(3.237.97.64) 您好!臺灣時間:2021/03/03 07:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:戴暐庭
研究生(外文):Wei-Ting Tai
論文名稱:以小鼠為模式探討國人飲食中陶斯松暴露量對肥胖與腸道菌相之影響
論文名稱(外文):Effects of Taiwanese dietary chlorpyrifos exposure levels on obesity and gut microbiota in normal and high-fat diet-fed mice
指導教授:謝淑貞謝淑貞引用關係
指導教授(外文):Shu-Chen Hsieh
口試委員:黃智興郭靜娟陳億乘
口試委員(外文):Tze-Sing HuangChing-Chuan KuoYi-Chen Chen
口試日期:2019-07-16
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:食品科技研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:74
中文關鍵詞:農藥陶斯松肥胖腸道菌脂肪新生脂肪分解
DOI:10.6342/NTU201903333
相關次數:
  • 被引用被引用:0
  • 點閱點閱:58
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
代謝症候群是指血壓或空腹血糖偏高、血脂異常、腹部肥胖等許多與糖尿病和心血管疾病相關的危險因子聚集的現象,主要與生理代謝異常而產生胰島素阻抗的情形有關,而造成胰島素阻抗的原因主要為肥胖。肥胖為攝取高熱量食物以及運動量不足所導致,不過近年來也發現腸道菌相在其中扮演重要角色,而許多研究發現環境中許多物質亦有導致肥胖的疑慮,例如農藥、多氯聯苯、雙酚A等。本研究以使用量較大與使用較廣泛之殺蟲劑陶斯松作為主軸,以一般飲食與高脂飲食小鼠為模式,探討國人飲食中陶斯松的暴露量是否會影響其脂肪組織中脂質合成、代謝以及慢性發炎的反應,亦探討其對於腸道菌相的影響。在一般飲食及高脂飲食下,給予小鼠不同劑量陶斯松持續90天,結果顯示在高脂飲食下低劑量陶斯松對於皮下脂肪組織的脂質堆積較控制組有顯著影響,而腸道菌相的資訊顯示,各組之Firmicutes與Bacteroidetes ratio組間無顯著差異,低劑量和中劑量則可減少Deferribacteres的比例;低劑量亦會減少Verrucomicrobia的比例,脂多醣(lipopolysaccharide, LPS)的數據則顯示本研究所使用的劑量可能尚未影響腸道通透性,此外也以3T3-L1細胞模式探討陶斯松對脂肪細胞脂肪之影響,結果顯示低劑量陶斯松對脂肪細胞分化以及脂解作用的影響明顯高於高劑量處理,綜合上述,本研究發現低劑量的陶斯松對於動物體與脂肪細胞的影響,其相關機制仍有待後續研究進行確認。
Metabolic syndrome is a cluster of conditions, including increased blood pressure, high fasting blood sugar, abnormal cholesterol or triglyceride levels, excess body fat around the waist occurs together increasing your risk of heart disease and type 2 diabetes. Main reason of metabolic syndrome is insulin resistance due to metabolic abnormality. Then obesity always leads to insulin resistance. High-density caloric diets coupled with decreased physical activity as the root causes of obesity while the latest researches also regard gut microbiota as crucial factor. However, several studies have indicated the remaining chemical compound in our environment is also the possibility reason of obesity, for example pesticide, polychlorinated biphenyl (PCB), bisphenol A and so on. The aim of this study was to explore the Taiwanese dietary exposure of large usage amount, widely used pesticide-chlorpyrifos whether to affect fat synthesis and metabolism, also the grade of chronic inflammation in adipose tissue and the composition of gut microbiota by normal diet and high fat diet mice model during 90 days. Results showed that weight of inguinal subcutaneous fat in low dose chlorpyrifos group significantly higher than control group. The gut microbiota abundance ratio of phylum Firmicutes and Bacteroidetes didn’t have significantly difference between control and various doses chlorpyrifos group, but it was decreased abundance of Deferribacteres in low dose and medium dose. Abundance of Verrucomicrobia also decreased in low dose. Regardless of diet conditions, the lipopolysaccharide (LPS) concentration in serum didn’t have significantly difference between control and various doses chlorpyrifos group. It could show that dietary exposure chlorpyrifos didn’t affect the intestinal integrity. Furthermore, to investigate the effect of chlorpyrifos in adipocyte by 3T3-L1 cell model. Results showed that low dose significantly inhibited the adipogenesis and lipolysis than control group. In sum, this study found that the effects of low doses of chlorpyrifos on animal and adipocytes, the relevant mechanism remains to be confirmed by future studies.
目錄
謝誌 I
摘要 II
Abstract III
表目錄 VIII
第一章 前言 1
第二章 文獻回顧 2
第一節 肥胖 2
2.1.1 肥胖在全球與臺灣的盛行率 2
2.1.2 肥胖、代謝症候群與胰島素阻抗 2
2.1.3 肥胖、慢性發炎與胰島素阻抗 3
2.1.4 環境致胖因子(environmental obesogens) 3
第二節 脂肪組織 4
2.2.1 脂肪組織的基本結構與功能 4
2.2.2 脂肪新生(adipogenesis) 4
2.2.3 脂肪分解(adipolysis) 5
2.2.4 脂肪組織與發炎反應 5
第三節 腸道菌 6
2.3.1 人體內腸道菌的基本介紹 6
2.3.2 腸道菌與能量代謝 7
2.3.3 腸道菌失衡(dysbiosis)與代謝異常 7
第四節 農藥-陶斯松介紹 8
2.4.1 陶斯松簡介與應用 8
2.4.2 陶斯松對生理代謝的影響 8
2.4.3 陶斯松對腸道菌相的影響 9
2.4.4 國人飲食中陶斯松的暴露量 10
第三章 研究目的與實驗架構 10
第一節 研究目的 10
第二節 實驗架構-動物實驗 11
第三節 實驗架構-細胞實驗 12
第四章 實驗材料與方法 12
第一節 實驗材料 12
4.1.1 細胞培養 12
4.1.2 實驗藥品 13
4.1.3 實驗試劑與套組 14
4.1.4 實驗耗材 14
4.1.5 實驗設備 15
第二節 實驗方法 15
4.2.1 動物飼養 15
4.2.2 小鼠血糖測定 16
4.2.3 小鼠血清內脂多醣(Lipopolysaccharide, LPS)含量測定 16
4.2.4 小鼠血清胰島素含量測定 17
4.2.5 小鼠脂肪組織石蠟包埋與H&E染色 17
4.2.6 小鼠糞便採取與DNA萃取 20
4.2.7 聚合酶連鎖反應(polymerase chain reaction, PCR) 21
4.2.8 洋菜膠體電泳(agarose gel electrophoresis) 21
4.2.9 小鼠腸道菌相分析 23
4.2.10 3T3-L1細胞株培養與分化 23
4.2.11 細胞存活率測定(MTT assay) 24
4.2.12 油紅染色法(Oil Red O assay) 24
第三節 統計 25
第五章 實驗結果 25
第一節 動物實驗 25
第二節 細胞實驗 29
第六章 討論 31
第一節 一般飲食組 31
第二節 高脂飲食組 34
第三節 細胞實驗、代謝物與劑量相關文獻討論 36
第七章 結論 39
圖表 40
參考文獻 65
1.Reaven, G. M., The Metabolic Syndrome: Requiescat in Pace. Clinical chemistry 2005, 51 (6), 931-938.1.
2.Saklayen, M. G., The Global Epidemic of the Metabolic Syndrome. Current hypertension reports 2018, 20 (2), 12-12.2.
3.Blüher, M., Adipose tissue inflammation: a cause or consequence of obesity-related insulin resistance? Clinical Science 2016, 130 (18), 1603-1614.3.
4.Johnson, Andrew M. F.; Olefsky, Jerrold M., The Origins and Drivers of Insulin Resistance. Cell 2013, 152 (4), 673-684.4.
5.Lee, Y. S.; Wollam, J.; Olefsky, J. M., An Integrated View of Immunometabolism. Cell 2018, 172 (1), 22-40.5.
6.Brown, R. E.; Sharma, A. M.; Ardern, C. I.; Mirdamadi, P.; Mirdamadi, P.; Kuk, J. L., Secular differences in the association between caloric intake, macronutrient intake, and physical activity with obesity. Obesity research & clinical practice 2016, 10 (3), 243-55.6.
7.Baillie-Hamilton, P. F., Chemical Toxins: A Hypothesis to Explain the Global Obesity Epidemic. The Journal of Alternative and Complementary Medicine 2002, 8 (2), 185-192.7.
8.Grün, F.; Blumberg, B., Environmental Obesogens: Organotins and Endocrine Disruption via Nuclear Receptor Signaling. Endocrinology 2006, 147 (6), s50-s55.8.
9.Heindel, J. J.; Blumberg, B., Environmental Obesogens: Mechanisms and Controversies. Annual Review of Pharmacology and Toxicology 2019, 59 (1), 89-106.9.
10.Boutens, L.; Stienstra, R., Adipose tissue macrophages: going off track during obesity. Diabetologia 2016, 59 (5), 879-894.10.
11.Fasshauer, M.; Blüher, M., Adipokines in health and disease. Trends in Pharmacological Sciences 2015, 36 (7), 461-470.11.
12.Ghaben, A. L.; Scherer, P. E., Adipogenesis and metabolic health. Nature Reviews Molecular Cell Biology 2019.12.
13.Tang, Q. Q.; Lane, M. D., Adipogenesis: From Stem Cell to Adipocyte. In Annual Review of Biochemistry, Vol 81, Kornberg, R. D., Ed. Annual Reviews: Palo Alto, 2012; Vol. 81, pp 715-736.13.
14.Rosen, E. D.; Spiegelman, B. M., Adipocytes as regulators of energy balance and glucose homeostasis. Nature 2006, 444 (7121), 847-853.14.
15.Fruhbeck, G.; Mendez-Gimenez, L.; Fernandez-Formoso, J. A.; Fernandez, S.; Rodriguez, A., Regulation of adipocyte lipolysis. Nutrition Research Reviews 2014, 27 (1), 63-93.15.
16.Zechner, R.; Zimmermann, R.; Eichmann, T. O.; Kohlwein, S. D.; Haemmerle, G.; Lass, A.; Madeo, F., FAT SIGNALS - Lipases and Lipolysis in Lipid Metabolism and Signaling. Cell Metabolism 2012, 15 (3), 279-291.16.
17.Rosen, Evan D.; Spiegelman, Bruce M., What We Talk About When We Talk About Fat. Cell 2014, 156 (1), 20-44.17.
18.Cinti, S.; Mitchell, G.; Barbatelli, G.; Murano, I.; Ceresi, E.; Faloia, E.; Wang, S.; Fortier, M.; Greenberg, A. S.; Obin, M. S., Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res 2005, 46 (11), 2347-55.18.
19.Kennedy, A.; Martinez, K.; Chuang, C. C.; LaPoint, K.; McIntosh, M., Saturated fatty acid-mediated inflammation and insulin resistance in adipose tissue: mechanisms of action and implications. The Journal of nutrition 2009, 139 (1), 1-4.19.
20.Gerard, P., Gut microbiota and obesity. Cellular and molecular life sciences : CMLS 2016, 73 (1), 147-62.20.
21.Maruvada, P.; Leone, V.; Kaplan, L. M.; Chang, E. B., The Human Microbiome and Obesity: Moving beyond Associations. Cell host & microbe 2017, 22 (5), 589-599.21.
22.Bouter, K. E.; van Raalte, D. H.; Groen, A. K.; Nieuwdorp, M., Role of the Gut Microbiome in the Pathogenesis of Obesity and Obesity-Related Metabolic Dysfunction. Gastroenterology 2017, 152 (7), 1671-1678.22.
23.Tremaroli, V.; Backhed, F., Functional interactions between the gut microbiota and host metabolism. Nature 2012, 489 (7415), 242-9.23.
24.Backhed, F.; Ding, H.; Wang, T.; Hooper, L. V.; Koh, G. Y.; Nagy, A.; Semenkovich, C. F.; Gordon, J. I., The gut microbiota as an environmental factor that regulates fat storage. Proceedings of the National Academy of Sciences of the United States of America 2004, 101 (44), 15718-23.24.
25.Ley, R. E.; Turnbaugh, P. J.; Klein, S.; Gordon, J. I., Microbial ecology: human gut microbes associated with obesity. Nature 2006, 444 (7122), 1022-3.25.
26.Backhed, F.; Manchester, J. K.; Semenkovich, C. F.; Gordon, J. I., Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proceedings of the National Academy of Sciences of the United States of America 2007, 104 (3), 979-84.26.
27.Pascale, A.; Marchesi, N.; Marelli, C.; Coppola, A.; Luzi, L.; Govoni, S.; Giustina, A.; Gazzaruso, C., Microbiota and metabolic diseases. Endocrine 2018, 61 (3), 357-371.27.
28.Meggs, W. J.; Brewer, K. L., Weight gain associated with chronic exposure to chlorpyrifos in rats. Journal of Medical Toxicology 2007, 3 (3), 89-93.28.
29.Peris-Sampedro, F.; Blanco, J.; Cabre, M.; Basaure, P.; Guardia-Escote, L.; Domingo, J. L.; Sanchez, D. J.; Colomina, M. T., New mechanistic insights on the metabolic-disruptor role of chlorpyrifos in apoE mice: a focus on insulin- and leptin-signalling pathways. Archives of Toxicology 2018, 92 (5), 1717-1728.29.
30.Howell, G. E.; Kondakala, S.; Holdridge, J.; Lee, J. H.; Ross, M. K., Inhibition of cholinergic and non-cholinergic targets following subacute exposure to chlorpyrifos in normal and high fat fed male C57BL/6J mice. Food Chem. Toxicol. 2018, 118, 821-829.30.
31.Fang, B.; Li, J. W.; Zhang, M.; Ren, F. Z.; Pang, G. F., Chronic chlorpyrifos exposure elicits diet-specific effects on metabolism and the gut microbiome in rats. Food Chem. Toxicol. 2018, 111 (Supplement C), 144-152.31.
32.Jin, Y.; Wu, S.; Zeng, Z.; Fu, Z., Effects of environmental pollutants on gut microbiota. Environmental pollution (Barking, Essex : 1987) 2017, 222, 1-9.32.
33.Zhao, Y.; Zhang, Y.; Wang, G.; Han, R.; Xie, X., Effects of chlorpyrifos on the gut microbiome and urine metabolome in mouse (Mus musculus). Chemosphere 2016, 153, 287-93.33.
34.Condette, C. J.; Bach, V.; Mayeur, C.; Gay-Queheillard, J.; Khorsi-Cauet, H., Chlorpyrifos Exposure During Perinatal Period Affects Intestinal Microbiota Associated With Delay of Maturation of Digestive Tract in Rats. J. Pediatr. Gastroenterol. Nutr. 2015, 61 (1), 30-40.34.
35.Spiljar, M.; Merkler, D.; Trajkovski, M., The Immune System Bridges the Gut Microbiota with Systemic Energy Homeostasis: Focus on TLRs, Mucosal Barrier, and SCFAs. Frontiers in Immunology 2017, 8, 1353.35.
36.蔡經綸; 余雅芳; 陳建志; 周詠勝; 倪詩蓓; 張嘉津; 江舟峰, 台灣膳食暴露評估模型之電腦系統開發與應用:以有機磷農藥殘留為例. 台灣公共衛生雜誌 2016, 35 (5), 487-497.36.
37.Smith, B. J.; Miller, R. A.; Ericsson, A. C.; Harrison, D. C.; Strong, R.; Schmidt, T. M., Changes in the gut microbiota and fermentation products associated with enhanced longevity in acarbose-treated mice. bioRxiv 2018, 311456.37.
38.Parlee, S. D.; Lentz, S. I.; Mori, H.; MacDougald, O. A., Chapter Six - Quantifying Size and Number of Adipocytes in Adipose Tissue. In Methods in Enzymology, Macdougald, O. A., Ed. Academic Press: 2014; Vol. 537, pp 93-122.38.
39.Zebisch, K.; Voigt, V.; Wabitsch, M.; Brandsch, M., Protocol for effective differentiation of 3T3-L1 cells to adipocytes. Analytical biochemistry 2012, 425 (1), 88-90.39.
40.Ramírez-Zacarías, J. L.; Castro-Muñozledo, F.; Kuri-Harcuch, W., Quantitation of adipose conversion and triglycerides by staining intracytoplasmic lipids with oil red O. Histochemistry 1992, 97 (6), 493-497.40.
41.Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W. S.; Huttenhower, C., Metagenomic biomarker discovery and explanation. Genome biology 2011, 12 (6), R60.41.
42.Tanvir, E. M.; Afroz, R.; Chowdhury, M.; Gan, S. H.; Karim, N.; Islam, M. N.; Khalil, M. I., A model of chlorpyrifos distribution and its biochemical effects on the liver and kidneys of rats. Human & experimental toxicology 2016, 35 (9), 991-1004.42.
43.Rotondo, F.; Romero, M. D. M.; Ho-Palma, A. C.; Remesar, X.; Fernández-López, J. A.; Alemany, M., Quantitative analysis of rat adipose tissue cell recovery, and non-fat cell volume, in primary cell cultures. PeerJ 2016, 4, e2725-e2725.43.
44.Peris-Sampedro, F.; Cabre, M.; Basaure, P.; Reverte, I.; Domingo, J. L.; Colomina, M. T., Adulthood dietary exposure to a common pesticide leads to an obese-like phenotype and a diabetic profile in apoE3 mice. Environmental Research 2015, 142, 169-176.44.
45.Reygner, J.; Lichtenberger, L.; Elmhiri, G.; Dou, S.; Bahi-Jaber, N.; Rhazi, L.; Depeint, F.; Bach, V.; Khorsi-Cauet, H.; Abdennebi-Najar, L., Inulin Supplementation Lowered the Metabolic Defects of Prolonged Exposure to Chlorpyrifos from Gestation to Young Adult Stage in Offspring Rats. PloS one 2016, 11 (10), 17.45.
46.Liang, Y.; Zhan, J.; Liu, D.; Luo, M.; Han, J.; Liu, X.; Liu, C.; Cheng, Z.; Zhou, Z.; Wang, P., Organophosphorus pesticide chlorpyrifos intake promotes obesity and insulin resistance through impacting gut and gut microbiota. Microbiome 2019, 7 (1), 19.46.
47.Lassiter, T. L.; Brimijoin, S., Rats gain excess weight after developmental exposure to the organophosphorothionate pesticide, chlorpyrifos. Neurotoxicology and Teratology 2008, 30 (2), 125-130.47.
48.Kennedy, A. J.; Ellacott, K. L. J.; King, V. L.; Hasty, A. H., Mouse models of the metabolic syndrome. Disease Models & Mechanisms 2010, 3 (3-4), 156-166.48.
49.Maysami, S.; Haley, M. J.; Gorenkova, N.; Krishnan, S.; McColl, B. W.; Lawrence, C. B., Prolonged diet-induced obesity in mice modifies the inflammatory response and leads to worse outcome after stroke. J Neuroinflammation 2015, 12, 140-140.49.
50.Zhang, Z.; Wang, S.; Zhou, S.; Yan, X.; Wang, Y.; Chen, J.; Mellen, N.; Kong, M.; Gu, J.; Tan, Y.; Zheng, Y.; Cai, L., Sulforaphane prevents the development of cardiomyopathy in type 2 diabetic mice probably by reversing oxidative stress-induced inhibition of LKB1/AMPK pathway. J Mol Cell Cardiol 2014, 77, 42-52.50.
51.Derrien, M.; Belzer, C.; de Vos, W. M., Akkermansia muciniphila and its role in regulating host functions. Microbial Pathogenesis 2017, 106, 171-181.51.
52.Dao, M. C.; Everard, A.; Aron-Wisnewsky, J.; Sokolovska, N.; Prifti, E.; Verger, E. O.; Kayser, B. D.; Levenez, F.; Chilloux, J.; Hoyles, L.; Dumas, M.-E.; Rizkalla, S. W.; Doré, J.; Cani, P. D.; Clément, K., Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 2016, 65 (3), 426-436.52.
53.Everard, A.; Belzer, C.; Geurts, L.; Ouwerkerk, J. P.; Druart, C.; Bindels, L. B.; Guiot, Y.; Derrien, M.; Muccioli, G. G.; Delzenne, N. M.; de Vos, W. M.; Cani, P. D., Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proceedings of the National Academy of Sciences 2013, 110 (22), 9066-9071.53.
54.Ibrahim, M. M., Subcutaneous and visceral adipose tissue: structural and functional differences. Obes. Rev. 2010, 11 (1), 11-18.54.
55.Castaner, O.; Goday, A.; Park, Y.-M.; Lee, S.-H.; Magkos, F.; Shiow, S.-A. T. E.; Schröder, H., The Gut Microbiome Profile in Obesity: A Systematic Review. Int J Endocrinol 2018, 2018, 4095789-4095789.55.
56.Serino, M.; Luche, E.; Gres, S.; Baylac, A.; Bergé, M.; Cenac, C.; Waget, A.; Klopp, P.; Iacovoni, J.; Klopp, C.; Mariette, J.; Bouchez, O.; Lluch, J.; Ouarné, F.; Monsan, P.; Valet, P.; Roques, C.; Amar, J.; Bouloumié, A.; Théodorou, V.; Burcelin, R., Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota. Gut 2012, 61 (4), 543-553.56.
57.Beller, A.; Kruglov, A.; Durek, P.; von Goetze, V.; Hoffmann, U.; Maier, R.; Heiking, K.; Siegmund, B.; Heinz, G.; Mashreghi, M.-F.; Radbruch, A.; Chang, H.-D., P104 Anaeroplasma, a potential anti-inflammatory probiotic for the treatment of chronic intestinal inflammation. Annals of the Rheumatic Diseases 2019, 78 (Suppl 1), A45-A46.57.
58.Togo, A. H.; Diop, A.; Dubourg, G.; Khelaifia, S.; Richez, M.; Armstrong, N.; Maraninchi, M.; Fournier, P. E.; Raoult, D.; Million, M., Anaerotruncus massiliensis sp. nov., a succinate-producing bacterium isolated from human stool from an obese patient after bariatric surgery. New Microbes and New Infections 2019, 29, 100508.58.
59.Andoh, A.; Nishida, A.; Takahashi, K.; Inatomi, O.; Imaeda, H.; Bamba, S.; Kito, K.; Sugimoto, M.; Kobayashi, T., Comparison of the gut microbial community between obese and lean peoples using 16S gene sequencing in a Japanese population. J Clin Biochem Nutr 2016, 59 (1), 65-70.59.
60.Noriega, B. S.; Sanchez-Gonzalez, M. A.; Salyakina, D.; Coffman, J., Understanding the Impact of Omega-3 Rich Diet on the Gut Microbiota. Case Reports in Medicine 2016, 2016, 6.60.
61.Kim, Y. A.; Park, J. B.; Woo, M. S.; Lee, S. Y.; Kim, H. Y.; Yoo, Y. H., Persistent Organic Pollutant-Mediated Insulin Resistance. Int. J. Environ. Res. Public Health 2019, 16 (3), 448.61.
62.Smith, A.; Yu, X. Z.; Yin, L., Diazinon exposure activated transcriptional factors CCAAT-enhancer-binding proteins alpha (C/EBP alpha) and peroxisome proliferator-activated receptor gamma (PPAR gamma) and induced adipogenesis in 3T3-L1 preadipocytes. Pest. Biochem. Physiol. 2018, 150, 48-58.62.
63.Kim, J.; Sun, Q. C.; Yue, Y. R.; Yoon, K. S.; Whang, K. Y.; Clark, J. M.; Park, Y., 4,4 ''-Dichlorodiphenyltrichloroethane (DDT) and 4,4 ''-dichlorodiphenyldichloroethylene (DDE) promote adipogenesis in 3T3-L1 adipocyte cell culture. Pest. Biochem. Physiol. 2016, 131, 40-45.63.
64.Park, Y.; Kim, Y.; Kim, J.; Yoon, K. S.; Clark, J.; Lee, J.; Park, Y., Imidacloprid, a Neonicotinoid Insecticide, Potentiates Adipogenesis in 3T3-L1 Adipocytes. Journal of Agricultural and Food Chemistry 2013, 61 (1), 255-259.64.
65.Hanley, T. R., Jr.; Carney, E. W.; Johnson, E. M., Developmental Toxicity Studies in Rats and Rabbits with 3,5,6-Trichloro-2-pyridinol, the Major Metabolite of Chlorpyrifos. Toxicological Sciences 2000, 53 (1), 100-108.65.
66.Bakke, J. E.; Feil, V. J.; Price, C. E., Rat urinary metabolites from O,O-diethyl-O-(3,5,6-trichloro-2-pyridyl) phosphorothioate. J Environ Sci Health B 1976, 11 (3), 225-30.66.
67.Wang, L.; Liu, Z.; Zhang, J. J.; Wu, Y. H.; Sun, H. W., Chlorpyrifos exposure in farmers and urban adults: Metabolic characteristic, exposure estimation, and potential effect of oxidative damage. Environmental Research 2016, 149, 164-170.67.
68.Deng, Y. F.; Zhang, Y.; Lu, Y. F.; Zhao, Y. P.; Ren, H. Q., Hepatotoxicity and nephrotoxicity induced by the chlorpyrifos and chlorpyrifos-methyl metabolite, 3,5,6-trichloro-2-pyridinol, in orally exposed mice. Sci. Total Environ. 2016, 544, 507-514.68.
69.Ray, D. E.; Richards, P. G., The potential for toxic effects of chronic, low-dose exposure to organophosphates. Toxicology Letters 2001, 120 (1), 343-351.69.
70.Lee, Y. M.; Ha, C. M.; Kim, S. A.; Thoudam, T.; Yoon, Y. R.; Kim, D. J.; Kim, H. C.; Moon, H. B.; Park, S.; Lee, I. K.; Lee, D. H., Low-Dose Persistent Organic Pollutants Impair Insulin Secretory Function of Pancreatic beta-Cells: Human and In Vitro Evidence. Diabetes 2017, 66 (10), 2669-2680.70.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔