 101, 3329-3335.
64.Endo, H.; Owada, S.; Inagaki, Y.; Shida, Y.; Tatemichi, M., Glucose starvation induces LKB1-AMPK-mediated MMP-9 expression in cancer cells. Scientific reports 2018, 8, 10122.
65.Hardie, D.; Pan, D., Regulation of fatty acid synthesis and oxidation by the AMP-activated protein kinase. In Portland Press Limited: 2002.
66.Abu-Elheiga, L.; Matzuk, M. M.; Abo-Hashema, K. A.; Wakil, S. J., Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science 2001, 291, 2613-2616.
67.Pavlova, N. N.; Thompson, C. B., The emerging hallmarks of cancer metabolism. Cell metabolism 2016, 23, 27-47.
68.Cluntun, A. A.; Lukey, M. J.; Cerione, R. A.; Locasale, J. W., Glutamine metabolism in cancer: understanding the heterogeneity. Trends in cancer 2017, 3, 169-180.
69.Vincent, E. E.; Sergushichev, A.; Griss, T.; Gingras, M.-C.; Samborska, B.; Ntimbane, T.; Coelho, P. P.; Blagih, J.; Raissi, T. C.; Choinière, L., Mitochondrial phosphoenolpyruvate carboxykinase regulates metabolic adaptation and enables glucose-independent tumor growth. Molecular cell 2015, 60, 195-207.
70.Son, J.; Lyssiotis, C. A.; Ying, H.; Wang, X.; Hua, S.; Ligorio, M.; Perera, R. M.; Ferrone, C. R.; Mullarky, E.; Shyh-Chang, N., Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 2013, 496, 101.
71.Hu, W.; Zhang, C.; Wu, R.; Sun, Y.; Levine, A.; Feng, Z., Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proceedings of the National Academy of Sciences 2010, 107, 7455-7460.
72.Wang, L.; Li, J.-j.; Guo, L.-y.; Li, P.; Zhao, Z.; Zhou, H.; Di, L.-j., Molecular link between glucose and glutamine consumption in cancer cells mediated by CtBP and SIRT4. Oncogenesis 2018, 7, 26.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top