跳到主要內容

臺灣博碩士論文加值系統

(34.204.176.71) 您好!臺灣時間:2024/11/08 00:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:梁芝榕
研究生(外文):Zhi-Rong Liang
論文名稱:探討味噌及烏龍茶藉由調節脂質代謝及腸道菌相抑制高脂飲食誘導肥胖大鼠之作用機制
論文名稱(外文):Investigated the underlying molecular mechanism of miso and oolong tea extracts in high-fat diet induced obese rats through lipid metabolism and gut microbiota
指導教授:潘敏雄潘敏雄引用關係
口試委員:黃步敏王應然何元順廖秀娟
口試日期:2019-07-11
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:食品科技研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:112
中文關鍵詞:肥胖烏龍茶味噌脂質合成產熱作用脂肪酸氧化腸道菌相
DOI:10.6342/NTU201902487
相關次數:
  • 被引用被引用:1
  • 點閱點閱:315
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
根據世界衛生組織統計,全球肥胖人口持續增加,同時肥胖為罹患第二型糖尿病、非酒精性脂肪肝等疾病的危險因子,嚴重危害人體健康。文獻指出多酚類化合物 (Polyphenols) 具有抗肥胖功效,若能從日常飲食攝取這些機能性物質,透過影響體內代謝機制與腸道菌相,將有助於減緩肥胖與其相關代謝疾病。本次實驗所使用之樣品:烏龍茶和味噌分別富含茶多酚 (Tea polyphenols) 與大豆異黃酮 (Isoflavones),兩者皆透過發酵製程使其生物活性與生物可利用率改變。本實驗以高脂飲食 (HFD) 誘導Sprague Dawley (SD) 大鼠肥胖模式,探討烏龍茶與味噌的抗肥胖功效與調節腸道菌之功能。從動物實驗結果顯示,在HFD中添加0.5% 烏龍茶萃取粉末 (Oolong tea extract, OTE) 可以抑制大鼠白色脂肪組織中脂質合成 (Lipogenesis) 相關蛋白SREBP1、FASN的表現量,並提高白色脂肪之PGC1α、UCP1蛋白表現量,增加產熱作用 (Thermogenesis)。兩者作用之下,使OTE具有減少大鼠內臟脂肪重量之功效。此外腸道菌相方面,發現OTE可以增加大鼠腸道中的Akkermansia菌屬,以及Lachnospiraceae菌科之下的丁酸生產菌,如:Lachnospiraceae_NK4A136_group和Roseburia,而根據文獻指出,丁酸具有改善腸道上皮屏障,減緩發炎與增加能量代謝的功能。綜合以上,OTE可透過調節脂質代謝、合成作用以及腸道菌相,達到抗肥胖之效果。味噌的實驗結果顯示,HFD添加1% 和2% 味噌對於降低大鼠體重和內臟脂肪重量並無顯著影響,但可以透過活化大鼠肝臟中AMPK路徑,增加PGC1α、CPT1α蛋白表現量,進而提高肝臟的脂肪酸氧化作用,減緩HFD誘導之肝臟脂質蓄積,然而味噌添加比例增加至5%時,其改善肝臟脂質蓄積的效果並不如低濃度顯著。此外,味噌亦可大幅增加益生菌Akkermansia比例,根據文獻指出Akkermansia除了可以改善腸道通透性外,也能調節腸道內分泌,進而增加肝臟的能量代謝。綜合以上結果,味噌可以促進肝臟脂質氧化作用和調節腸道菌相,具有減緩HFD造成之肝臟脂質蓄積之功效,其中又以2% 味噌的效果最為顯著。總結研究結果,烏龍茶與味噌在高脂飲食誘導大鼠肥胖模式中,分別對於降低內臟脂肪和減緩肝臟脂質蓄積有顯著的效果,其機制可能為透過調節大鼠腸道菌相,以及影響脂質代謝分子路徑,而達到抗肥胖與其相關代謝症候群之功效。
According to WHO, obesity has high prevalence in the last few decades. Due to association with many metabolic disorders, such as type-2-diabetes and nonalcoholic fatty liver, obesity become a serious health problem. Many natural compounds like polyphenols and isoflavones have anti-obesity effects. Therefore, the way to intake those functional compounds through daily food is quite important. Oolong tea is rich in polyphenols, and miso is rich in isoflavones. Both of them have different biological activity or better bioavailability through fermenting processing. In this study, we investigated the anti-obesity effects of oolong tea and miso by high-fed diet (HFD)-induced obesity Sprague Dawley (SD) rat model. The results showed that oolong tea extract (OTE) can reduce the weight of white adipose tissue by inhibiting lipogenesis related proteins SREBP1 and FASN expression. Besides, OTE increased PGC1α and UCP1 protein expression which can promote thermogenesis in white adipose tissue. OTE also modulated gut microbiota by increasing Akkermansia, and butyrate-producing bacteria Lachnospiraceae, such as Lachnospiraceae_NK4A136_group and Roseburia. According to previous reports, butyrate has benefits to improve intestinal barrier and promote metabolism. Base on the above results, OTE can modulate lipid metabolism and gut microbiota to improve HFD-induced obesity. Although, miso feed with HFD groups showed no difference in body weight and white adipose tissue weight. We found 1% and 2% miso can decrease in HFD-induced triglycerides accumulation in liver through induced liver fatty acid oxidation by activating AMPK pathway and increasing PGC1α and CPT1α protein expression, but 5% miso didn’t show better effects in hepatic triglycerides accumulation compare with low percentage of miso. About gut microbiota, miso increased Akkermansia largely. Akkermansia is not only famous of improving gut barrier, and also can influence enteroendocrine to increase liver energy metabolism. To sum up, miso could improve HFD-induced fatty liver by activating fatty acid oxidation and modulating gut microbiota. In conclusion, oolong tea reduced body fat, and miso decreased hepatic triglycerides accumulation both in HFD-induced obesity rat model. The mechanism of these effects may be through modulating gut microbiota and affecting lipid metabolize.
口試委員會審定書 #
中文摘要 I
Abstract III
目錄 V
附圖目錄 IX
附表目錄 X
圖目錄 XI
表目錄 XII
縮寫表 XIII
第一章、文獻回顧 1
第一節、肥胖 1
(一) 肥胖的盛行率與定義 1
(二) 肥胖的成因 1
第二節、肥胖相關代謝疾病 2
(一) 慢性發炎 3
(二) 第二型糖尿病與胰島素抗性 3
(三) 心血管疾病 (Cardiovascular diseases) 4
(四) 非酒精性脂肪肝 (Nonalcoholic fatty liver disease, NAFLD) 4
(五) 其他 6
第三節、脂肪組織與代謝 6
(一) 脂肪組織分類 6
(二) 脂肪組織的內分泌功能 9
(三) 脂肪細胞新生作用 (Adipogenesis) 9
(四) 白色脂肪組織棕色化 (Browning) 與產熱作用 (Thermogenesis) 10
(五) 脂質合成 (Lipogenesis) 13
(六) 脂肪酸氧化 (Fatty acid oxidation) 15
第四節、腸道菌相與肥胖 16
(一) 腸道菌簡介 16
(二) 腸道菌相與肥胖 17
第五節、烏龍茶 (Oolong tea) 19
(一) 簡介 19
(二) 機能性成分與功效 20
第六節、味噌 (Miso) 23
(一) 簡介 23
(二) 機能性成分與功效 23
第二章、實驗目的與架構 26
第一節、研究目的 26
第二節、實驗架構 26
第三章、材料與方法 28
第一節、實驗材料 28
(一) 儀器設備 28
(二) 藥品試劑 29
第二節、動物實驗方法 29
(一) 動物品系與基本資料 29
(二) 動物飼養環境與組別設計 30
(三) 飼料配製 30
(四) 飼料組成分與熱量表 31
(五) 動物犧牲 34
(六) H&E 染色 (Hematoxylin and Eosin stain) 34
(七) 肝臟三酸甘油脂萃取及定量 37
(八) 組織均質及蛋白質萃取 39
(九) 蛋白質定量 40
(十) 西方點墨法 (Western blot) 40
(十一) 糞便DNA萃取 44
(十二) 次世代定序 (Next generation sequencing, NGS) 45
第三節、統計分析 46
第四章、結果與討論 47
第一節、烏龍茶動物實驗 47
(一) 烏龍茶對高脂飲食SD大鼠體重變化之影響 47
(二) 烏龍茶對高脂飲食SD大鼠攝食量之影響 48
(三) 烏龍茶對高脂飲食SD大鼠脂肪重量之影響 49
(四) 烏龍茶對高脂飲食SD大鼠脂肪細胞大小之影響 50
(五) 烏龍茶對高脂飲食SD大鼠臟器重量之影響 50
(六) 烏龍茶對高脂飲食SD大鼠肝臟脂肪蓄積之影響 51
(七) 烏龍茶對高脂飲食SD大鼠血清生化數值之影響 52
(八) 烏龍茶對高脂飲食SD大鼠性腺脂肪脂質合成分子機制之影響 54
(九) 烏龍茶對高脂飲食SD大鼠性腺脂肪產熱分子機制之影響 55
(十) 烏龍茶對高脂飲食SD大鼠腸道菌相之影響 56
第二節、味噌動物實驗 59
(一) 不同濃度味噌對高脂飲食SD大鼠體重變化之影響 59
(二) 不同濃度味噌對高脂飲食SD大鼠攝食量之影響 59
(三) 不同濃度味噌對高脂飲食SD大鼠脂肪重量之影響 59
(四) 不同濃度味噌對高脂飲食SD大鼠臟器重量之影響 60
(五) 不同濃度味噌對高脂飲食SD大鼠肝臟脂肪蓄積之影響 60
(六) 不同濃度味噌對高脂飲食SD大鼠血清生化數值之影響 61
(七) 不同濃度味噌對高脂飲食SD大鼠肝臟脂質合成分子機制之影響 62
(八) 不同濃度味噌對高脂飲食SD大鼠肝臟脂質氧化分子機制之影響 63
(九) 味噌對高脂飲食SD大鼠腸道菌相之影響 65
第五章、結論 67
第六章、圖表 69
參考文獻 95
1.WHO, World health statistics 2018: monitoring health for the SDGs, sustainable development goals. 2018.
2.衛生福利部國民健康署, 肥胖定義標準. 2018.
3.Spiegelman, B. M.; Flier, J. S., Obesity and the regulation of energy balance. Cell 2001, 104 (4), 531-543.
4.Hall, K. D.; Sacks, G.; Chandramohan, D.; Chow, C. C.; Wang, Y. C.; Gortmaker, S. L.; Swinburn, B. A., Quantification of the effect of energy imbalance on bodyweight. Lancet 2011, 378 (9793), 826-837.
5.Pigeyre, M.; Yazdi, F. T.; Kaur, Y.; Meyre, D., Recent progress in genetics, epigenetics and metagenomics unveils the pathophysiology of human obesity. Clin. Sci. 2016, 130 (12), 943-986.
6.Hall, K. D.; Guo, J.; Dore, M.; Chow, C. C., The progressive increase of food waste in America and its environmental impact. PLoS One 2009, 4 (11), 6.
7.Kant, A. K., Consumption of energy-dense, nutrient-poor foods by adult Americans: nutritional and health implications. The third national health and nutrition examination survey, 1988-1994. Am. J. Clin. Nutr. 2000, 72 (4), 929-936.
8.Medina-Remon, A.; Kirwan, R.; Lamuela-Raventos, R. M.; Estruch, R., Dietary patterns and the risk of obesity, type 2 diabetes mellitus, cardiovascular diseases, asthma, and neurodegenerative diseases. Crit. Rev. Food Sci. Nutr. 2018, 58 (2), 262-296.
9.Church, T. S.; Thomas, D. M.; Tudor-Locke, C.; Katzmarzyk, P. T.; Earnest, C. P.; Rodarte, R. Q.; Martin, C. K.; Blair, S. N.; Bouchard, C., Trends over 5 decades in US occupation-related physical activity and their associations with obesity. PLoS One 2011, 6 (5), 7.
10.McAllister, E. J.; Dhurandhar, N. V.; Keith, S. W.; Aronne, L. J.; Barger, J.; Baskin, M.; Benca, R. M.; Biggio, J.; Boggiano, M. M.; Eisenmann, J. C.; Elobeid, M.; Fontaine, K. R.; Gluckman, P.; Hanlon, E. C.; Katzmarzyk, P.; Pietrobelli, A.; Redden, D. T.; Ruden, D. M.; Wang, C. X.; Waterland, R. A.; Wright, S. M.; Allison, D. B., Ten putative contributors to the obesity epidemic. Crit. Rev. Food Sci. Nutr. 2009, 49 (10), 868-913.
11.Heymsfield, S. B.; Wadden, T. A., Mechanisms, pathophysiology, and management of obesity. N. Engl. J. Med. 2017, 376 (3), 254-266.
12.Hotamisligil, G. S., Inflammation and metabolic disorders. Nature 2006, 444 (7121), 860-867.
13.Cinti, S.; Mitchell, G.; Barbatelli, G.; Murano, I.; Ceresi, E.; Faloia, E.; Wang, S. P.; Fortier, M.; Greenberg, A. S.; Obin, M. S., Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J. Lipid Res. 2005, 46 (11), 2347-2355.
14.Kloting, N.; Bluher, M., Adipocyte dysfunction, inflammation and metabolic syndrome. Rev. Endocr. Metab. Disord. 2014, 15 (4), 277-287.
15.Reilly, S. M.; Saltiel, A. R., Adapting to obesity with adipose tissue inflammation. Nat. Rev. Endocrinol. 2017, 13 (11), 633-643.
16.Trayhurn, P., Hypoxia and adipose tissue function and dysfunction in obesity. Physiol. Rev. 2013, 93 (1), 1-21.
17.Trayhurn, P., Hypoxia and adipocyte physiology: implications for adipose tissue dysfunction in obesity. In Annu. Rev. Nutr., Cousins, R. J., Ed. Annual Reviews: Palo Alto, 2014; Vol. 34, pp 207-236.
18.Guilherme, A.; Virbasius, J. V.; Puri, V.; Czech, M. P., Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat. Rev. Mol. Cell Biol. 2008, 9 (5), 367-377.
19.Richardson, D. K.; Kashyap, S.; Bajaj, M.; Cusi, K.; Mandarino, S. J.; Finlayson, J.; DeFronzo, R. A.; Jenkinson, C. P.; Mandarino, L. J., Lipid infusion decreases the expression of nuclear encoded mitochondrial genes and increases the expression of extracellular matrix genes in human skeletal muscle. J. Biol. Chem. 2005, 280 (11), 10290-10297.
20.Tanti, J. F.; Jager, J., Cellular mechanisms of insulin resistance: role of stress-regulated serine kinases and insulin receptor substrates (IRS) serine phosphorylation. Curr. Opin. Pharm. 2009, 9 (6), 753-762.
21.Lavie, C. J.; De Schutter, A.; Parto, P.; Jahangir, E.; Kokkinos, P.; Ortega, F. B.; Arena, R.; Milani, R. V., Obesity and prevalence of cardiovascular diseases and prognosis-the obesity paradox updated. Prog. Cardiovasc. Dis. 2016, 58 (5), 537-547.
22.Mottillo, S.; Filion, K. B.; Genest, J.; Joseph, L.; Pilote, L.; Poirier, P.; Rinfret, S.; Schiffrin, E. L.; Eisenberg, M. J., The metabolic syndrome and cardiovascular risk a systematic review and meta-analysis. J. Am. Coll. Cardiol. 2010, 56 (14), 1113-1132.
23.Hall, J. E.; da Silva, A. A.; do Carmo, J. M.; Dubinion, J.; Hamza, S.; Munusamy, S.; Smith, G.; Stec, D. E., Obesity-induced hypertension: role of sympathetic nervous system, leptin, and melanocortins. J. Biol. Chem. 2010, 285 (23), 17271-17276.
24.Owen, M. K.; Noblet, J. N.; Sassoon, D. J.; Conteh, A. M.; Goodwill, A. G.; Tune, J. D., Perivascular adipose tissue and coronary vascular disease. Atertio. Thromb. Vasc. Biol. 2014, 34 (8), 1643-1649.
25.Angulo, P., Medical progress - nonalcoholic fatty liver disease. N. Engl. J. Med. 2002, 346 (16), 1221-1231.
26.Haas, J. T.; Francque, S.; Staels, B., Pathophysiology and mechanisms of nonalcoholic fatty liver disease. In Annu. Rev. Physiol., Julius, D., Ed. Annual Reviews: Palo Alto, 2016; Vol. 78, pp 181-205.
27.Donnelly, K. L.; Smith, C. I.; Schwarzenberg, S. J.; Jessurun, J.; Boldt, M. D.; Parks, E. J., Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Invest. 2005, 115 (5), 1343-1351.
28.Szczepaniak, L. S.; Nurenberg, P.; Leonard, D.; Browning, J. D.; Reingold, J. S.; Grundy, S.; Hobbs, H. H.; Dobbins, R. L., Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population. Am. J. Physiol. Endocrinol. Metab. 2005, 288 (2), 462-468.
29.Bugianesi, E.; Gastaldelli, A.; Vanni, E.; Gambino, R.; Cassader, M.; Baldi, S.; Ponti, V.; Pagano, G.; Ferrannini, E.; Rizzetto, M., Insulin resistance in non-diabetic patients with non-alcoholic fatty liver disease: sites and mechanisms. Diabetologia 2005, 48 (4), 634-642.
30.Petersen, K. F.; Dufour, S.; Savage, D. B.; Bilz, S.; Solomon, G.; Yonemitsu, S.; Cline, G. W.; Befroy, D.; Zemany, L.; Kahn, B. B.; Papademetris, X.; Rothman, D. L.; Shulman, G. I., The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome. Proc. Natl. Acad. Sci. U. S. A. 2007, 104 (31), 12587-12594.
31.Jiang, Z. G.; Robson, S. C.; Yao, Z., Lipoprotein metabolism in nonalcoholic fatty liver disease. J. Biomed. Res. 2013, 27 (1), 1-13.
32.Ouchi, N.; Parker, J. L.; Lugus, J. J.; Walsh, K., Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 2011, 11 (2), 85-97.
33.Choe, S. S.; Huh, J. Y.; Hwang, I. J.; Kim, J. I.; Kim, J. B., Adipose tissue remodeling: its role in energy metabolism and metabolic disorders. Front. Endocrinol. (Lausanne) 2016, 7, 16.
34.Gesta, S.; Tseng, Y. H.; Kahn, C. R., Developmental origin of fat: tracking obesity to its source. Cell 2007, 131 (2), 242-256.
35.Arner, P.; Bernard, S.; Salehpour, M.; Possnert, G.; Liebl, J.; Steier, P.; Buchholz, B. A.; Eriksson, M.; Arner, E.; Hauner, H.; Skurk, T.; Ryden, M.; Frayn, K. N.; Spalding, K. L., Dynamics of human adipose lipid turnover in health and metabolic disease. Nature 2011, 478 (7367), 110-113.
36.Cannon, B.; Nedergaard, J., Brown adipose tissue: function and physiological significance. Physiol. Rev. 2004, 84 (1), 277-359.
37.Betz, M. J.; Enerback, S., Human brown adipose tissue: what we have learned so far. Diabetes 2015, 64 (7), 2352-2360.
38.Wang, W. S.; Seale, P., Control of brown and beige fat development. Nat. Rev. Mol. Cell Biol. 2016, 17 (11), 691-702.
39.Kershaw, E. E.; Flier, J. S., Adipose tissue as an endocrine organ. J. Clin. Endocrinol. Metab. 2004, 89 (6), 2548-2556.
40.Kuryszko, J.; Slawuta, P.; Sapikowski, G., Secretory function of adipose tissue. Pol. J. Vet. Sci. 2016, 19 (2), 441-446.
41.Matsuzawa, Y.; Funahashi, T.; Kihara, S.; Shimomura, I., Adiponectin and metabolic syndrome. Atertio. Thromb. Vasc. Biol. 2004, 24 (1), 29-33.
42.Rosen, E. D.; MacDougald, O. A., Adipocyte differentiation from the inside out. Nat. Rev. Mol. Cell Biol. 2006, 7 (12), 885-896.
43.Kajimura, S.; Spiegelman, B. M.; Seale, P., Brown and beige fat: physiological roles beyond heat generation. Cell Metab. 2015, 22 (4), 546-559.
44.Inagaki, T.; Sakai, J.; Kajimura, S., Transcriptional and epigenetic control of brown and beige adipose cell fate and function. Nat. Rev. Mol. Cell Biol. 2016, 17 (8), 480-495.
45.Darley-Usmar, V., The powerhouse takes control of the cell: the role of mitochondria in signal transduction. Free Radical Biol. Med. 2004, 37 (6), 753-754.
46.Crichton, P. G.; Lee, Y.; Kunji, E. R. S., The molecular features of uncoupling protein 1 support a conventional mitochondrial carrier-like mechanism. Biochimie 2017, 134, 35-50.
47.Kim, J. B.; Spiegelman, B. M., ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes Dev. 1996, 10 (9), 1096-1107.
48.Gregoire, F. M.; Smas, C. M.; Sul, H. S., Understanding adipocyte differentiation. Physiol. Rev. 1998, 78 (3), 783-809.
49.Strable, M. S.; Ntambi, J. M., Genetic control of de novo lipogenesis: role in diet-induced obesity. Crit. Rev. Biochem. Mol. Biol. 2010, 45 (3), 199-214.
50.Ameer, F.; Scandiuzzi, L.; Hasnain, S.; Kalbacher, H.; Zaidi, N., De nova lipogenesis in health and disease. Metab. Clin. Exp. 2014, 63 (7), 895-902.
51.Saggerson, D., Malonyl-CoA, a key signaling molecule in mammalian cells. Annu. Rev. Nutr. 2008, 28, 253.
52.Jump, D. B.; Clarke, S. D.; Thelen, A.; Liimatta, M., Coordinate regulation of glycolytic and lipogenic gene-expression by polyunsaturated fatty-acids. J. Lipid Res. 1994, 35 (6), 1076-1084.
53.Friedman, J. M.; Halaas, J. L., Leptin and the regulation of body weight in mammals. Nature 1998, 395 (6704), 763-770.
54.Xue, B. Z.; Kahn, B. B., AMPK integrates nutrient and hormonal signals to regulate food intake and energy balance through effects in the hypothalamus and peripheral tissues. J. Physiol.-London 2006, 574 (1), 73-83.
55.Duncan, R. E.; Ahmadian, M.; Jaworski, K.; Sarkadi-Nagy, E.; Sul, H. S., Regulation of lipolysis in adipocytes. Annu. Rev. Nutr. 2007, 27, 79-101.
56.Serra, D.; Mera, P.; Malandrino, M. I.; Mir, J. F.; Herrero, L., Mitochondrial fatty acid oxidation in obesity. Antioxid. Redox Signal. 2013, 19 (3), 269-284.
57.Canto, C.; Gerhart-Hines, Z.; Feige, J. N.; Lagouge, M.; Noriega, L.; Milne, J. C.; Elliott, P. J.; Puigserver, P.; Auwerx, J., AMPK regulates energy expenditure by modulating NAD+ metabolism and Sirt1 activity. Nature 2009, 458 (7241), 1056-1060.
58.Gerhart-Hines, Z.; Rodgers, J. T.; Bare, O.; Kim, C.; Kim, S. H.; Mostoslavsky, R.; Alt, F. W.; Wu, Z. D.; Puigserver, P., Metabolic control of muscle mitochondrial function and fatty acid oxidation through Sirt1/PGC-1 alpha. EMBO J. 2007, 26 (7), 1913-1923.
59.Kim, J. H.; Park, Y., Combined effects of phytochemicals and exercise on fatty acid oxidation. Journal of Exercise Nutrition and Biochemistry 2016, 20, 20-26.
60.Gill, S. R.; Pop, M.; DeBoy, R. T.; Eckburg, P. B.; Turnbaugh, P. J.; Samuel, B. S.; Gordon, J. I.; Relman, D. A.; Fraser-Liggett, C. M.; Nelson, K. E., Metagenomic analysis of the human distal gut microbiome. Science 2006, 312 (5778), 1355-1359.
61.Peterson, J.; Garges, S.; Giovanni, M.; McInnes, P.; Wang, L.; Schloss, J. A.; Bonazzi, V.; McEwen, J. E.; Wetterstrand, K. A.; Deal, C.; Baker, C. C.; Di Francesco, V.; Howcroft, T. K.; Karp, R. W.; Lunsford, R. D.; Wellington, C. R.; Belachew, T.; Wright, M.; Giblin, C.; David, H.; Mills, M.; Salomon, R.; Mullins, C.; Akolkar, B.; Begg, L.; Davis, C.; Grandison, L.; Humble, M.; Khalsa, J.; Little, A. R.; Peavy, H.; Pontzer, C.; Portnoy, M.; Sayre, M. H.; Starke-Reed, P.; Zakhari, S.; Read, J.; Watson, B.; Guyer, M., The NIH human microbiome project. Genome Res. 2009, 19 (12), 2317-2323.
62.Hugon, P.; Dufour, J. C.; Colson, P.; Fournier, P. E.; Sallah, K.; Raoult, D., A comprehensive repertoire of prokaryotic species identified in human beings. Lancet Infect. Dis. 2015, 15 (10), 1211-1219.
63.Donaldson, G. P.; Lee, S. M.; Mazmanian, S. K., Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 2016, 14 (1), 20-32.
64.Thursby, E.; Juge, N., Introduction to the human gut microbiota. Biochem. J. 2017, 474 (11), 1823-1836.
65.Backhed, F.; Ding, H.; Wang, T.; Hooper, L. V.; Koh, G. Y.; Nagy, A.; Semenkovich, C. F.; Gordon, J. I., The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. U. S. A. 2004, 101 (44), 15718-15723.
66.Ridaura, V. K.; Faith, J. J.; Rey, F. E.; Cheng, J.; Duncan, A. E.; Kau, A. L.; Griffin, N. W.; Lombard, V.; Henrissat, B.; Bain, J. R., Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 2013, 341.
67.Topping, D. L.; Clifton, P. M., Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol. Rev. 2001, 81.
68.den Besten, G.; van Eunen, K.; Groen, A.; Venema, K.; Reijngoud, D. J.; M Bakker, B., The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 2013, 54.
69.Binder, H. J., Role of colonic short-chain fatty acid transport in diarrhea. Annu. Rev. Physiol. 2010, 72, 297-313.
70.Cook, S. I.; Sellin, J. H., Review article: short chain fatty acids in health and disease. Aliment. Pharmacol. Ther. 1998, 12 (6), 499-507.
71.Chakraborti, C. K., New-found link between microbiota and obesity. World J. Gastrointest. Pathophysiol. 2015, 6 (4), 110-119.
72.Lin, H. V.; Frassetto, A.; Kowalik, E. J., Jr.; Nawrocki, A. R.; Lu, M. M.; Kosinski, J. R.; Hubert, J. A.; Szeto, D.; Yao, X.; Forrest, G.; Marsh, D. J., Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One 2012, 7 (4), 35240.
73.Harris, K.; Kassis, A.; Major, G.; Chou, C. J., Is the gut microbiota a new factor contributing to obesity and its metabolic disorders? J. Obes. 2012, 2012, 879151.
74.Frost, G.; Sleeth, M. L.; Sahuri-Arisoylu, M.; Lizarbe, B.; Cerdan, S.; Brody, L.; Anastasovska, J.; Ghourab, S.; Hankir, M.; Zhang, S.; Carling, D.; Swann, J. R.; Gibson, G.; Viardot, A.; Morrison, D.; Louise Thomas, E.; Bell, J. D., The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat. Commun. 2014, 5, 3611.
75.Puddu, A.; Sanguineti, R.; Montecucco, F.; Viviani, G. L., Evidence for the gut microbiota short-chain fatty acids as key pathophysiological molecules improving diabetes. Mediators Inflamm. 2014, 2014, 162021.
76.den Besten, G.; Bleeker, A.; Gerding, A.; van Eunen, K.; Havinga, R.; van Dijk, T. H.; Oosterveer, M. H.; Jonker, J. W.; Groen, A. K.; Reijngoud, D. J.; Bakker, B. M., Short-chain fatty acids protect against high-fat diet-induced obesity via a PPARgamma-dependent switch from lipogenesis to fat oxidation. Diabetes 2015, 64 (7), 2398-2408.
77.行政院農委會茶業改良場, 茶葉分類簡介. 2018.
78.Weerawatanakorn, M.; Hung, W. L.; Pan, M. H.; Li, S.; Li, D.; Wan, X.; Ho, C. T., Chemistry and health beneficial effects of oolong tea and theasinensins. Food Science and Human Wellness 2015, 4 (4), 133-146.
79.江文基, 我國茶葉在TPP與RCEP國家中有沒有潛在出口市場?關稅貿易障礙的觀點. 經濟前瞻 2016, (168), 86-96.
80.Theppakorn, T., Stability and chemical changes of phenolic compounds during oolong tea processing. 2016, 23, 564-574.
81.Zhu, Q. Y.; Hackman, R. M.; Ensunsa, J. L.; Holt, R. R.; Keen, C. L., Antioxidative activities of oolong tea. J. Agric. Food Chem. 2002, 50 (23), 6929-6934.
82.Kurihara, H.; Fukami, H.; Toyoda, Y.; Kageyama, N.; Tsuruoka, N.; Shibata, H.; Kiso, Y.; Tanaka, T., Inhibitory effect of oolong tea on the oxidative state of low density lipoprotein (LDL). Biol. Pharm. Bull. 2003, 26 (5), 739-742.
83.Lin, C. C.; Li, C. W.; Shih, Y. T.; Chuang, L. T., Antioxidant and anti-inflammatory properties of lower-polymerized polyphenols in oolong tea. Int. J. Food Prop. 2014, 17 (4), 752-764.
84.Matsumoto, N.; Kohri, T.; Okushio, K.; Hara, Y., Inhibitory effects of tea catechins, black tea extract and oolong tea extract on hepatocarcinogenesis in rat. Jpn. J. Cancer Res. 1996, 87 (10), 1034-1038.
85.Zhang, G. Y.; Miura, Y.; Yagasaki, K., Effects of green, oolong and black teas and related components on the proliferation and invasion of hepatoma cells in culture. Cytotechnology 1999, 31 (1-2), 37-44.
86.Wu, T.; Xu, J. L.; Chen, Y. J.; Liu, R.; Zhang, M., Oolong tea polysaccharide and polyphenols prevent obesity development in Sprague-Dawley rats. Food Nutr. Res. 2018, 62, 8.
87.Chen, Y. J.; Kuo, P. C.; Yang, M. L.; Li, F. Y.; Tzen, J. T. C., Effects of baking and aging on the changes of phenolic and volatile compounds in the preparation of old Tieguanyin oolong teas. Food Res. Int. 2013, 53 (2), 732-743.
88.Nout, R., Quality, safety, biofunctionality and fermentation control in soya. In Advances in Fermented Foods and Beverages, Holzapfel, W., Ed. Woodhead Publishing: 2015; pp 409-434.
89.みそ健康づくり委員会, The world of miso. 2019.
90.Mani, V.; Ming, L. C., Tempeh and other fermented soybean products rich in isoflavones. In Fermented Foods in Health and Disease Prevention, Frias, J.; Martinez-Villaluenga, C.; Peñas, E., Eds. Academic Press: Boston, 2017; pp 453-474.
91.Uifalean, A.; Schneider, S.; Ionescu, C.; Lalk, M.; Iuga, C. A., Soy isoflavones and breast cancer cell lines: molecular mechanisms and future perspectives. Molecules 2016, 21 (1), 17.
92.Ramdath, D. D.; Padhi, E. M. T.; Sarfaraz, S.; Renwick, S.; Duncan, A. M., Beyond the cholesterol-lowering effect of soy protein: a review of the effects of dietary soy and its constituents on risk factors for cardiovascular disease. Nutrients 2017, 9 (4), 24.
93.Ho, H. M.; Chen, R. Y.; Leung, L. K.; Chan, F. L.; Huang, Y.; Chen, Z.-Y., Difference in flavonoid and isoflavone profile between soybean and soy leaf. Biomed. Pharmacother. 2002, 56 (6), 289-295.
94.Izumi, T.; Piskula, M. K.; Osawa, S.; Obata, A.; Tobe, K.; Saito, M.; Kataoka, S.; Kubota, Y.; Kikuchi, M., Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. J. Nutr. 2000, 130 (7), 1695-1699.
95.Okabe, Y.; Shimazu, T.; Tanimoto, H., Higher bioavailability of isoflavones after a single ingestion of aglycone-rich fermented soybeans compared with glucoside-rich non-fermented soybeans in Japanese postmenopausal women. J. Sci. Food Agric. 2011, 91 (4), 658-663.
96.Watanabe, H., Beneficial biological effects of miso with reference to radiation injury, cancer and hypertension. J. Toxicol. Pathol. 2013, 26 (2), 91-103.
97.Nam, Y. R.; Won, S. B.; Chung, Y. S.; Kwak, C. S.; Kwon, Y. H., Inhibitory effects of Doenjang, korean traditional fermented soybean paste, on oxidative stress and inflammation in adipose tissue of mice fed a high-fat diet. Nutr. Res. Pract. 2015, 9 (3), 235-241.
98.Lj. Nikolić, I.; Savic-Gajic, I.; Tačić, A.; Savic, I., Classification and biological activity of phytoestrogens: a review. Advanced Technologies 2017, 6, 96-106.
99.Tsugane, S.; Sasazuki, S.; Kobayashi, M.; Sasaki, S., Salt and salted food intake and subsequent risk of gastric cancer among middle-aged Japanese men and women. Br. J. Cancer 2004, 90 (1), 128-134.
100.Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248-254.
101.Mardis, E. R., Next-generation DNA sequencing methods. Annu. Rev. Genomics Hum. Genet. 2008, 9, 387-402.
102.Illumina, An introduction to next-generation sequencing technology. 2017.
103.Buettner, R.; Scholmerich, J.; Bollheimer, L. C., High-fat diets: modeling the metabolic disorders of human obesity in rodents. Obesity (Silver Spring, Md.) 2007, 15 (4), 798-808.
104.Giles, E. D.; Jackman, M. R.; MacLean, P. S., Modeling diet-induced obesity with obesity-prone rats: implications for studies in females. Front. Nutr. 2016, 3, 13.
105.Michael, B.; Yano, B.; Sellers, R. S.; Perry, R.; Morton, D.; Roome, N.; Johnson, J. K.; Schafer, K., Evaluation of organ weights for rodent and non-rodent toxicity studies: a review of regulatory guidelines and a survey of current practices. Toxicol. Pathol. 2007, 35 (5), 742-750.
106.Chan, P. C.; Ramot, Y.; Malarkey, D. E.; Blackshear, P.; Kissling, G. E.; Travlos, G.; Nyska, A., Fourteen-week toxicity study of green tea extract in rats and mice. Toxicol. Pathol. 2010, 38 (7), 1070-1084.
107.Ozer, J.; Ratner, M.; Shaw, M.; Bailey, W.; Schomaker, S., The current state of serum biomarkers of hepatotoxicity. Toxicology 2008, 245 (3), 194-205.
108.Subramanian, S.; Chait, A., Hypertriglyceridemia secondary to obesity and diabetes. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2012, 1821 (5), 819-825.
109.Dalboge, L. S.; Pedersen, P. J.; Hansen, G.; Fabricius, K.; Hansen, H. B.; Jelsing, J.; Vrang, N., A hamster model of diet-induced obesity for preclinical evaluation of anti-obesity, anti-diabetic and lipid modulating agents. PLoS One 2015, 10 (8), 14.
110.Gao, S.; He, L. A.; Ding, Y. L.; Liu, G., Mechanisms underlying different responses of plasma triglyceride to high-fat diets in hamsters and mice: roles of hepatic MTP and triglyceride secretion. Biochem. Biophys. Res. Commun. 2010, 398 (4), 619-626.
111.Miranda, J.; Eseberri, I.; Lasa, A.; Portillo, M. P., Lipid metabolism in adipose tissue and liver from diet-induced obese rats: a comparison between Wistar and Sprague-Dawley strains. J. Physiol. Biochem. 2018, 74 (4), 655-666.
112.Marques, C.; Meireles, M.; Norberto, S.; Leite, J.; Freitas, J.; Pestana, D.; Faria, A.; Calhau, C., High-fat diet-induced obesity rat model: a comparison between Wistar and Sprague-Dawley rat. Adipocyte 2016, 5 (1), 11-21.
113.Li, F.; Gao, C.; Yan, P.; Zhang, M.; Wang, Y. H.; Hu, Y.; Wu, X. Y.; Wang, X. J.; Sheng, J., EGCG reduces obesity and white adipose tissue gain partly through AMPK activation in mice. Front. Pharmacol. 2018, 9, 9.
114.Lee, M. S.; Kim, C. T.; Kim, Y., Green tea (-)-epigallocatechin-3-gallate reduces body weight with regulation of multiple genes expression in adipose tissue of diet-induced obese mice. Ann. Nutr. Metab. 2009, 54 (2), 151-157.
115.Sekiya, M.; Yahagi, N.; Matsuzaka, T.; Takeuchi, Y.; Nakagawa, Y.; Takahashi, H.; Okazaki, H.; Iizuka, Y.; Ohashi, K.; Gotoda, T.; Ishibashi, S.; Nagai, R.; Yamazaki, T.; Kadowaki, T.; Yamada, N.; Osuga, J.; Shimano, H., SREBP-1-independent regulation of lipogenic gene expression in adipocytes. J. Lipid Res. 2007, 48 (7), 1581-1591.
116.Neyrinck, A. M.; Bindels, L. B.; Geurts, L.; Van Hul, M.; Cani, P. D.; Delzenne, N. M., A polyphenolic extract from green tea leaves activates fat browning in high-fat-diet induced obese mice. J. Nutr. Biochem. 2017, 49, 15-21.
117.Zhou, J. H.; Mao, L. M.; Xu, P.; Wang, Y. F., Effects of (-)- epigallocatechin gallate (EGCG) on energy expenditure and microglia-mediated hypothalamic inflammation in mice fed a high-fat diet. Nutrients 2018, 10 (11), 13.
118.Mi, Y.; Liu, X.; Tian, H.; Liu, H.; Li, J.; Qi, G.; Liu, X., EGCG stimulates the recruitment of brite adipocytes, suppresses adipogenesis and counteracts TNF-alpha-triggered insulin resistance in adipocytes. Food Funct. 2018, 9 (6), 3374-3386.
119.Velickovic, K.; Wayne, D.; Leija, H. A. L.; Bloor, I.; Morris, D. E.; Law, J.; Budge, H.; Sacks, H.; Symonds, M. E.; Sottile, V., Caffeine exposure induces browning features in adipose tissue in vitro and in vivo. Sci. Rep. 2019, 9 (1), 9104.
120.Zheng, G. D.; Sayama, K.; Okubo, T.; Juneja, L. R.; Oguni, I., Anti-obesity effects of three major components of green tea, catechins, caffeine and theanine, in mice. In Vivo 2004, 18 (1), 55-62.
121.Duncan, S. H.; Lobley, G. E.; Holtrop, G.; Ince, J.; Johnstone, A. M.; Louis, P.; Flint, H. J., Human colonic microbiota associated with diet, obesity and weight loss. Int. J. Obes. (Lond.) 2008, 32 (11), 1720-1724.
122.Lopetuso, L. R.; Scaldaferri, F.; Petito, V.; Gasbarrini, A., Commensal Clostridia: leading players in the maintenance of gut homeostasis. Gut Pathog. 2013, 5 (1), 23.
123.Lagkouvardos, I.; Lesker, T. R.; Hitch, T. C. A.; Gálvez, E. J. C.; Smit, N.; Neuhaus, K.; Wang, J.; Baines, J. F.; Abt, B.; Stecher, B.; Overmann, J.; Strowig, T.; Clavel, T., Sequence and cultivation study of Muribaculaceae reveals novel species, host preference, and functional potential of this yet undescribed family. Microbiome 2019, 7 (1), 28.
124.Obanda, D.; Page, R.; Guice, J.; Raggio, A. M.; Husseneder, C.; Marx, B.; Stout, R. W.; Welsh, D. A.; Taylor, C. M.; Luo, M.; Blanchard, E. E.; Bendiks, Z.; Coulon, D.; Keenan, M. J., CD obesity-prone rats, but not obesity-resistant rats, robustly ferment resistant starch without increased weight or fat accretion. Obesity (Silver Spring, Md.) 2018, 26 (3), 570-577.
125.Ormerod, K. L.; Wood, D. L. A.; Lachner, N.; Gellatly, S. L.; Daly, J. N.; Parsons, J. D.; Dal’Molin, C. G. O.; Palfreyman, R. W.; Nielsen, L. K.; Cooper, M. A.; Morrison, M.; Hansbro, P. M.; Hugenholtz, P., Genomic characterization of the uncultured Bacteroidales family S24-7 inhabiting the guts of homeothermic animals. Microbiome 2016, 4 (1), 36.
126.Meehan, C. J.; Beiko, R. G., A phylogenomic view of ecological specialization in the Lachnospiraceae, a family of digestive tract-associated bacteria. Genome Biol. Evol. 2014, 6 (3), 703-713.
127.Pryde, S. E.; Duncan, S. H.; Hold, G. L.; Stewart, C. S.; Flint, H. J., The microbiology of butyrate formation in the human colon. FEMS Microbiol. Lett. 2002, 217 (2), 133-139.
128.Davie, J. R., Inhibition of histone deacetylase activity by butyrate. J. Nutr. 2003, 133 (7), 2485-2493.
129.Gao, Z.; Yin, J.; Zhang, J.; Ward, R. E.; Martin, R. J.; Lefevre, M.; Cefalu, W. T.; Ye, J., Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 2009, 58 (7), 1509-1517.
130.Liu, J.; Hao, W.; He, Z.; Kwek, E.; Zhao, Y.; Zhu, H.; Liang, N.; Ma, K. Y.; Lei, L.; He, W. S.; Chen, Z. Y., Beneficial effects of tea water extracts on the body weight and gut microbiota in C57BL/6J mice fed with a high-fat diet. Food Funct. 2019, 10 (5), 2847-2860.
131.Kasahara, K.; Krautkramer, K. A.; Org, E.; Romano, K. A.; Kerby, R. L.; Vivas, E. I.; Mehrabian, M.; Denu, J. M.; Bäckhed, F.; Lusis, A. J.; Rey, F. E., Interactions between Roseburia intestinalis and diet modulate atherogenesis in a murine model. Nat. Microbiol. 2018, 3 (12), 1461-1471.
132.Hartstra, A. V.; Bouter, K. E. C.; Backhed, F.; Nieuwdorp, M., Insights into the role of the microbiome in obesity and type 2 diabetes. Diabetes Care 2015, 38 (1), 159-165.
133.Derrien, M.; Vaughan, E. E.; Plugge, C. M.; de Vos, W. M., Akkermansia muciniphila gen. Nov., sp. Nov., a human intestinal mucin-degrading bacterium. Int. J. Syst. Evol. Microbiol. 2004, 54 (5), 1469-1476.
134.Naito, Y.; Uchiyama, K.; Takagi, T., A next-generation beneficial microbe: Akkermansia muciniphila. J. Clin. Biochem. Nutr. 2018, 63 (1), 33-35.
135.Everard, A.; Belzer, C.; Geurts, L.; Ouwerkerk, J. P.; Druart, C.; Bindels, L. B.; Guiot, Y.; Derrien, M.; Muccioli, G. G.; Delzenne, N. M., Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. U. S. A. 2013, 110.
136.Banz, W.; Hauck, S.; Gename, B.; Winters, T.; Bartke, A., Soy isoflavones modify liver free radical scavenger systems and liver parameters in Sprague-Dawley rats. J. Med. Food 2004, 7 (4), 477-481.
137.Wiegand, H.; Wagner, A. E.; Boesch-Saadatmandi, C.; Kruse, H. P.; Kulling, S.; Rimbach, G., Effect of dietary genistein on phase II and antioxidant enzymes in rat liver. Cancer Genomics Proteomics 2009, 6 (2), 85-92.
138.Ipsen, D. H.; Lykkesfeldt, J.; Tveden-Nyborg, P., Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell. Mol. Life Sci. 2018, 75 (18), 3313-3327.
139.Duarte, J. A.; Carvalho, F.; Pearson, M.; Horton, J. D.; Browning, J. D.; Jones, J. G.; Burgess, S. C., A high-fat diet suppresses de novo lipogenesis and desaturation but not elongation and triglyceride synthesis in mice. J. Lipid Res. 2014, 55 (12), 2541-2553.
140.Delgado, T. C.; Pinheiro, D.; Caldeira, M.; Castro, M. M.; Geraldes, C. F.; Lopez-Larrubia, P.; Cerdan, S.; Jones, J. G., Sources of hepatic triglyceride accumulation during high-fat feeding in the healthy rat. NMR Biomed. 2009, 22 (3), 310-317.
141.Carrer, A.; Parris, J. L.; Trefely, S.; Henry, R. A.; Montgomery, D. C.; Torres, A.; Viola, J. M.; Kuo, Y. M.; Blair, I. A.; Meier, J. L.; Andrews, A. J.; Snyder, N. W.; Wellen, K. E., Impact of a high-fat diet on tissue acyl-CoA and histone acetylation levels. J. Biol. Chem. 2017, 292 (8), 3312-3322.
142.Dyck, J. R.; Kudo, N.; Barr, A. J.; Davies, S. P.; Hardie, D. G.; Lopaschuk, G. D., Phosphorylation control of cardiac acetyl-CoA carboxylase by cAMP-dependent protein kinase and 5''-AMP activated protein kinase. Eur. J. Biochem. 1999, 262 (1), 184-190.
143.Kim, M. H.; Park, J. S.; Jung, J. W.; Byun, K. W.; Kang, K. S.; Lee, Y. S., Daidzein supplementation prevents non-alcoholic fatty liver disease through alternation of hepatic gene expression profiles and adipocyte metabolism. Int. J. Obes. 2011, 35 (8), 1019-1030.
144.Yamazaki, T.; Li, D.; Ikaga, R., Effective food ingredients for fatty liver: soy protein β-conglycinin and fish oil. Int. J. Mol. Sci. 2018, 19 (12).
145.Foster, D. W., The role of the carnitine system in human metabolism. Ann. N. Y. Acad. Sci. 2004, 1033 (1), 1-16.
146.Herzig, S.; Shaw, R. J., AMPK: guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol. 2018, 19 (2), 121-135.
147.Liu, H.; Zhong, H.; Yin, Y.; Jiang, Z., Genistein has beneficial effects on hepatic steatosis in high fat-high sucrose diet-treated rats. Biomed. Pharmacother. 2017, 91, 964-969.
148.Zhong, H. J.; Liu, H. H.; Jiang, Z. Q., Genistein ameliorates fat accumulation through AMPK activation in fatty acid-induced BRL cells. J. Food Sci. 2017, 82 (11), 2719-2725.
149.Harakeh, S. M.; Khan, I.; Kumosani, T.; Barbour, E.; Almasaudi, S. B.; Bahijri, S. M.; Alfadul, S. M.; Ajabnoor, G. M.; Azhar, E. I., Gut microbiota: a contributing factor to obesity. Frontiers in cellular and infection microbiology 2016, 6, 95.
150.Kouzuma, A.; Kato, S.; Watanabe, K., Microbial interspecies interactions: recent findings in syntrophic consortia. Front. Microbiol. 2015, 6, 477.
151.Menni, C.; Jackson, M. A.; Pallister, T.; Steves, C. J.; Spector, T. D.; Valdes, A. M., Gut microbiome diversity and high-fibre intake are related to lower long-term weight gain. Int. J. Obes. 2017, 41, 1099.
152.Zhu, H. Z.; Liang, Y. D.; Ma, Q. Y.; Hao, W. Z.; Li, X. J.; Wu, M. S.; Deng, L. J.; Li, Y. M.; Chen, J. X., Xiaoyaosan improves depressive-like behavior in rats with chronic immobilization stress through modulation of the gut microbiota. Biomed. Pharmacother. 2019, 112, 108621.
153.Chelakkot, C.; Choi, Y.; Kim, D. K.; Park, H. T.; Ghim, J.; Kwon, Y.; Jeon, J.; Kim, M. S.; Jee, Y. K.; Gho, Y. S.; Park, H. S.; Kim, Y. K.; Ryu, S. H., Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions. Exp. Mol. Med. 2018, 50, 450.
154.Hansen, K. B.; Rosenkilde, M. M.; Knop, F. K.; Wellner, N.; Diep, T. A.; Rehfeld, J. F.; Andersen, U. B.; Holst, J. J.; Hansen, H. S., 2-oleoyl glycerol is a GPR119 agonist and signals GLP-1 release in humans. J. Clin. Endocrinol. Metab. 2011, 96 (9), 1409-1417.
155.Cani, P. D.; Plovier, H.; Van Hul, M.; Geurts, L.; Delzenne, N. M.; Druart, C.; Everard, A., Endocannabinoids - at the crossroads between the gut microbiota and host metabolism. Nat. Rev. Endocrinol. 2015, 12, 133.
156.Ben-Shlomo, S.; Zvibel, I.; Shnell, M.; Shlomai, A.; Chepurko, E.; Halpern, Z.; Barzilai, N.; Oren, R.; Fishman, S., Glucagon-like peptide-1 reduces hepatic lipogenesis via activation of AMP-activated protein kinase. J. Hepatol. 2011, 54 (6), 1214-1223.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊