|
1.WHO, World health statistics 2018: monitoring health for the SDGs, sustainable development goals. 2018. 2.衛生福利部國民健康署, 肥胖定義標準. 2018. 3.Spiegelman, B. M.; Flier, J. S., Obesity and the regulation of energy balance. Cell 2001, 104 (4), 531-543. 4.Hall, K. D.; Sacks, G.; Chandramohan, D.; Chow, C. C.; Wang, Y. C.; Gortmaker, S. L.; Swinburn, B. A., Quantification of the effect of energy imbalance on bodyweight. Lancet 2011, 378 (9793), 826-837. 5.Pigeyre, M.; Yazdi, F. T.; Kaur, Y.; Meyre, D., Recent progress in genetics, epigenetics and metagenomics unveils the pathophysiology of human obesity. Clin. Sci. 2016, 130 (12), 943-986. 6.Hall, K. D.; Guo, J.; Dore, M.; Chow, C. C., The progressive increase of food waste in America and its environmental impact. PLoS One 2009, 4 (11), 6. 7.Kant, A. K., Consumption of energy-dense, nutrient-poor foods by adult Americans: nutritional and health implications. The third national health and nutrition examination survey, 1988-1994. Am. J. Clin. Nutr. 2000, 72 (4), 929-936. 8.Medina-Remon, A.; Kirwan, R.; Lamuela-Raventos, R. M.; Estruch, R., Dietary patterns and the risk of obesity, type 2 diabetes mellitus, cardiovascular diseases, asthma, and neurodegenerative diseases. Crit. Rev. Food Sci. Nutr. 2018, 58 (2), 262-296. 9.Church, T. S.; Thomas, D. M.; Tudor-Locke, C.; Katzmarzyk, P. T.; Earnest, C. P.; Rodarte, R. Q.; Martin, C. K.; Blair, S. N.; Bouchard, C., Trends over 5 decades in US occupation-related physical activity and their associations with obesity. PLoS One 2011, 6 (5), 7. 10.McAllister, E. J.; Dhurandhar, N. V.; Keith, S. W.; Aronne, L. J.; Barger, J.; Baskin, M.; Benca, R. M.; Biggio, J.; Boggiano, M. M.; Eisenmann, J. C.; Elobeid, M.; Fontaine, K. R.; Gluckman, P.; Hanlon, E. C.; Katzmarzyk, P.; Pietrobelli, A.; Redden, D. T.; Ruden, D. M.; Wang, C. X.; Waterland, R. A.; Wright, S. M.; Allison, D. B., Ten putative contributors to the obesity epidemic. Crit. Rev. Food Sci. Nutr. 2009, 49 (10), 868-913. 11.Heymsfield, S. B.; Wadden, T. A., Mechanisms, pathophysiology, and management of obesity. N. Engl. J. Med. 2017, 376 (3), 254-266. 12.Hotamisligil, G. S., Inflammation and metabolic disorders. Nature 2006, 444 (7121), 860-867. 13.Cinti, S.; Mitchell, G.; Barbatelli, G.; Murano, I.; Ceresi, E.; Faloia, E.; Wang, S. P.; Fortier, M.; Greenberg, A. S.; Obin, M. S., Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J. Lipid Res. 2005, 46 (11), 2347-2355. 14.Kloting, N.; Bluher, M., Adipocyte dysfunction, inflammation and metabolic syndrome. Rev. Endocr. Metab. Disord. 2014, 15 (4), 277-287. 15.Reilly, S. M.; Saltiel, A. R., Adapting to obesity with adipose tissue inflammation. Nat. Rev. Endocrinol. 2017, 13 (11), 633-643. 16.Trayhurn, P., Hypoxia and adipose tissue function and dysfunction in obesity. Physiol. Rev. 2013, 93 (1), 1-21. 17.Trayhurn, P., Hypoxia and adipocyte physiology: implications for adipose tissue dysfunction in obesity. In Annu. Rev. Nutr., Cousins, R. J., Ed. Annual Reviews: Palo Alto, 2014; Vol. 34, pp 207-236. 18.Guilherme, A.; Virbasius, J. V.; Puri, V.; Czech, M. P., Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat. Rev. Mol. Cell Biol. 2008, 9 (5), 367-377. 19.Richardson, D. K.; Kashyap, S.; Bajaj, M.; Cusi, K.; Mandarino, S. J.; Finlayson, J.; DeFronzo, R. A.; Jenkinson, C. P.; Mandarino, L. J., Lipid infusion decreases the expression of nuclear encoded mitochondrial genes and increases the expression of extracellular matrix genes in human skeletal muscle. J. Biol. Chem. 2005, 280 (11), 10290-10297. 20.Tanti, J. F.; Jager, J., Cellular mechanisms of insulin resistance: role of stress-regulated serine kinases and insulin receptor substrates (IRS) serine phosphorylation. Curr. Opin. Pharm. 2009, 9 (6), 753-762. 21.Lavie, C. J.; De Schutter, A.; Parto, P.; Jahangir, E.; Kokkinos, P.; Ortega, F. B.; Arena, R.; Milani, R. V., Obesity and prevalence of cardiovascular diseases and prognosis-the obesity paradox updated. Prog. Cardiovasc. Dis. 2016, 58 (5), 537-547. 22.Mottillo, S.; Filion, K. B.; Genest, J.; Joseph, L.; Pilote, L.; Poirier, P.; Rinfret, S.; Schiffrin, E. L.; Eisenberg, M. J., The metabolic syndrome and cardiovascular risk a systematic review and meta-analysis. J. Am. Coll. Cardiol. 2010, 56 (14), 1113-1132. 23.Hall, J. E.; da Silva, A. A.; do Carmo, J. M.; Dubinion, J.; Hamza, S.; Munusamy, S.; Smith, G.; Stec, D. E., Obesity-induced hypertension: role of sympathetic nervous system, leptin, and melanocortins. J. Biol. Chem. 2010, 285 (23), 17271-17276. 24.Owen, M. K.; Noblet, J. N.; Sassoon, D. J.; Conteh, A. M.; Goodwill, A. G.; Tune, J. D., Perivascular adipose tissue and coronary vascular disease. Atertio. Thromb. Vasc. Biol. 2014, 34 (8), 1643-1649. 25.Angulo, P., Medical progress - nonalcoholic fatty liver disease. N. Engl. J. Med. 2002, 346 (16), 1221-1231. 26.Haas, J. T.; Francque, S.; Staels, B., Pathophysiology and mechanisms of nonalcoholic fatty liver disease. In Annu. Rev. Physiol., Julius, D., Ed. Annual Reviews: Palo Alto, 2016; Vol. 78, pp 181-205. 27.Donnelly, K. L.; Smith, C. I.; Schwarzenberg, S. J.; Jessurun, J.; Boldt, M. D.; Parks, E. J., Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Invest. 2005, 115 (5), 1343-1351. 28.Szczepaniak, L. S.; Nurenberg, P.; Leonard, D.; Browning, J. D.; Reingold, J. S.; Grundy, S.; Hobbs, H. H.; Dobbins, R. L., Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population. Am. J. Physiol. Endocrinol. Metab. 2005, 288 (2), 462-468. 29.Bugianesi, E.; Gastaldelli, A.; Vanni, E.; Gambino, R.; Cassader, M.; Baldi, S.; Ponti, V.; Pagano, G.; Ferrannini, E.; Rizzetto, M., Insulin resistance in non-diabetic patients with non-alcoholic fatty liver disease: sites and mechanisms. Diabetologia 2005, 48 (4), 634-642. 30.Petersen, K. F.; Dufour, S.; Savage, D. B.; Bilz, S.; Solomon, G.; Yonemitsu, S.; Cline, G. W.; Befroy, D.; Zemany, L.; Kahn, B. B.; Papademetris, X.; Rothman, D. L.; Shulman, G. I., The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome. Proc. Natl. Acad. Sci. U. S. A. 2007, 104 (31), 12587-12594. 31.Jiang, Z. G.; Robson, S. C.; Yao, Z., Lipoprotein metabolism in nonalcoholic fatty liver disease. J. Biomed. Res. 2013, 27 (1), 1-13. 32.Ouchi, N.; Parker, J. L.; Lugus, J. J.; Walsh, K., Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 2011, 11 (2), 85-97. 33.Choe, S. S.; Huh, J. Y.; Hwang, I. J.; Kim, J. I.; Kim, J. B., Adipose tissue remodeling: its role in energy metabolism and metabolic disorders. Front. Endocrinol. (Lausanne) 2016, 7, 16. 34.Gesta, S.; Tseng, Y. H.; Kahn, C. R., Developmental origin of fat: tracking obesity to its source. Cell 2007, 131 (2), 242-256. 35.Arner, P.; Bernard, S.; Salehpour, M.; Possnert, G.; Liebl, J.; Steier, P.; Buchholz, B. A.; Eriksson, M.; Arner, E.; Hauner, H.; Skurk, T.; Ryden, M.; Frayn, K. N.; Spalding, K. L., Dynamics of human adipose lipid turnover in health and metabolic disease. Nature 2011, 478 (7367), 110-113. 36.Cannon, B.; Nedergaard, J., Brown adipose tissue: function and physiological significance. Physiol. Rev. 2004, 84 (1), 277-359. 37.Betz, M. J.; Enerback, S., Human brown adipose tissue: what we have learned so far. Diabetes 2015, 64 (7), 2352-2360. 38.Wang, W. S.; Seale, P., Control of brown and beige fat development. Nat. Rev. Mol. Cell Biol. 2016, 17 (11), 691-702. 39.Kershaw, E. E.; Flier, J. S., Adipose tissue as an endocrine organ. J. Clin. Endocrinol. Metab. 2004, 89 (6), 2548-2556. 40.Kuryszko, J.; Slawuta, P.; Sapikowski, G., Secretory function of adipose tissue. Pol. J. Vet. Sci. 2016, 19 (2), 441-446. 41.Matsuzawa, Y.; Funahashi, T.; Kihara, S.; Shimomura, I., Adiponectin and metabolic syndrome. Atertio. Thromb. Vasc. Biol. 2004, 24 (1), 29-33. 42.Rosen, E. D.; MacDougald, O. A., Adipocyte differentiation from the inside out. Nat. Rev. Mol. Cell Biol. 2006, 7 (12), 885-896. 43.Kajimura, S.; Spiegelman, B. M.; Seale, P., Brown and beige fat: physiological roles beyond heat generation. Cell Metab. 2015, 22 (4), 546-559. 44.Inagaki, T.; Sakai, J.; Kajimura, S., Transcriptional and epigenetic control of brown and beige adipose cell fate and function. Nat. Rev. Mol. Cell Biol. 2016, 17 (8), 480-495. 45.Darley-Usmar, V., The powerhouse takes control of the cell: the role of mitochondria in signal transduction. Free Radical Biol. Med. 2004, 37 (6), 753-754. 46.Crichton, P. G.; Lee, Y.; Kunji, E. R. S., The molecular features of uncoupling protein 1 support a conventional mitochondrial carrier-like mechanism. Biochimie 2017, 134, 35-50. 47.Kim, J. B.; Spiegelman, B. M., ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes Dev. 1996, 10 (9), 1096-1107. 48.Gregoire, F. M.; Smas, C. M.; Sul, H. S., Understanding adipocyte differentiation. Physiol. Rev. 1998, 78 (3), 783-809. 49.Strable, M. S.; Ntambi, J. M., Genetic control of de novo lipogenesis: role in diet-induced obesity. Crit. Rev. Biochem. Mol. Biol. 2010, 45 (3), 199-214. 50.Ameer, F.; Scandiuzzi, L.; Hasnain, S.; Kalbacher, H.; Zaidi, N., De nova lipogenesis in health and disease. Metab. Clin. Exp. 2014, 63 (7), 895-902. 51.Saggerson, D., Malonyl-CoA, a key signaling molecule in mammalian cells. Annu. Rev. Nutr. 2008, 28, 253. 52.Jump, D. B.; Clarke, S. D.; Thelen, A.; Liimatta, M., Coordinate regulation of glycolytic and lipogenic gene-expression by polyunsaturated fatty-acids. J. Lipid Res. 1994, 35 (6), 1076-1084. 53.Friedman, J. M.; Halaas, J. L., Leptin and the regulation of body weight in mammals. Nature 1998, 395 (6704), 763-770. 54.Xue, B. Z.; Kahn, B. B., AMPK integrates nutrient and hormonal signals to regulate food intake and energy balance through effects in the hypothalamus and peripheral tissues. J. Physiol.-London 2006, 574 (1), 73-83. 55.Duncan, R. E.; Ahmadian, M.; Jaworski, K.; Sarkadi-Nagy, E.; Sul, H. S., Regulation of lipolysis in adipocytes. Annu. Rev. Nutr. 2007, 27, 79-101. 56.Serra, D.; Mera, P.; Malandrino, M. I.; Mir, J. F.; Herrero, L., Mitochondrial fatty acid oxidation in obesity. Antioxid. Redox Signal. 2013, 19 (3), 269-284. 57.Canto, C.; Gerhart-Hines, Z.; Feige, J. N.; Lagouge, M.; Noriega, L.; Milne, J. C.; Elliott, P. J.; Puigserver, P.; Auwerx, J., AMPK regulates energy expenditure by modulating NAD+ metabolism and Sirt1 activity. Nature 2009, 458 (7241), 1056-1060. 58.Gerhart-Hines, Z.; Rodgers, J. T.; Bare, O.; Kim, C.; Kim, S. H.; Mostoslavsky, R.; Alt, F. W.; Wu, Z. D.; Puigserver, P., Metabolic control of muscle mitochondrial function and fatty acid oxidation through Sirt1/PGC-1 alpha. EMBO J. 2007, 26 (7), 1913-1923. 59.Kim, J. H.; Park, Y., Combined effects of phytochemicals and exercise on fatty acid oxidation. Journal of Exercise Nutrition and Biochemistry 2016, 20, 20-26. 60.Gill, S. R.; Pop, M.; DeBoy, R. T.; Eckburg, P. B.; Turnbaugh, P. J.; Samuel, B. S.; Gordon, J. I.; Relman, D. A.; Fraser-Liggett, C. M.; Nelson, K. E., Metagenomic analysis of the human distal gut microbiome. Science 2006, 312 (5778), 1355-1359. 61.Peterson, J.; Garges, S.; Giovanni, M.; McInnes, P.; Wang, L.; Schloss, J. A.; Bonazzi, V.; McEwen, J. E.; Wetterstrand, K. A.; Deal, C.; Baker, C. C.; Di Francesco, V.; Howcroft, T. K.; Karp, R. W.; Lunsford, R. D.; Wellington, C. R.; Belachew, T.; Wright, M.; Giblin, C.; David, H.; Mills, M.; Salomon, R.; Mullins, C.; Akolkar, B.; Begg, L.; Davis, C.; Grandison, L.; Humble, M.; Khalsa, J.; Little, A. R.; Peavy, H.; Pontzer, C.; Portnoy, M.; Sayre, M. H.; Starke-Reed, P.; Zakhari, S.; Read, J.; Watson, B.; Guyer, M., The NIH human microbiome project. Genome Res. 2009, 19 (12), 2317-2323. 62.Hugon, P.; Dufour, J. C.; Colson, P.; Fournier, P. E.; Sallah, K.; Raoult, D., A comprehensive repertoire of prokaryotic species identified in human beings. Lancet Infect. Dis. 2015, 15 (10), 1211-1219. 63.Donaldson, G. P.; Lee, S. M.; Mazmanian, S. K., Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 2016, 14 (1), 20-32. 64.Thursby, E.; Juge, N., Introduction to the human gut microbiota. Biochem. J. 2017, 474 (11), 1823-1836. 65.Backhed, F.; Ding, H.; Wang, T.; Hooper, L. V.; Koh, G. Y.; Nagy, A.; Semenkovich, C. F.; Gordon, J. I., The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. U. S. A. 2004, 101 (44), 15718-15723. 66.Ridaura, V. K.; Faith, J. J.; Rey, F. E.; Cheng, J.; Duncan, A. E.; Kau, A. L.; Griffin, N. W.; Lombard, V.; Henrissat, B.; Bain, J. R., Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 2013, 341. 67.Topping, D. L.; Clifton, P. M., Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol. Rev. 2001, 81. 68.den Besten, G.; van Eunen, K.; Groen, A.; Venema, K.; Reijngoud, D. J.; M Bakker, B., The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 2013, 54. 69.Binder, H. J., Role of colonic short-chain fatty acid transport in diarrhea. Annu. Rev. Physiol. 2010, 72, 297-313. 70.Cook, S. I.; Sellin, J. H., Review article: short chain fatty acids in health and disease. Aliment. Pharmacol. Ther. 1998, 12 (6), 499-507. 71.Chakraborti, C. K., New-found link between microbiota and obesity. World J. Gastrointest. Pathophysiol. 2015, 6 (4), 110-119. 72.Lin, H. V.; Frassetto, A.; Kowalik, E. J., Jr.; Nawrocki, A. R.; Lu, M. M.; Kosinski, J. R.; Hubert, J. A.; Szeto, D.; Yao, X.; Forrest, G.; Marsh, D. J., Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One 2012, 7 (4), 35240. 73.Harris, K.; Kassis, A.; Major, G.; Chou, C. J., Is the gut microbiota a new factor contributing to obesity and its metabolic disorders? J. Obes. 2012, 2012, 879151. 74.Frost, G.; Sleeth, M. L.; Sahuri-Arisoylu, M.; Lizarbe, B.; Cerdan, S.; Brody, L.; Anastasovska, J.; Ghourab, S.; Hankir, M.; Zhang, S.; Carling, D.; Swann, J. R.; Gibson, G.; Viardot, A.; Morrison, D.; Louise Thomas, E.; Bell, J. D., The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat. Commun. 2014, 5, 3611. 75.Puddu, A.; Sanguineti, R.; Montecucco, F.; Viviani, G. L., Evidence for the gut microbiota short-chain fatty acids as key pathophysiological molecules improving diabetes. Mediators Inflamm. 2014, 2014, 162021. 76.den Besten, G.; Bleeker, A.; Gerding, A.; van Eunen, K.; Havinga, R.; van Dijk, T. H.; Oosterveer, M. H.; Jonker, J. W.; Groen, A. K.; Reijngoud, D. J.; Bakker, B. M., Short-chain fatty acids protect against high-fat diet-induced obesity via a PPARgamma-dependent switch from lipogenesis to fat oxidation. Diabetes 2015, 64 (7), 2398-2408. 77.行政院農委會茶業改良場, 茶葉分類簡介. 2018. 78.Weerawatanakorn, M.; Hung, W. L.; Pan, M. H.; Li, S.; Li, D.; Wan, X.; Ho, C. T., Chemistry and health beneficial effects of oolong tea and theasinensins. Food Science and Human Wellness 2015, 4 (4), 133-146. 79.江文基, 我國茶葉在TPP與RCEP國家中有沒有潛在出口市場?關稅貿易障礙的觀點. 經濟前瞻 2016, (168), 86-96. 80.Theppakorn, T., Stability and chemical changes of phenolic compounds during oolong tea processing. 2016, 23, 564-574. 81.Zhu, Q. Y.; Hackman, R. M.; Ensunsa, J. L.; Holt, R. R.; Keen, C. L., Antioxidative activities of oolong tea. J. Agric. Food Chem. 2002, 50 (23), 6929-6934. 82.Kurihara, H.; Fukami, H.; Toyoda, Y.; Kageyama, N.; Tsuruoka, N.; Shibata, H.; Kiso, Y.; Tanaka, T., Inhibitory effect of oolong tea on the oxidative state of low density lipoprotein (LDL). Biol. Pharm. Bull. 2003, 26 (5), 739-742. 83.Lin, C. C.; Li, C. W.; Shih, Y. T.; Chuang, L. T., Antioxidant and anti-inflammatory properties of lower-polymerized polyphenols in oolong tea. Int. J. Food Prop. 2014, 17 (4), 752-764. 84.Matsumoto, N.; Kohri, T.; Okushio, K.; Hara, Y., Inhibitory effects of tea catechins, black tea extract and oolong tea extract on hepatocarcinogenesis in rat. Jpn. J. Cancer Res. 1996, 87 (10), 1034-1038. 85.Zhang, G. Y.; Miura, Y.; Yagasaki, K., Effects of green, oolong and black teas and related components on the proliferation and invasion of hepatoma cells in culture. Cytotechnology 1999, 31 (1-2), 37-44. 86.Wu, T.; Xu, J. L.; Chen, Y. J.; Liu, R.; Zhang, M., Oolong tea polysaccharide and polyphenols prevent obesity development in Sprague-Dawley rats. Food Nutr. Res. 2018, 62, 8. 87.Chen, Y. J.; Kuo, P. C.; Yang, M. L.; Li, F. Y.; Tzen, J. T. C., Effects of baking and aging on the changes of phenolic and volatile compounds in the preparation of old Tieguanyin oolong teas. Food Res. Int. 2013, 53 (2), 732-743. 88.Nout, R., Quality, safety, biofunctionality and fermentation control in soya. In Advances in Fermented Foods and Beverages, Holzapfel, W., Ed. Woodhead Publishing: 2015; pp 409-434. 89.みそ健康づくり委員会, The world of miso. 2019. 90.Mani, V.; Ming, L. C., Tempeh and other fermented soybean products rich in isoflavones. In Fermented Foods in Health and Disease Prevention, Frias, J.; Martinez-Villaluenga, C.; Peñas, E., Eds. Academic Press: Boston, 2017; pp 453-474. 91.Uifalean, A.; Schneider, S.; Ionescu, C.; Lalk, M.; Iuga, C. A., Soy isoflavones and breast cancer cell lines: molecular mechanisms and future perspectives. Molecules 2016, 21 (1), 17. 92.Ramdath, D. D.; Padhi, E. M. T.; Sarfaraz, S.; Renwick, S.; Duncan, A. M., Beyond the cholesterol-lowering effect of soy protein: a review of the effects of dietary soy and its constituents on risk factors for cardiovascular disease. Nutrients 2017, 9 (4), 24. 93.Ho, H. M.; Chen, R. Y.; Leung, L. K.; Chan, F. L.; Huang, Y.; Chen, Z.-Y., Difference in flavonoid and isoflavone profile between soybean and soy leaf. Biomed. Pharmacother. 2002, 56 (6), 289-295. 94.Izumi, T.; Piskula, M. K.; Osawa, S.; Obata, A.; Tobe, K.; Saito, M.; Kataoka, S.; Kubota, Y.; Kikuchi, M., Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. J. Nutr. 2000, 130 (7), 1695-1699. 95.Okabe, Y.; Shimazu, T.; Tanimoto, H., Higher bioavailability of isoflavones after a single ingestion of aglycone-rich fermented soybeans compared with glucoside-rich non-fermented soybeans in Japanese postmenopausal women. J. Sci. Food Agric. 2011, 91 (4), 658-663. 96.Watanabe, H., Beneficial biological effects of miso with reference to radiation injury, cancer and hypertension. J. Toxicol. Pathol. 2013, 26 (2), 91-103. 97.Nam, Y. R.; Won, S. B.; Chung, Y. S.; Kwak, C. S.; Kwon, Y. H., Inhibitory effects of Doenjang, korean traditional fermented soybean paste, on oxidative stress and inflammation in adipose tissue of mice fed a high-fat diet. Nutr. Res. Pract. 2015, 9 (3), 235-241. 98.Lj. Nikolić, I.; Savic-Gajic, I.; Tačić, A.; Savic, I., Classification and biological activity of phytoestrogens: a review. Advanced Technologies 2017, 6, 96-106. 99.Tsugane, S.; Sasazuki, S.; Kobayashi, M.; Sasaki, S., Salt and salted food intake and subsequent risk of gastric cancer among middle-aged Japanese men and women. Br. J. Cancer 2004, 90 (1), 128-134. 100.Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248-254. 101.Mardis, E. R., Next-generation DNA sequencing methods. Annu. Rev. Genomics Hum. Genet. 2008, 9, 387-402. 102.Illumina, An introduction to next-generation sequencing technology. 2017. 103.Buettner, R.; Scholmerich, J.; Bollheimer, L. C., High-fat diets: modeling the metabolic disorders of human obesity in rodents. Obesity (Silver Spring, Md.) 2007, 15 (4), 798-808. 104.Giles, E. D.; Jackman, M. R.; MacLean, P. S., Modeling diet-induced obesity with obesity-prone rats: implications for studies in females. Front. Nutr. 2016, 3, 13. 105.Michael, B.; Yano, B.; Sellers, R. S.; Perry, R.; Morton, D.; Roome, N.; Johnson, J. K.; Schafer, K., Evaluation of organ weights for rodent and non-rodent toxicity studies: a review of regulatory guidelines and a survey of current practices. Toxicol. Pathol. 2007, 35 (5), 742-750. 106.Chan, P. C.; Ramot, Y.; Malarkey, D. E.; Blackshear, P.; Kissling, G. E.; Travlos, G.; Nyska, A., Fourteen-week toxicity study of green tea extract in rats and mice. Toxicol. Pathol. 2010, 38 (7), 1070-1084. 107.Ozer, J.; Ratner, M.; Shaw, M.; Bailey, W.; Schomaker, S., The current state of serum biomarkers of hepatotoxicity. Toxicology 2008, 245 (3), 194-205. 108.Subramanian, S.; Chait, A., Hypertriglyceridemia secondary to obesity and diabetes. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2012, 1821 (5), 819-825. 109.Dalboge, L. S.; Pedersen, P. J.; Hansen, G.; Fabricius, K.; Hansen, H. B.; Jelsing, J.; Vrang, N., A hamster model of diet-induced obesity for preclinical evaluation of anti-obesity, anti-diabetic and lipid modulating agents. PLoS One 2015, 10 (8), 14. 110.Gao, S.; He, L. A.; Ding, Y. L.; Liu, G., Mechanisms underlying different responses of plasma triglyceride to high-fat diets in hamsters and mice: roles of hepatic MTP and triglyceride secretion. Biochem. Biophys. Res. Commun. 2010, 398 (4), 619-626. 111.Miranda, J.; Eseberri, I.; Lasa, A.; Portillo, M. P., Lipid metabolism in adipose tissue and liver from diet-induced obese rats: a comparison between Wistar and Sprague-Dawley strains. J. Physiol. Biochem. 2018, 74 (4), 655-666. 112.Marques, C.; Meireles, M.; Norberto, S.; Leite, J.; Freitas, J.; Pestana, D.; Faria, A.; Calhau, C., High-fat diet-induced obesity rat model: a comparison between Wistar and Sprague-Dawley rat. Adipocyte 2016, 5 (1), 11-21. 113.Li, F.; Gao, C.; Yan, P.; Zhang, M.; Wang, Y. H.; Hu, Y.; Wu, X. Y.; Wang, X. J.; Sheng, J., EGCG reduces obesity and white adipose tissue gain partly through AMPK activation in mice. Front. Pharmacol. 2018, 9, 9. 114.Lee, M. S.; Kim, C. T.; Kim, Y., Green tea (-)-epigallocatechin-3-gallate reduces body weight with regulation of multiple genes expression in adipose tissue of diet-induced obese mice. Ann. Nutr. Metab. 2009, 54 (2), 151-157. 115.Sekiya, M.; Yahagi, N.; Matsuzaka, T.; Takeuchi, Y.; Nakagawa, Y.; Takahashi, H.; Okazaki, H.; Iizuka, Y.; Ohashi, K.; Gotoda, T.; Ishibashi, S.; Nagai, R.; Yamazaki, T.; Kadowaki, T.; Yamada, N.; Osuga, J.; Shimano, H., SREBP-1-independent regulation of lipogenic gene expression in adipocytes. J. Lipid Res. 2007, 48 (7), 1581-1591. 116.Neyrinck, A. M.; Bindels, L. B.; Geurts, L.; Van Hul, M.; Cani, P. D.; Delzenne, N. M., A polyphenolic extract from green tea leaves activates fat browning in high-fat-diet induced obese mice. J. Nutr. Biochem. 2017, 49, 15-21. 117.Zhou, J. H.; Mao, L. M.; Xu, P.; Wang, Y. F., Effects of (-)- epigallocatechin gallate (EGCG) on energy expenditure and microglia-mediated hypothalamic inflammation in mice fed a high-fat diet. Nutrients 2018, 10 (11), 13. 118.Mi, Y.; Liu, X.; Tian, H.; Liu, H.; Li, J.; Qi, G.; Liu, X., EGCG stimulates the recruitment of brite adipocytes, suppresses adipogenesis and counteracts TNF-alpha-triggered insulin resistance in adipocytes. Food Funct. 2018, 9 (6), 3374-3386. 119.Velickovic, K.; Wayne, D.; Leija, H. A. L.; Bloor, I.; Morris, D. E.; Law, J.; Budge, H.; Sacks, H.; Symonds, M. E.; Sottile, V., Caffeine exposure induces browning features in adipose tissue in vitro and in vivo. Sci. Rep. 2019, 9 (1), 9104. 120.Zheng, G. D.; Sayama, K.; Okubo, T.; Juneja, L. R.; Oguni, I., Anti-obesity effects of three major components of green tea, catechins, caffeine and theanine, in mice. In Vivo 2004, 18 (1), 55-62. 121.Duncan, S. H.; Lobley, G. E.; Holtrop, G.; Ince, J.; Johnstone, A. M.; Louis, P.; Flint, H. J., Human colonic microbiota associated with diet, obesity and weight loss. Int. J. Obes. (Lond.) 2008, 32 (11), 1720-1724. 122.Lopetuso, L. R.; Scaldaferri, F.; Petito, V.; Gasbarrini, A., Commensal Clostridia: leading players in the maintenance of gut homeostasis. Gut Pathog. 2013, 5 (1), 23. 123.Lagkouvardos, I.; Lesker, T. R.; Hitch, T. C. A.; Gálvez, E. J. C.; Smit, N.; Neuhaus, K.; Wang, J.; Baines, J. F.; Abt, B.; Stecher, B.; Overmann, J.; Strowig, T.; Clavel, T., Sequence and cultivation study of Muribaculaceae reveals novel species, host preference, and functional potential of this yet undescribed family. Microbiome 2019, 7 (1), 28. 124.Obanda, D.; Page, R.; Guice, J.; Raggio, A. M.; Husseneder, C.; Marx, B.; Stout, R. W.; Welsh, D. A.; Taylor, C. M.; Luo, M.; Blanchard, E. E.; Bendiks, Z.; Coulon, D.; Keenan, M. J., CD obesity-prone rats, but not obesity-resistant rats, robustly ferment resistant starch without increased weight or fat accretion. Obesity (Silver Spring, Md.) 2018, 26 (3), 570-577. 125.Ormerod, K. L.; Wood, D. L. A.; Lachner, N.; Gellatly, S. L.; Daly, J. N.; Parsons, J. D.; Dal’Molin, C. G. O.; Palfreyman, R. W.; Nielsen, L. K.; Cooper, M. A.; Morrison, M.; Hansbro, P. M.; Hugenholtz, P., Genomic characterization of the uncultured Bacteroidales family S24-7 inhabiting the guts of homeothermic animals. Microbiome 2016, 4 (1), 36. 126.Meehan, C. J.; Beiko, R. G., A phylogenomic view of ecological specialization in the Lachnospiraceae, a family of digestive tract-associated bacteria. Genome Biol. Evol. 2014, 6 (3), 703-713. 127.Pryde, S. E.; Duncan, S. H.; Hold, G. L.; Stewart, C. S.; Flint, H. J., The microbiology of butyrate formation in the human colon. FEMS Microbiol. Lett. 2002, 217 (2), 133-139. 128.Davie, J. R., Inhibition of histone deacetylase activity by butyrate. J. Nutr. 2003, 133 (7), 2485-2493. 129.Gao, Z.; Yin, J.; Zhang, J.; Ward, R. E.; Martin, R. J.; Lefevre, M.; Cefalu, W. T.; Ye, J., Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 2009, 58 (7), 1509-1517. 130.Liu, J.; Hao, W.; He, Z.; Kwek, E.; Zhao, Y.; Zhu, H.; Liang, N.; Ma, K. Y.; Lei, L.; He, W. S.; Chen, Z. Y., Beneficial effects of tea water extracts on the body weight and gut microbiota in C57BL/6J mice fed with a high-fat diet. Food Funct. 2019, 10 (5), 2847-2860. 131.Kasahara, K.; Krautkramer, K. A.; Org, E.; Romano, K. A.; Kerby, R. L.; Vivas, E. I.; Mehrabian, M.; Denu, J. M.; Bäckhed, F.; Lusis, A. J.; Rey, F. E., Interactions between Roseburia intestinalis and diet modulate atherogenesis in a murine model. Nat. Microbiol. 2018, 3 (12), 1461-1471. 132.Hartstra, A. V.; Bouter, K. E. C.; Backhed, F.; Nieuwdorp, M., Insights into the role of the microbiome in obesity and type 2 diabetes. Diabetes Care 2015, 38 (1), 159-165. 133.Derrien, M.; Vaughan, E. E.; Plugge, C. M.; de Vos, W. M., Akkermansia muciniphila gen. Nov., sp. Nov., a human intestinal mucin-degrading bacterium. Int. J. Syst. Evol. Microbiol. 2004, 54 (5), 1469-1476. 134.Naito, Y.; Uchiyama, K.; Takagi, T., A next-generation beneficial microbe: Akkermansia muciniphila. J. Clin. Biochem. Nutr. 2018, 63 (1), 33-35. 135.Everard, A.; Belzer, C.; Geurts, L.; Ouwerkerk, J. P.; Druart, C.; Bindels, L. B.; Guiot, Y.; Derrien, M.; Muccioli, G. G.; Delzenne, N. M., Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. U. S. A. 2013, 110. 136.Banz, W.; Hauck, S.; Gename, B.; Winters, T.; Bartke, A., Soy isoflavones modify liver free radical scavenger systems and liver parameters in Sprague-Dawley rats. J. Med. Food 2004, 7 (4), 477-481. 137.Wiegand, H.; Wagner, A. E.; Boesch-Saadatmandi, C.; Kruse, H. P.; Kulling, S.; Rimbach, G., Effect of dietary genistein on phase II and antioxidant enzymes in rat liver. Cancer Genomics Proteomics 2009, 6 (2), 85-92. 138.Ipsen, D. H.; Lykkesfeldt, J.; Tveden-Nyborg, P., Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell. Mol. Life Sci. 2018, 75 (18), 3313-3327. 139.Duarte, J. A.; Carvalho, F.; Pearson, M.; Horton, J. D.; Browning, J. D.; Jones, J. G.; Burgess, S. C., A high-fat diet suppresses de novo lipogenesis and desaturation but not elongation and triglyceride synthesis in mice. J. Lipid Res. 2014, 55 (12), 2541-2553. 140.Delgado, T. C.; Pinheiro, D.; Caldeira, M.; Castro, M. M.; Geraldes, C. F.; Lopez-Larrubia, P.; Cerdan, S.; Jones, J. G., Sources of hepatic triglyceride accumulation during high-fat feeding in the healthy rat. NMR Biomed. 2009, 22 (3), 310-317. 141.Carrer, A.; Parris, J. L.; Trefely, S.; Henry, R. A.; Montgomery, D. C.; Torres, A.; Viola, J. M.; Kuo, Y. M.; Blair, I. A.; Meier, J. L.; Andrews, A. J.; Snyder, N. W.; Wellen, K. E., Impact of a high-fat diet on tissue acyl-CoA and histone acetylation levels. J. Biol. Chem. 2017, 292 (8), 3312-3322. 142.Dyck, J. R.; Kudo, N.; Barr, A. J.; Davies, S. P.; Hardie, D. G.; Lopaschuk, G. D., Phosphorylation control of cardiac acetyl-CoA carboxylase by cAMP-dependent protein kinase and 5''-AMP activated protein kinase. Eur. J. Biochem. 1999, 262 (1), 184-190. 143.Kim, M. H.; Park, J. S.; Jung, J. W.; Byun, K. W.; Kang, K. S.; Lee, Y. S., Daidzein supplementation prevents non-alcoholic fatty liver disease through alternation of hepatic gene expression profiles and adipocyte metabolism. Int. J. Obes. 2011, 35 (8), 1019-1030. 144.Yamazaki, T.; Li, D.; Ikaga, R., Effective food ingredients for fatty liver: soy protein β-conglycinin and fish oil. Int. J. Mol. Sci. 2018, 19 (12). 145.Foster, D. W., The role of the carnitine system in human metabolism. Ann. N. Y. Acad. Sci. 2004, 1033 (1), 1-16. 146.Herzig, S.; Shaw, R. J., AMPK: guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol. 2018, 19 (2), 121-135. 147.Liu, H.; Zhong, H.; Yin, Y.; Jiang, Z., Genistein has beneficial effects on hepatic steatosis in high fat-high sucrose diet-treated rats. Biomed. Pharmacother. 2017, 91, 964-969. 148.Zhong, H. J.; Liu, H. H.; Jiang, Z. Q., Genistein ameliorates fat accumulation through AMPK activation in fatty acid-induced BRL cells. J. Food Sci. 2017, 82 (11), 2719-2725. 149.Harakeh, S. M.; Khan, I.; Kumosani, T.; Barbour, E.; Almasaudi, S. B.; Bahijri, S. M.; Alfadul, S. M.; Ajabnoor, G. M.; Azhar, E. I., Gut microbiota: a contributing factor to obesity. Frontiers in cellular and infection microbiology 2016, 6, 95. 150.Kouzuma, A.; Kato, S.; Watanabe, K., Microbial interspecies interactions: recent findings in syntrophic consortia. Front. Microbiol. 2015, 6, 477. 151.Menni, C.; Jackson, M. A.; Pallister, T.; Steves, C. J.; Spector, T. D.; Valdes, A. M., Gut microbiome diversity and high-fibre intake are related to lower long-term weight gain. Int. J. Obes. 2017, 41, 1099. 152.Zhu, H. Z.; Liang, Y. D.; Ma, Q. Y.; Hao, W. Z.; Li, X. J.; Wu, M. S.; Deng, L. J.; Li, Y. M.; Chen, J. X., Xiaoyaosan improves depressive-like behavior in rats with chronic immobilization stress through modulation of the gut microbiota. Biomed. Pharmacother. 2019, 112, 108621. 153.Chelakkot, C.; Choi, Y.; Kim, D. K.; Park, H. T.; Ghim, J.; Kwon, Y.; Jeon, J.; Kim, M. S.; Jee, Y. K.; Gho, Y. S.; Park, H. S.; Kim, Y. K.; Ryu, S. H., Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions. Exp. Mol. Med. 2018, 50, 450. 154.Hansen, K. B.; Rosenkilde, M. M.; Knop, F. K.; Wellner, N.; Diep, T. A.; Rehfeld, J. F.; Andersen, U. B.; Holst, J. J.; Hansen, H. S., 2-oleoyl glycerol is a GPR119 agonist and signals GLP-1 release in humans. J. Clin. Endocrinol. Metab. 2011, 96 (9), 1409-1417. 155.Cani, P. D.; Plovier, H.; Van Hul, M.; Geurts, L.; Delzenne, N. M.; Druart, C.; Everard, A., Endocannabinoids - at the crossroads between the gut microbiota and host metabolism. Nat. Rev. Endocrinol. 2015, 12, 133. 156.Ben-Shlomo, S.; Zvibel, I.; Shnell, M.; Shlomai, A.; Chepurko, E.; Halpern, Z.; Barzilai, N.; Oren, R.; Fishman, S., Glucagon-like peptide-1 reduces hepatic lipogenesis via activation of AMP-activated protein kinase. J. Hepatol. 2011, 54 (6), 1214-1223.
|