(44.192.112.123) 您好!臺灣時間:2021/03/06 07:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李彥輝
研究生(外文):Yen-Hui Lee
論文名稱:味噌衍生加工製品之開發與性質
論文名稱(外文):Development of processed miso products and their properties
指導教授:呂廷璋
口試委員:王惠珠邵貽沅張永和賴喜美
口試日期:2019-01-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:食品科技研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:173
中文關鍵詞:味噌再加工製品醣類質地改良劑加速性試驗
DOI:10.6342/NTU201900680
相關次數:
  • 被引用被引用:0
  • 點閱點閱:76
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
味噌為亞洲常見發酵大豆食品,因發酵提高蛋白質淨利用率,於此過程中,微生物也將特徵化合物,如大豆異黃酮、大豆皂素,進行生物轉換,增加其生理功效,為良好的蛋白質、植化素來源。但由於味噌為黏稠的半固體狀態,勺取不易,運用範圍受限,故開發味噌再加工製品,有添加醣類製成味噌醬,也以卡德蘭膠、kappa-鹿角菜膠與大豆蛋白為味噌質地改良劑,製成如起司片之味噌片,以提高味噌使用方便性、產品多樣性。此外,並針對產品進行物理性質分析與加速性試驗,物理性質方面,味噌醬因添加醣類而增加其流動性、安定性,而味噌片添加質地改良劑,在其成型範圍內,則因味噌比例提高而質地變軟、黏度上升;加速性試驗方面,參考食用油之油脂氧化指標,透過開發萃取高水分含量食品中油脂方法,因產品低過氧化價、高巴比妥酸價,判斷為油脂氧化後期,而巴比妥酸價為味噌加工產品加速性試驗之敏感評估指標。
Miso is a common fermented soybean food in Asia, which improves the net utilization of protein through fermentation. In this process, microorganisms also bio-convert characteristic compounds such as soy isoflavones and soyasaponin to increase functionality. However, since miso is a sticky and semi-solid state, it is inconvenient to use. In order to expand the application of miso, this study has developed miso products, miso spread made by adding carbohydrate and miso slice like cheese singlet made through texture improvers such as curdlan, kappa-carrageenan, and soy protein isolate. Additionally, physical properties analysis and accelerated shelf-life testing were carried out for the products. In terms of physical properties analysis, the fluidity and stability of miso spread were improved by adding carbohydrate, and the texture of miso slice is softer and stickier along with the increasing of miso within the model range. For accelerated shelf-life testing through the development of extracting oil in high moisture content food, referring to the oil oxidation index of edible oil, the miso processed product with low peroxide value and high TBARS value were judged to be the secondary stage of oil oxidation. Otherwise, TBARS value is a sensitive index to evaluate the stability of processed miso products.
目錄
摘要 i
Abstract ii
目錄 iii
圖目錄 vii
表目錄 xiii
壹、 前言 1
貳、 文獻回顧 2
第一章、 大豆、米、味噌與其相關化合物介紹 2
1.1 大豆 2
1.2 味噌 2
1.3 大豆異黃酮 9
1.3.1 大豆異黃酮介紹 9
1.3.2 大豆異黃酮萃取條件 12
1.3.3 大豆異黃酮分析-液相層析串聯偵測器 13
1.4 大豆皂素 15
1.4.1 大豆皂素介紹 15
1.4.2 大豆皂素萃取條件 19
1.4.3 大豆皂素分析-液相層析串聯偵測器 20
第二章、 膠體之性質 22
2.1 卡德蘭膠 22
2.1.1 卡德蘭膠介紹 22
2.1.2 卡德蘭膠構造與溶解特性 24
2.1.3 卡德蘭膠凝膠性質 25
2.2 鹿角菜膠 27
2.2.1 鹿角菜膠介紹 27
2.2.2 鹿角菜膠物理性質 30
2.3 大豆蛋白 34
2.3.1 大豆蛋白介紹 34
2.3.2 大豆蛋白之凝膠性質 36
第三章、 食品安定性試驗 40
3.1 水活性 40
3.2 等溫吸濕曲線 45
3.3 油脂氧化 48
參、 研究目的與實驗架構 50
肆、 材料與方法 51
第一章、 實驗材料 51
1.1 市售味噌 51
1.2 醣類 51
1.3 膠體 51
1.4 大豆(附錄) 53
1.5 大豆製品(附錄) 53
1.6 自製大豆製品(附錄) 55
1.7 其他樣品(附錄) 55
第二章、 實驗藥品 57
2.1 標準品 57
2.2 化學藥品 57
2.3 標準品(附錄) 59
第三章、 實驗儀器 60
3.1 樣品製備、萃取 60
3.2 其他儀器 60
3.3 高效液相層析串聯光電二極體陣列偵測器(附錄) 61
3.4 高效液相層析串聯線性離子阱質譜儀(附錄) 61
3.5 高效液相層析串聯高解析軌道式質譜儀(Q-Exactive) (附錄) 61
第四章、 實驗方法 63
4.1 味噌醬物理性質相關試驗 63
4.1.1 味噌醬製作 63
4.2 味噌成型試驗 63
4.2.1 以卡德蘭膠成型 63
4.2.2 以kappa-鹿角菜膠成型 63
4.2.3 以大豆分離蛋白成型 64
4.2.4 質地分析 64
4.3 味噌加工產品之加速性試驗 65
4.3.1 油脂氧化指標 65
4.3.2 蛋白質指標 67
4.3.3 其他指標 68
4.4 大豆異黃酮、大豆皂素同步分析(附錄) 69
4.4.1 品管樣品(Control_20171102) 69
4.4.2 樣品萃取 69
4.4.3 高效液相層析串聯高解析軌道式質譜儀分析條件 69
4.5 製作減鹽味噌(附錄) 72
4.6 市售大豆製品之大豆異黃酮分析(附錄) 72
4.6.1 品管樣品(Control_20171102) 72
4.6.2 樣品萃取 72
4.6.3 高效液相層析串聯光電二極體陣列偵測器分析條件 73
伍、 結果與討論 74
第一章、 味噌醬產品製作及物理性質 74
1.1 味噌醬之製作 74
1.2 味噌醬之等溫吸濕曲線 78
第二章、 味噌成型試驗(味噌片) 81
第三章、 味噌產品之加速性試驗 85
陸、 結論 96
柒、 參考文獻 97
捌、 附錄 105
第一章、 木糖醇減鹽味噌、市售味噌活性成分分析 105
1.1 木糖醇減鹽味噌之製作 105
1.2 活性成分分析 110
1.3 大豆異黃酮、大豆皂素同步分析 110
1.4 大豆異黃酮之偵測 115
1.5 大豆、減鹽味噌、市售味噌之大豆異黃酮含量 120
1.6 大豆皂素之偵測 127
1.7 大豆、減鹽味噌、市售味噌之大豆皂素含量 138
第二章、 市售大豆製品之大豆異黃酮儲藏安定性 142
2.1 豆漿、豆腐與豆干中大豆異黃酮含量與型態變化 142
第三章、 各分析系統之品質管制圖 167
3.1 味噌產品之加速性試驗 167
3.2 大豆異黃酮、大豆皂素同步分析 169
3.3 市售大豆製品之大豆異黃酮分析 173
大西邦男, みそ熟成中の脂質 I みそ熟成と品質に与えるリパーゼ力価の影響. 日本食品工業学会誌 1982, 29, 85-92.
中野政弘, 味噌製造の原則 (1). 日本釀造協會雜誌 1966, 61, 37-41.
伊藤寛; 童江明, 味噌, 醤油の微生物. 日本食品微生物学会雑誌 1994, 11, 151-157.
吉沢淑; 石川雄章; 蓼沼誠; 長沢道太郎; 永見憲三, 醸造・発酵食品の事典. 朝倉書店: 2002.
好井久雄, みそ, しょうゆ醸造と微生物. 化学と生物 1970, 8, 674-681.
周宏彥, 大豆分離蛋白之儲存條件對百頁豆腐的影響. 中國文化大學農學院生活應用科學系碩士論文 2012, 1-142.
松本憲次, 味噌醸造の基本. 日本釀造協會雜誌 1968, 63, 911-915.
林俊一, 反應工程學. 1982.
野白喜久雄; 吉澤淑; 鎌田耕造; 水沼武二; 蓼沼誠, 醸造の事典. 朝 倉 書 店 1988, 495.
髙谷正敏, エリスリトール. オレオサイエンス 2013, 13, 423-428.
簡子芸, 豆漿分離之Rhodococcus及其生長預測模型(暫定). 臺灣大學食品科技研究所學位論文 2019.

Abiose, S. H.; Allan, M.; Wood, B., Microbiology and biochemistry of miso (soy paste) fermentation. Advances in Applied Microbiology 1982, 28, 239-265.
Arjmandi, B. H.; Birnbaum, R.; Goyal, N. V.; Getlinger, M. J.; Juma, S.; Alekel, L.; Hasler, C. M.; Drum, M. L.; Hollis, B. W.; Kukreja, S. C., Bone-sparing effect of soy protein in ovarian hormone-deficient rats is related to its isoflavone content. The American journal of clinical nutrition 1998, 68, 1364S-1368S.
Barnes, S.; Kirk, M.; Coward, L., Isoflavones and their conjugates in soy foods: extraction conditions and analysis by HPLC-mass spectrometry. J. Agric. Food Chem. 1994, 42, 2466-2474.
Bianco, G.; Buchicchio, A.; Cataldi, T. R., Structural characterization of major soyasaponins in traditional cultivars of Fagioli di Sarconi beans investigated by high-resolution tandem mass spectrometry. Anal Bioanal Chem 2015, 407, 6381-9.
Bligh, E. G.; Dyer, W. J., A rapid method of total lipid extraction and purification. Canadian journal of biochemistry and physiology 1959, 37, 911-917.
Bloedon, L. T.; Jeffcoat, A. R.; Lopaczynski, W.; Schell, M. J.; Black, T. M.; Dix, K. J.; Thomas, B. F.; Albright, C.; Busby, M. G.; Crowell, J. A., Safety and pharmacokinetics of purified soy isoflavones: single-dose administration to postmenopausal women. The American journal of clinical nutrition 2002, 76, 1126-1137.
Cagampang, G. B.; Perez, C. M.; Juliano, B. O., A gel consistency test for eating quality of rice. J. Sci.Ffood Agric. 1973, 24, 1589-1594.
Cahoon, E. B., Genetic enhancement of soybean oil for industrial uses: prospects and challenges. 2003.
Chang, T.-S.; Chao, S.-Y.; Chen, Y.-C., Production of ortho-hydroxydaidzein derivatives by a recombinant strain of Pichia pastoris harboring a cytochrome P450 fusion gene. Process Biochemistry 2013, 48, 426-429.
Chang, T.-S., Isolation, bioactivity, and production of ortho-hydroxydaidzein and ortho-hydroxygenistein. International journal of molecular sciences 2014, 15, 5699-5716.
Chiarello, M. D.; GUERROUÉ, J. L. L.; Chagas, C.; Franco, O. L.; Bianchini, E.; JoÃO, M. J., Influence of heat treatment and grain germination on the isoflavone profile of soy milk. Journal of food biochemistry 2006, 30, 234-247.
Chirife, J., Specific solute effects with special reference to Staphylococcus aureus. In Water in Foods, Elsevier: 1994; pp 409-419.
Cho, K. M.; Hong, S. Y.; Math, R. K.; Lee, J. H.; Kambiranda, D. M.; Kim, J. M.; Islam, S. M. A.; Yun, M. G.; Cho, J. J.; Lim, W. J., Biotransformation of phenolics (isoflavones, flavanols and phenolic acids) during the fermentation of cheonggukjang by Bacillus pumilus HY1. Food. Chem. 2009, 114, 413-419.
Chun, J.; Kim, J. S.; Kim, J. H., Enrichment of isoflavone aglycones in soymilk by fermentation with single and mixed cultures of Streptococcus infantarius 12 and Weissella sp. 4. Food. Chem. 2008, 109, 278-284.
Circle, S.; Whitney, R.; Meyer, E., Rheology of soy protein dispersions effect of heat other factors on gelation. Cereal Chemistry 1964, 41, 157-+.
Comesaña, J. F.; Correa, A.; Sereno, A. M., Water activity in sorbitol or xylitol+ water and sorbitol or xylitol+ sodium chloride+ water systems at 20° C and 35° C. Journal of Chemical & Engineering Data 2001, 46, 716-719.
Coward, L.; Barnes, N. C.; Setchell, K. D.; Barnes, S., Genistein, daidzein, and their. beta.-glycoside conjugates: antitumor isoflavones in soybean foods from American and Asian diets. J. Agric. Food Chem. 1993, 41, 1961-1967.
Coward, L.; Smith, M.; Kirk, M.; Barnes, S., Chemical modification of isoflavones in soyfoods during cooking and processing. The American journal of clinical nutrition 1998, 68, 1486S-1491S.
Dalluge, J. J.; Eliason, E.; Frazer, S., Simultaneous identification of soyasaponins and isoflavones and quantification of soyasaponin Bb in soy products, using liquid chromatography/electrospray ionization-mass spectrometry. J. Agric. Food Chem. 2003, 51, 3520-3524.
Damodaran, S., Refolding of thermally unfolded soy proteins during the cooling regime of the gelation process: effect on gelation. J. Agric. Food Chem. 1988, 36, 262-269.
Damodaran, S.; Parkin, K. L., Fennema’s food chemistry. CRC press: 2017.
Daveby, Y. D.; Betz, P. J. M.; Aéman, S. M. M., Effect of Storage and Extraction on Ratio of Soyasaponin to 2, 3-Dihydro-2, 5-dihydroxy-6-I methyl-4-pyrone-Conjugated Soyasaponin inI Dehulled Peas sativum (Pisum L). J Sci Food Agric 1998, 78, 146.
Devor, M.; Barrett-Connor, E.; Renvall, M.; Feigal, D.; Ramsdell, J., Estrogen replacement therapy and the risk of venous thrombosis. The American journal of medicine 1992, 92, 275-282.
Dinda, B.; Debnath, S.; Mohanta, B. C.; Harigaya, Y., Naturally occurring triterpenoid saponins. Chemistry & biodiversity 2010, 7, 2327-2580.
Domon, B.; Costello, C. E., A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconjugate journal 1988, 5, 397-409.
Eldridge, A. C., Determination of isoflavones in soybean flours, protein concentrates, and isolates. J. Agric. Food Chem. 1982, 30, 353-355.
Fennema, O. R., Fennema''s Food chemistry. CRC Press: 2008.
Franke, A. A.; Custer, L. J.; Cerna, C. M.; Narala, K. K., Quantitation of phytoestrogens in legumes by HPLC. J. Agric. Food Chem. 1994, 42, 1905-1913.
Fukushima, D., Recent progress of soybean protein foods: chemistry, technology, and nutrition. Food Reviews International 1991, 7, 323-351.
Glende Jr, E. A.; Recknagelf, R. O., Spectrophotometric detection of lipid-conjugated Dienes. In In Vitro Toxicity Indicators, 1994; pp 400-406.
Greenspan, L., Humidity fixed points of binary saturated aqueous solutions. Journal of research of the national bureau of standards 1977, 81, 89-96.
Hermansson, A.-M.; Eriksson, E.; Jordansson, E., Effects of potassium, sodium and calcium on the microstructure and rheological behaviour of kappa-carrageenan gels. Carbohydrate Polymers 1991, 16, 297-320.
Hondo, S.; Mochizuki, T., Free sugars in miso. Nippon Shokuhin Kogyo Gakkaishi 1979, 26, 469-474.
Hsu, C.; Ho, H.-W.; Chang, C.-F.; Wang, S.-T.; Fang, T.-F.; Lee, M.-H.; Su, N.-W., Soy isoflavone-phosphate conjugates derived by cultivating Bacillus subtilis var. natto BCRC 80517 with isoflavone. Food research international 2013, 53, 487-495.
Hu, J.; Lee, S.-O.; Hendrich, S.; Murphy, P. A., Quantification of the group B soyasaponins by high-performance liquid chromatography. J. Agric. Food Chem. 2002, 50, 2587-2594.
Hur, H.-G.; Lay Jr, J. O.; Beger, R. D.; Freeman, J. P.; Rafii, F., Isolation of human intestinal bacteria metabolizing the natural isoflavone glycosides daidzin and genistin. Archives of Microbiology 2000, 174, 422-428.
Imeson, A., Food stabilisers, thickeners and gelling agents. John Wiley & Sons: 2011.
Iwabuchi, S.; Yamauchi, F., Determination of glycinin and. beta.-conglycinin in soybean proteins by immunological methods. J. Agric. Food Chem. 1987, 35, 200-205.
Kanzawa, Y.; Harada, T.; Koreeda, A.; Harada, A., Curdlan gel formed by neutralizing its alkaline solution. Agricultural and Biological Chemistry 1987, 51, 1839-1843.
Karr-Lilienthal, L.; Kadzere, C.; Grieshop, C.; Fahey, G., Chemical and nutritional properties of soybean carbohydrates as related to nonruminants: A review. Livestock Production Science 2005, 97, 1-12.
Kasai, N.; Harada, T., Ultrastructure of curdlan. In ACS Publications: 1980.
Kim, S.-H.; Yang, Y.-S.; Chung, I.-M., Effect of acetic acid treatment on isoflavones and carbohydrates in pickled soybean. Food Research International 2016, 81, 58-65.
Kinsella, J. E., Functional properties of soy proteins. Journal of the American Oil Chemists'' Society 1979, 56, 242-258.
Kitagawa, I.; SAITO, M.; TANIYAMA, T.; YOSHIKAWA, M., Saponin and sapogenol. XXXVIII. Structure of soyasaponin A2, a bisdesmoside of soyasapogenol A, from soybean, the seeds of Glycine max Merrill. Chemical and pharmaceutical bulletin 1985, 33, 598-608.
Krishnan, H. B., Biochemistry and molecular biology of soybean seed storage proteins. Journal of New Seeds 2001, 2, 1-25.
Kudou, S.; Tonomura, M.; Tsukamoto, C.; Uchida, T.; Sakabe, T.; Tamura, N.; Okubo, K., Isolation and structural elucidation of DDMP-conjugated soyasaponins as genuine saponins from soybean seeds. Bioscience, biotechnology, and biochemistry 1993, 57, 546-550.
Kuhn, F.; Oehme, M.; Romero, F.; Abou‐Mansour, E.; Tabacchi, R., Differentiation of isomeric flavone/isoflavone aglycones by MS2 ion trap mass spectrometry and a double neutral loss of CO. Rapid Commun. Mass. Spectrom. 2003, 17, 1941-1949.
Kwon, D. Y.; Rhee, J. S., A simple and rapid colorimetric method for determination of free fatty acids for lipase assay. Journal of the American Oil Chemists’ Society 1986, 63, 89-92.
Labuza, T.; Cassil, S.; Sinskey, A., Stability of intermediate moisture foods. 2. Microbiology. Journal of Food Science 1972a, 37, 160-162.
Labuza, T.; McNally, L.; GALLAGHER, D.; Hawkes, J.; Hurtado, F., Stability of intermediate moisture foods. 1. Lipid oxidation. Journal of Food Science 1972b, 37, 154-159.
Labuza, T. P.; Tannenbaum, S.; Karel, M., Water content and stability of low-moisture & intermediate-moisture foods. Food Technology 1970.
Lee, J. H.; Hwang, S.-R.; Lee, Y.-H.; Kim, K.; Cho, K. M.; Lee, Y. B., Changes occurring in compositions and antioxidant properties of healthy soybean seeds [Glycine max (L.) Merr.] and soybean seeds diseased by Phomopsis longicolla and Cercospora kikuchii fungal pathogens. Food. Chem. 2015, 185, 205-211.
Lichtenstein, A. H., Soy protein, isoflavones and cardiovascular disease risk. The Journal of nutrition 1998, 128, 1589-1592.
Lin, F.; Giusti, M. M., Effects of solvent polarity and acidity on the extraction efficiency of isoflavones from soybeans (Glycine max). J. Agric. Food Chem. 2005, 53, 3795-3800.
Liu, S.; Huang, S.; Li, L., Thermoreversible gelation and viscoelasticity of κ-carrageenan hydrogels. Journal of Rheology 2016, 60, 203-214.
Lusas, E. W.; Riaz, M. N., Soy protein products: processing and use. The Journal of nutrition 1995, 125, 573S-580S.
Ma, Y.; Li, Q.; Van den Heuvel, H.; Claeys, M., Characterization of flavone and flavonol aglycones by collision‐induced dissociation tandem mass spectrometry. Rapid Commun. Mass. Spectrom. 1997, 11, 1357-1364.
Meinke, D.; Chen, J.; Beachy, R., Expression of storage-protein genes during soybean seed development. Planta 1981, 153, 130-139.
METER Group, I., TDL Tunable Diode Laser Water Activity Meter Operator''s Manual. Version: July 18, 2017.
Mitchell, H., Sweeteners and sugar alternatives in food technology. John Wiley & Sons: 2008.
Miwa, M.; Nakao, Y.; Nara, K., Food applications of curdlan. In Food hydrocolloids, Springer: 1994; pp 119-124.
Morris, V. J.; Chilvers, G. R., Rheological studies on specific ion forms of ι‐carrageenate gels. J. Sci.Ffood Agric. 1981, 32, 1235-1241.
Muramatsu, S., CHEMICAL AND PHYSIOLOGICAL STUDIES OF THE PROTEINS OF THE SOY BEAN. Jour. Tokyo Chem. Soc 1920, 41, 311-354.
Murphy, P. A.; Song, T.; Buseman, G.; Barua, K.; Beecher, G. R.; Trainer, D.; Holden, J., Isoflavones in retail and institutional soy foods. J. Agric. Food Chem. 1999, 47, 2697-2704.
Murphy, P. A.; Barua, K.; Hauck, C. C., Solvent extraction selection in the determination of isoflavones in soy foods. Journal of Chromatography B 2002, 777, 129-138.
Nakata, M.; Kawaguchi, T.; Kodama, Y.; Konno, A., Characterization of curdlan in aqueous sodium hydroxide. Polymer 1998, 39, 1475-1481.
Nazir, K. N. H.; Ichinose, H.; Wariishi, H., Molecular characterization and isolation of cytochrome P450 genes from the filamentous fungus Aspergillus oryzae. Archives of microbiology 2010, 192, 395-408.
Nielsen, N. C., The structure and complexity of the 11S polypeptides in soybeans. Journal of the American Oil Chemists'' Society 1985, 62, 1680-1686.
Ogawa, K.; Tsurugi, J.; Watanabe, T., The dependence of the conformation of a (1→ 3)-β-D-glucan on chain-length in alkaline solution. Carbohydr. Res. 1973, 29, 397-403.
Ohminami, H.; Kimura, Y.; Okuda, H.; Arichi, S.; Yoshikawa, M.; Kitagawa, I., Effects of soyasaponins on liver injury induced by highly peroxidized fat in rats. Planta medica 1984, 50, 440-441.
Ohnishi, K.; Yoshida, Y.; Sekiguchi, J., Lipase production of Aspergillus oryzae. Journal of fermentation and bioengineering 1994, 77, 490-495.
Osborne, T. B.; Campbell, G. F., PROTEIDS OF THE PEA. Journal of the American Chemical Society 1898, 20, 348-362.
Pavia, D. L.; Lampman, G. M.; Kriz, G. S.; Vyvyan, J. A., Introduction to spectroscopy. Cengage Learning: 2014.
Payne, D. S.; Stuart, L., Soybean protein in human nutrition. Advances in Protein Chemistry 1944, 1, 187-208.
Phillips, G. O.; Williams, P. A., Handbook of hydrocolloids. Elsevier: 2009.
Pitt, J.; Hocking, A.; Beuchat, L. R., Fungi and food spoilage (2nd edn). Trends in Food Science and Technology 1998, 9, 89.
Remondetto, G.; Añon, M. C.; González, R. J., Hydration properties of soybean protein isolates. Brazilian Archives of Biology and Technology 2001, 44, 425-431.
Rockland, L.; Beuchat, L., Introduction of water activity: theory and application to food. In New York: Marcel Decker: 1987.
Rostagno, M. A.; Palma, M.; Barroso, C. G., Ultrasound-assisted extraction of soy isoflavones. J. Chromatogr. A 2003, 1012, 119-128.
Sarkar, F. H.; Li, Y., Mechanisms of cancer chemoprevention by soy isoflavone genistein. Cancer and Metastasis Reviews 2002, 21, 265-280.
Schmedes, A.; Hølmer, G., A new thiobarbituric acid (TBA) method for determining free malondialdehyde (MDA) and hydroperoxides selectively as a measure of lipid peroxidation. J. Am. Oil Chem. Soc. 1989, 66, 813-817.
Scott, W., Water relations of Staphylococcus aureus at 30C. Australian journal of biological sciences 1953, 6, 549-564.
Seo, I.; Ahn-Eun, I. P. J.-K.; Kim–Seung, H.; Kim, H., Changes in isoflavone composition of soya seeds, soya curd and soya paste at different processing conditions. Journal of Food and Nutrition Research 2012, 51, 40-51.
Shiraiwa, M.; Yamauchi, F.; Harada, K.; Okubo, K., Inheritance of “Group A saponin” in soybean seed. Agricultural and biological chemistry 1990, 54, 1347-1352.
Shiraiwa, M.; Harada, K.; Okubo, K., Composition and content of saponins in soybean seed according to variety, cultivation year and maturity. Agricultural and biological chemistry 1991a, 55, 323-331.
Shiraiwa, M.; Harada, K.; Okubo, K., Composition and structure of" group B saponin" in soybean seed. Agricultural and biological chemistry 1991b, 55, 911-917.
Shurtleff, W.; Aoyagi, A., The book of miso: savory, high-protein seasoning. Volume 1. Ten Speed Press: 2001.
Smith, D. C.; Prentice, R.; Thompson, D. J.; Herrmann, W. L., Association of exogenous estrogen and endometrial carcinoma. New England journal of medicine 1975, 293, 1164-1167.
Staswick, P. E.; Hermodson, M. A.; Nielsen, N. C., Identification of the acidic and basic subunit complexes of glycinin. Journal of Biological Chemistry 1981, 256, 8752-8755.
Tang, C.-H.; Wang, X.-Y.; Yang, X.-Q.; Li, L., Formation of soluble aggregates from insoluble commercial soy protein isolate by means of ultrasonic treatment and their gelling properties. J. Food Eng. 2009, 92, 432-437.
Taniyama, T.; Yoshikawa, M.; Kitagawa, I., Saponin and sapogenol. XLIV. Soyasaponin composition in soybeans of various origins and soyasaponin content in various organs of soybean. Structure of soyasaponin V from soybean hypocotyl. Yakugaku zasshi: Journal of the Pharmaceutical Society of Japan 1988, 108, 562.
Tava, A.; Mella, M.; Bialy, Z.; Jurzysta, M., Stability of saponins in alcoholic solutions: ester formation as artifacts. J. Agric. Food Chem. 2003, 51, 1797-1800.
Thomas, W., Carrageenan. In Thickening and gelling agents for food, Springer: 1997; pp 45-59.
Tsangalis, D.; Ashton, J.; McGill, A.; Shah, N., Enzymic Transformation of Isoflavone Phytoestrogens in Soymilk by β‐Glucosidase‐Producing Bifidobacteria. Journal of Food Science 2002, 67, 3104-3113.
Tsukamoto, C.; Kikuchi, A.; Harada, K.; Kitamura, K.; Okubo, K., Genetic and chemical polymorphisms of saponins in soybean seed. Phytochemistry 1993, 34, 1351-1356.
Ustunol, Z., Applied food protein chemistry. John Wiley & Sons: 2014.
Utsumi, S.; Matsumura, Y.; Mori, T., Structure-function relationships of soy proteins. FOOD SCIENCE AND TECHNOLOGY-NEW YORK-MARCEL DEKKER- 1997, 257-292.
Uzzan, M.; Abuza, T. L., Critical Issues in R&D of Soy Isoflavone‐enriched Foods and Dietary Supplements. Journal of food science 2004, 69.
Watanabe, T.; Ebine, H.; Okada, M., New protein food technologies in Japan. New protein foods 1974, 1, 414-453.
Wrolstad, R. E.; Acree, T. E.; Decker, E. A.; Penner, M. H.; Reid, D. S.; Schwartz, S. J.; Shoemaker, C. F.; Smith, D. M.; Sporns, P., Handbook of food analytical chemistry, volume 1: Water, proteins, enzymes, lipids, and carbohydrates. John Wiley & Sons: 2005.
Xiao, M.; Jiang, M.; Wu, K.; Yang, H.; Ni, X.; Yan, W.; Phillips, G. O.; Jiang, F., Investigation on curdlan dissociation by heating in water. Food Hydrocolloids 2017, 70, 57-64.
Yang, Y. W.; Jin, M. C.; Huang, M.; Su, B. G.; Ren, Q. L., Ultrasound-assisted extraction of soyasaponins from hypocotyls, and analysis by LC-ESI-MS. Chromatographia. 2007, 65, 555-560.
Yoshiki, Y.; Jin-Hyeong, K.; Okubo, K., Saponins conjugated with 2, 3-dihydro-2, 5-dihydroxy-6-methyl-4H-pyran-4-one from Phaseolus coccineus. Phytochemistry 1994, 36, 1009-1012.
Yoshiki, Y.; Kudou, S.; OKuBo, K., Relationship between chemical structures and biological activities of triterpenoid saponins from soybean. Bioscience, biotechnology, and biochemistry 1998, 62, 2291-2299.
Yoshiki, Y.; Kahara, T.; Okubo, K.; Sakabe, T.; Yamasaki, T., Superoxide-and 1, 1-diphenyl-2-picrylhydrazyl radical-scavenging activities of soyasaponin β g related to gallic acid. Bioscience, biotechnology, and biochemistry 2001, 65, 2162-2165.
Yoshikoshi, M.; Yoshiki, Y.; Okubo, K.; Seto, J.; Sasaki, Y., Prevention of hydrogen peroxide damage by soybean saponins to mouse fibroblasts. Planta medica 1996, 62, 252-255.
Yuan, J.-P.; Liu, Y.-B.; Peng, J.; Wang, J.-H.; Liu, X., Changes of isoflavone profile in the hypocotyls and cotyledons of soybeans during dry heating and germination. J. Agric. Food Chem. 2009, 57, 9002-9010.
Zhang, R.; Edgar, K. J., Properties, chemistry, and applications of the bioactive polysaccharide curdlan. Biomacromolecules 2014, 15, 1079-96.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔