|
1.Malarkey, D. E.; Hoenerhoff, M.; Maronpot, R. R., Carcinogenesis: Mechanisms and manifestations. In Haschek and Rousseaux''s Handbook of Toxicologic Pathology, Elsevier: 2013; pp 107-146. 2.Hanahan, D.; Weinberg, R. A., The hallmarks of cancer. cell 2000, 100, 57-70. 3.Pitot, H. C., The molecular biology of carcinogenesis. Cancer 1993, 72, 962-70. 4.Tennant, D. A.; Durán, R. V.; Gottlieb, E., Targeting metabolic transformation for cancer therapy. Nature reviews cancer 2010, 10, 267. 5.Helmlinger, G.; Yuan, F.; Dellian, M.; Jain, R. K., Interstitial pH and pO 2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nature medicine 1997, 3, 177. 6.Vander Heiden, M. G.; Cantley, L. C.; Thompson, C. B., Understanding the Warburg effect: the metabolic requirements of cell proliferation. science 2009, 324, 1029-1033. 7.Cairns, R.; Harris, I.; McCracken, S.; Mak, T. In Cancer cell metabolism, Cold Spring Harbor symposia on quantitative biology, 2011; Cold Spring Harbor Laboratory Press: 2011; pp 299-311. 8.Gatenby, R.; Smallbone, K.; Maini, P.; Rose, F.; Averill, J.; Nagle, R. B.; Worrall, L.; Gillies, R., Cellular adaptations to hypoxia and acidosis during somatic evolution of breast cancer. British journal of cancer 2007, 97, 646. 9.Gillies, R. J.; Robey, I.; Gatenby, R. A., Causes and consequences of increased glucose metabolism of cancers. Journal of Nuclear Medicine 2008, 49, 24S. 10.Kruger, N. J.; von Schaewen, A., The oxidative pentose phosphate pathway: structure and organisation. Current opinion in plant biology 2003, 6, 236-246. 11.Jiang, P.; Du, W.; Wu, M., Regulation of the pentose phosphate pathway in cancer. Protein & cell 2014, 5, 592-602. 12.Düvel, K.; Yecies, J. L.; Menon, S.; Raman, P.; Lipovsky, A. I.; Souza, A. L.; Triantafellow, E.; Ma, Q.; Gorski, R.; Cleaver, S., Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Molecular cell 2010, 39, 171-183. 13.Schwartzenberg-Bar-Yoseph, F.; Armoni, M.; Karnieli, E., The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer research 2004, 64, 2627-2633. 14.Hitosugi, T.; Zhou, L.; Elf, S.; Fan, J.; Kang, H.-B.; Seo, J. H.; Shan, C.; Dai, Q.; Zhang, L.; Xie, J., Phosphoglycerate mutase 1 coordinates glycolysis and biosynthesis to promote tumor growth. Cancer cell 2012, 22, 585-600. 15.Patra, K. C.; Wang, Q.; Bhaskar, P. T.; Miller, L.; Wang, Z.; Wheaton, W.; Chandel, N.; Laakso, M.; Muller, W. J.; Allen, E. L., Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer cell 2013, 24, 213-228. 16.Nogueira, V.; Hay, N., Molecular pathways: reactive oxygen species homeostasis in cancer cells and implications for cancer therapy. Clinical Cancer Research 2013, 19, 4309-4314. 17.Schafer, Z. T.; Grassian, A. R.; Song, L.; Jiang, Z.; Gerhart-Hines, Z.; Irie, H. Y.; Gao, S.; Puigserver, P.; Brugge, J. S., Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature 2009, 461, 109. 18.Jeon, S.-M.; Chandel, N. S.; Hay, N., AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature 2012, 485, 661. 19.Jeon, S.-M.; Hay, N., The dark face of AMPK as an essential tumor promoter. Cellular logistics 2012, 2, 197-202. 20.Carracedo, A.; Cantley, L. C.; Pandolfi, P. P., Cancer metabolism: fatty acid oxidation in the limelight. Nature reviews Cancer 2013, 13, 227. 21.Carracedo, A.; Weiss, D.; Leliaert, A. K.; Bhasin, M.; De Boer, V. C.; Laurent, G.; Adams, A. C.; Sundvall, M.; Song, S. J.; Ito, K., A metabolic prosurvival role for PML in breast cancer. The Journal of clinical investigation 2012, 122, 3088-3100. 22.Pike, L. S.; Smift, A. L.; Croteau, N. J.; Ferrick, D. A.; Wu, M., Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells. Biochimica et Biophysica Acta (BBA)-Bioenergetics 2011, 1807, 726-734. 23.Wu, J. S., Rectal cancer staging. Clinics in colon and rectal surgery 2007, 20, 148-157. 24.Deng, L.; Gui, Z.; Zhao, L.; Wang, J.; Shen, L., Diabetes mellitus and the incidence of colorectal cancer: an updated systematic review and meta-analysis. Digestive diseases and sciences 2012, 57, 1576-1585. 25.Huang, Y.-C.; Lin, J.-K.; Chen, W.-S.; Lin, T.-C.; Yang, S.-H.; Jiang, J.-K.; Chang, S.-C.; Lan, Y.-T.; Wang, H.-S.; Liu, C.-Y., Diabetes mellitus negatively impacts survival of patients with colon cancer, particularly in stage II disease. Journal of cancer research and clinical oncology 2011, 137, 211-220. 26.Vasconcelos-Dos-Santos, A.; Loponte, H.; Mantuano, N.; Oliveira, I.; De Paula, I.; Teixeira, L.; de-Freitas-Junior, J.; Gondim, K.; Heise, N.; Mohana-Borges, R., Hyperglycemia exacerbates colon cancer malignancy through hexosamine biosynthetic pathway. Oncogenesis 2017, 6, e306. 27.Lau, M.-F.; Vellasamy, S.; Chua, K.-H.; Sabaratnam, V.; Kuppusamy, U. R., Rosiglitazone diminishes the high-glucose-induced modulation of 5-fluorouracil cytotoxicity in colorectal cancer cells. EXCLI journal 2018, 17, 186. 28.Chen, Y.-C.; Ou, M.-C.; Fang, C.-W.; Lee, T.-H.; Tzeng, S.-L., High Glucose Concentrations Negatively Regulate the IGF1R/Src/ERK Axis through the MicroRNA-9 in Colorectal Cancer. Cells 2019, 8, 326. 29.Masur, K.; Vetter, C.; Hinz, A.; Tomas, N.; Henrich, H.; Niggemann, B.; Zänker, K., Diabetogenic glucose and insulin concentrations modulate transcriptom and protein levels involved in tumour cell migration, adhesion and proliferation. British journal of cancer 2011, 104, 345. 30.Stojanovski, D.; Johnston, A. J.; Streimann, I.; Hoogenraad, N. J.; Ryan, M. T., Import of nuclear-encoded proteins into mitochondria. Exp. Physiol. 2003, 88, 57-64. 31.Wallace, D. C., Mitochondrial genetics: a paradigm for aging and degenerative diseases? Science (New York, N.Y.) 1992, 256, 628-32. 32.Nicholls, D. G., Mitochondrial membrane potential and aging. Aging Cell 2004, 3, 35-40. 33.Morais, R.; Zinkewich-Péotti, K.; Parent, M.; Wang, H.; Babai, F.; Zollinger, M., Tumor-forming ability in athymic nude mice of human cell lines devoid of mitochondrial DNA. Cancer research 1994, 54, 3889-3896. 34.Cavalli, L. R.; Varella-Garcia, M.; Liang, B. C., Diminished tumorigenic phenotype after depletion of mitochondrial DNA. Cell growth and differentiation 1997, 8, 1189-1198. 35.Brandon, M.; Baldi, P., and; Wallace, D., Mitochondrial mutations in cancer. Oncogene 2006, 25, 4647. 36.Petros, J. A.; Baumann, A. K.; Ruiz-Pesini, E.; Amin, M. B.; Sun, C. Q.; Hall, J.; Lim, S.; Issa, M. M.; Flanders, W. D.; Hosseini, S. H., mtDNA mutations increase tumorigenicity in prostate cancer. Proceedings of the National Academy of Sciences 2005, 102, 719-724. 37.Weinberg, S. E.; Chandel, N. S., Targeting mitochondria metabolism for cancer therapy. Nature chemical biology 2015, 11, 9. 38.Wallace, D. C., Mitochondria and cancer. Nature Reviews Cancer 2012, 12, 685. 39.Boland, M. L.; Chourasia, A. H.; Macleod, K. F., Mitochondrial dysfunction in cancer. Frontiers in oncology 2013, 3, 292. 40.Wei, H.; Peng, W.; Mao, Y., Chemical constituents of fruit from Canarium album. Journal of Chinese Material Medicine 1999, 24, 421-423. 41.Ding, B., Pharmacology of Qingguo pills on relieving cough. China Traditional Patent Medicine 1999, 21, 27-28. 42.Yuan, J.; Liu, X.; Tang, Z., Research on antimicrobial activity and functional compounds in Canarium album Raeusch. China Journal of Food Science 2001, 22, 82-84. 43.Ssonko, U.; Xia, W., Processing technology for cloudy Chinese olive juice beverage. China Journal of Food Industry 2005, 2, 5-7. 44.He, Z.; Xia, W., Nutritional composition of the kernels from Canarium album L. Food chemistry 2007, 102, 808-811. 45.He, Z.; Xia, W., Analysis of phenolic compounds in Chinese olive (Canarium album L.) fruit by RPHPLC–DAD–ESI–MS. Food Chemistry 2007, 105, 1307-1311. 46.Kuo, C.-T.; Liu, T.-H.; Hsu, T.-H.; Lin, F.-Y.; Chen, H.-Y., Antioxidant and antiglycation properties of different solvent extracts from Chinese olive (Canarium album L.) fruit. Asian Pacific journal of tropical medicine 2015, 8, 1013-1021. 47.Hsieh, S.-C.; Hsieh, W.-J.; Chiang, A.-N.; Su, N.-W.; Yeh, Y.-T.; Liao, Y.-C., The methanol-ethyl acetate partitioned fraction from Chinese olive fruits inhibits cancer cell proliferation and tumor growth by promoting apoptosis through the suppression of the NF-κB signaling pathway. Food & function 2016, 7, 4797-4803. 48.Yeh, Y.-T.; Chiang, A.-N.; Hsieh, S.-C., Chinese olive (Canarium album L.) fruit extract attenuates metabolic dysfunction in diabetic rats. Nutrients 2017, 9, 1123. 49.Mogana, R.; Wiart, C., Canarium L.: a phytochemical and pharmacological review. Journal of Pharmacy Research 2011, 4, 2482-2489. 50.Prasad, K. N.; Chew, L. Y.; Khoo, H. E.; Kong, K. W.; Azlan, A.; Ismail, A., Antioxidant capacities of peel, pulp, and seed fractions of Canarium odontophyllum Miq. fruit. BioMed Research International 2010, 2010. 51.Moshi, M.; Innocent, E.; Masimba, P.; Otieno, D.; Weisheit, A.; Mbabazi, P.; Lynes, M.; Meachem, K.; Hamilton, A.; Urassa, I., Antimicrobial and brine shrimp toxicity of some plants used in traditional medicine in Bukoba District, north-western Tanzania. Tanzania Journal of Health Research 2009, 11. 52.Mogana, R.; Teng-Jin, K.; Wiart, C., In vitro antimicrobial, antioxidant activities and phytochemical analysis of Canarium patentinervium Miq. from Malaysia. Biotechnology research international 2011, 2011. 53.Anand, K.; Gupta, V.; Rangari, V.; Singh, B.; Chandan, B., Structure and hepatoprotective activity of a biflavonoid from Canarium manii. Planta medica 1992, 58, 493-495. 54.Tamai, M.; Watanabe, N.; Someya, M.; Kondoh, H.; Omura, S.; Ling, Z. P.; Chang, R.; Ming, C. W., New hepatoprotective triterpenes form Canarium album. Planta medica 1989, 55, 44-47. 55.Chaffer, C. L.; Weinberg, R. A., A perspective on cancer cell metastasis. science 2011, 331, 1559-1564. 56.Bacac, M.; Stamenkovic, I., Metastatic cancer cell. Annu. Rev. pathmechdis. Mech. Dis. 2008, 3, 221-247. 57.Hardie, D. G.; Ross, F. A.; Hawley, S. A., AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nature reviews Molecular cell biology 2012, 13, 251. 58.林孟儒. 中國橄欖甲醇萃取-乙酸乙酯區分層之促葡萄糖攝取功效探討. 臺灣大學, 2013. 59.葉昱德. 中國橄欖萃取物對脂質與醣類代謝相關機制的探討. 臺灣大學, 2018. 60.Zorova, L. D.; Popkov, V. A.; Plotnikov, E. Y.; Silachev, D. N.; Pevzner, I. B.; Jankauskas, S. S.; Babenko, V. A.; Zorov, S. D.; Balakireva, A. V.; Juhaszova, M., Mitochondrial membrane potential. Analytical biochemistry 2018, 552, 50-59. 61.Hawley, S. A.; Boudeau, J.; Reid, J. L.; Mustard, K. J.; Udd, L.; Mäkelä, T. P.; Alessi, D. R.; Hardie, D. G., Complexes between the LKB1 tumor suppressor, STRADα/β and MO25α/β are upstream kinases in the AMP-activated protein kinase cascade. Journal of biology 2003, 2, 28. 62.Woods, A.; Dickerson, K.; Heath, R.; Hong, S.-P.; Momcilovic, M.; Johnstone, S. R.; Carlson, M.; Carling, D., Ca2+/calmodulin-dependent protein kinase kinase-β acts upstream of AMP-activated protein kinase in mammalian cells. Cell metabolism 2005, 2, 21-33. 63.Shaw, R. J.; Kosmatka, M.; Bardeesy, N.; Hurley, R. L.; Witters, L. A.; DePinho, R. A.; Cantley, L. C., The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proceedings of the National Academy of Sciences 2004, 101, 3329-3335. 64.Endo, H.; Owada, S.; Inagaki, Y.; Shida, Y.; Tatemichi, M., Glucose starvation induces LKB1-AMPK-mediated MMP-9 expression in cancer cells. Scientific reports 2018, 8, 10122. 65.Hardie, D.; Pan, D., Regulation of fatty acid synthesis and oxidation by the AMP-activated protein kinase. In Portland Press Limited: 2002. 66.Abu-Elheiga, L.; Matzuk, M. M.; Abo-Hashema, K. A.; Wakil, S. J., Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science 2001, 291, 2613-2616. 67.Pavlova, N. N.; Thompson, C. B., The emerging hallmarks of cancer metabolism. Cell metabolism 2016, 23, 27-47. 68.Cluntun, A. A.; Lukey, M. J.; Cerione, R. A.; Locasale, J. W., Glutamine metabolism in cancer: understanding the heterogeneity. Trends in cancer 2017, 3, 169-180. 69.Vincent, E. E.; Sergushichev, A.; Griss, T.; Gingras, M.-C.; Samborska, B.; Ntimbane, T.; Coelho, P. P.; Blagih, J.; Raissi, T. C.; Choinière, L., Mitochondrial phosphoenolpyruvate carboxykinase regulates metabolic adaptation and enables glucose-independent tumor growth. Molecular cell 2015, 60, 195-207. 70.Son, J.; Lyssiotis, C. A.; Ying, H.; Wang, X.; Hua, S.; Ligorio, M.; Perera, R. M.; Ferrone, C. R.; Mullarky, E.; Shyh-Chang, N., Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 2013, 496, 101. 71.Hu, W.; Zhang, C.; Wu, R.; Sun, Y.; Levine, A.; Feng, Z., Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proceedings of the National Academy of Sciences 2010, 107, 7455-7460. 72.Wang, L.; Li, J.-j.; Guo, L.-y.; Li, P.; Zhao, Z.; Zhou, H.; Di, L.-j., Molecular link between glucose and glutamine consumption in cancer cells mediated by CtBP and SIRT4. Oncogenesis 2018, 7, 26.
|