(3.237.234.213) 您好!臺灣時間:2021/03/09 13:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:紀喆元
研究生(外文):Che-Yuan Chi
論文名稱:飽和脂肪烴於臺灣西南海域事件沈積層中分布與特徵之研究
論文名稱(外文):Distribution and characteristics of Aliphatic Hydrocarbons within the natural geohazard event-layer in southwestern Taiwan
指導教授:蘇志杰
指導教授(外文):Chih-Chieh Su
口試委員:林殷田張詠斌由柏森王珮玲
口試日期:2019-07-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:海洋研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:85
中文關鍵詞:高屏海底峽谷枋寮海底峽谷屏東地震莫拉克颱風正烷類
DOI:10.6342/NTU201904086
相關次數:
  • 被引用被引用:0
  • 點閱點閱:62
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
臺灣西南海域每年接收來自臺灣南部島嶼型河川四千九百萬噸陸源沈積物,加上具有狹窄陸棚及多條海底峽谷,被認為是研究陸源物質源到匯的最佳場所。2006年屏東地震及2009年莫拉克颱風所觸發之海底濁流或異重流,將大量沈積物傳輸至深海,進而促使深海事件沈積層的碳埋藏較非事件時期高出近兩個數量級,顯示海底地質災害所致之快速堆積對於陸源有機碳埋藏十分重要。本研究挑選2006~2013年期間海研一號和海研五號採集的11根岩心,範圍包括高屏海底峽谷、枋寮海底峽谷及高屏陸坡,以生物指標中最為廣泛且常見的正烷類作為探討依據。由於正烷類能提供生產者的資訊用以推敲其來源,且因其耐降解而不易消失的特性,因此被廣泛的應用。分析結果顯示,枋寮海底峽谷上段、陸坡盆地及高屏海底峽谷下游岩心具有明顯的海源正烷類(碳數小於25的正烷類)偶數碳訊號(0.11~1.34 μg /g),主要為正十八烷(Octadecane, C18)及正二十烷(Icosane, C20),而陸源長正烷類(碳數大於等於25的正烷類)訊號相對低(n.d.~0.58 μg/g)。除陸源訊號強度低之外,再加上高屏溪本身傳輸入海之CPI趨近於1特性,使得大部分岩心正烷類指標研究結果相近,CPI值變化介於0.74 ~ 2.07之間,唯獨包含植物碎屑的沈積層CPI值才大於5。岩心正烷類指標值分析結果顯示,當極端事件與高屏溪輸出有關時,呈現與一般沈積層相似的迴歸線。但當事件堆積與河流輸出無關(如屏東地震事件)時,則具有斜率明顯不同的趨勢分布,顯示正烷類指標趨勢與誘發沈積物傳輸的機制有關。基本上遵循離海底峽谷越近,陸源訊號越強的趨勢,而且顯示沈積物循峽谷傳輸並往深海匯集,此一結果與之前海底電纜斷纜事件的相關調查相呼應。總結所觀察到的結果,各岩心碳鏈訊號在事件和非事件層之間特徵變化並不太明顯,但利用多根岩心綜合討論仍可以分辨出特定事件層。而正烷類分析結果,提供了沈積物因極端事件循峽谷傳輸的有利證據。
Every year, 49 million tons of the suspended sediment transport from small mountainous rivers to the southwestern Taiwan shelf and slope and, the Gaoping Submarine Canyon (GSC) and the Fangliao submarine canyon (FSC) cuts across the Slope and Shelf. Therefore, Taiwan has become a perfect source to sink research area. After the 2006 Pingtung Earthquake and 2009 Morakot Typhoon which triggered gravity flows and, transported huge amount of sediments and substantial organic carbon into deep sea. According to previous study results of δ13C, Total organic carbon, and the 210Pb-derived sediment accumulation rates, this study attempts to use n-alkanes as the biomarker for investigating organic matter transportation. The n-alkanes can be used to trace the source which it had been manufactured. Owing to the n-alkanes is stable, it is widely used as an important geochemical tracer. We followed the previous study which distinguished events and non-event layers. The cores which collected from GSC, Gaoping Slope and FSC are used for n-alkanes distribution and characteristics analysis.
The analysis results show the terrigenous n-alkanes concentration is ~0.58 μg/g, and plenty of Octadecane and Icosane were found in sediment samples. The distribution of n-alkanes indicates most of the organic matter in sediments are from algae. The carbon preference index (CPI) of riverine sediments, shows the values are close to 1. The regression of n-alkanes and CPI reveals two trends in the regression line. One is related to the transportation of the organic matter from GSC. Another trend is related to the 2006 Pingtung Earthquake triggered debris flow. In conclusion, the n-alkanes as the biomarker is a good geochemical tracer, but it is not easy to be used in modern sediments offshore SW Taiwan. However, this biomarker still discriminates two different sources and transportation paths of sediments transported in the submarine canyons, and the evidence of the sediments transported by extreme natural geohazard events.
誌謝 II
摘要 III
Abstract IV
目錄 VI
圖目錄 VIII
表目錄 X
第一章 緒論 1
1.1 前言 1
1.2 研究區域 3
1.2.1 現況概述 4
1.2.2 海底峽谷 6
1.2.3 海底地質災害 6
1.3 文獻回顧 9
1.3.1 生物指標 9
1.3.2 正烷類 (n-alkane) 10
1.3.3 前人研究 14
1.4 研究目的 16
第二章 研究材料與方法 17
2.1 岩心採樣 17
2.1.1 採樣區域 17
2.1.2 採樣方法 17
2.2 岩心前處理與岩心資料收集 21
2.3 岩心分析方法 21
2.3.1 沈積物含水率 21
2.3.2 粒徑分析 23
2.3.3 210Pb定年 25
2.3.4 總有機碳 (TOC)、總氮 (TN) 含量分析及碳氮比 (C/N) 26
2.3.5 穩定碳同位素 (δ13C)分析 27
2.3.6 n-alkanes正烷類分析 28
第三章 分析結果 35
3.1 高屏海底峽谷上段 35
3.2 高屏陸坡 37
3.3 高屏陸坡下的盆地 43
3.4 高屏海底峽谷中段 46
3.5 高屏海底峽谷下段鄰近海域 48
3.6 枋寮海底峽谷上段 53
第四章 討論 56
4.1 沈積物正烷類含量分佈特性 56
4.2 有機物質來源分析 59
4.2.1 正烷類濃度及所佔比例分析 59
4.2.2 指標與陸源訊號比對 61
4.2.3 正烷類指標與前人調查結果分析 63
第五章 結論 67
參考文獻 67
中文參考文獻: 67
英文參考文獻: 69
附錄 79
中文參考文獻:
巫思佩,2006年,高屏河海系統多環芳香碳氫化合物之分布及通量研究。國立中山大學海洋環境及工程研究所碩士論文,共120頁。
阮行健,2017年,南海現代身海事件層中顆粒性有機碳之組成與來源。國立臺灣大學理學院海洋研究所碩士論文,共91頁。
徐聖婷,2015年,臺灣西南海域現代沈積物之傳輸途徑與機制。國立臺灣大學理學院海洋研究所碩士論文,共67頁。
高櫻芬,2001年,高屏溪河口與近岸海域沈積物中石油衍生性有機化合物及重金屬含量分析研究。國立中山大學海洋環境及工程研究所碩士論文,共133頁。
許惠嵐,2011年,高屏河海系統土壤及沈積物中脂肪族碳氫化合物之分析研究。國立中山大學海洋地質及化學研究所碩士論文,共129頁。
許鳳心,2008年,臺灣西南海域陸源有機碳沈降受鄰近島嶼型河川顆粒傳輸影響之研究。國立臺灣大學理學院海洋研究所碩士論文,共70頁。
陳彥銘,2007年,臺灣西南海域沈積速率分佈:Pb-210 定年結果。國立中山大學海洋地質及化學研究所碩士論文,共98頁。
陳勁志,2014年,以臺灣中部地區頭社盆地生物指標及碳同位素紀錄探討中全新世以來古環境與古氣候之變化。國立中山大學海洋科學系碩士論文,共135頁。
黃盟順,2013,由臺灣北部山區撤退池生物指標紀錄探討–全新世之氣候環境之變化。國立中山大學海洋科學系碩士論文,共124頁。
曾靜宜,2009年,臺灣西南海域陸棚及峽谷內沈積物傳輸方式。國立臺灣大學理學院海洋研究所碩士論文,共76頁。
蔡帛軒,2014年,臺灣西南海域極端事件引發海底地質災害對有機碳埋藏的影響。國立臺灣大學理學院海洋研究所碩士論文,共71頁。
鄭屹雅,2012年,臺灣西南沈積物重力流引發之海底電纜斷裂事件。國立臺灣大學理學院海洋研究所碩士論文,共98頁。
謝明村,2000年,臺灣高雄港區及其鄰近海域沉積物中石油衍生性化合物含量分佈之研究。國立中山大學海洋環境及工程研究所碩士論文,共98頁。
盧榮泰,2013年,飽和脂肪烴類於濁水溪流域及臺灣海峽沈積物中之分布與特徵。國立中山大學海洋科學系碩士論文,共155頁。
https://www.cwb.gov.tw/V7/ 交通部中央氣象局
英文參考文獻:
Bianchi, T. S., and Canuel, E. A., 2011. Chemical biomarkers in aquatic ecosystems. Princeton University Press, New Jersey, 396 pp.
Blair, N. E., and Aller, R. C., 2012. The fate of terrestrial organic carbon in the marine environment. Annual Review of Marine Science 4, 401-423
Brassell, S. C., Guoying, S., Jiamo, F., and Eglinton, G., 1988. Biological markers in lacustrine Chinese oil shales. In: A. J., Kelts, K., and Talbot, M. R., (Eds.), Lacustrine Petroleum Source Rocks Fleet. Geological Society 40, 299-308.
Bray, E. E., and Evens, E. D., 1961. Distribution of n-paraffins as a clue to recognition of source beds. Geochimica et Cosmochimica Acta 22, 2-15.
Canuel, E. A., and Martens, C. S., 1996. Reactivity of recently deposited organic matter: Degradation of lipid compounds near the sediment-water interface. Geochimica et Cosmochimica Acta 60, 3415-3424
Carter, L., Burnett, D., Drew, S., Marle, G., Hagadorn, L., Bartlett-McNeil, D., and Irvine, N., 2009. Submarine cables and the oceans: Connecting the world. UNEP-WCMC Biodiversity Series 31.
Clark, R. C., Jr., and Blumer, M., 1967. Distribution of n-paraffins in marine organisms and sediment. Limnology and Oceanography 17, 79-87.
Cranwell, P. A., 1973. Chain-length distribution of n-alkanes from lake sediments in relation to post-glacial environmental change. Freshwater Biology 3, 259-265.
Cranwell, P. A., 1982. Lipids of aquatic sediments and sedimenting particulates. Progress Lipid Research 21, 271-308
Cranwell, P. A., 1984. Lipid geochemistry of sediments from Upton Broad, a small productive lake. Organic Geochemistry 7, 25-37.
Cranwell, P. A., Eglinton, G., and Robinson, N., 1987. Lipids of aquatic organisms as potential contributors to lacustrine sediments II. Organic Geochemistry 11, 513-527.
Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Hsieh, M.-L., Willett, S. D., and Stark, C.P., 2003. Links between erosion, runoff variability and seismicity in the Taiwan orogeny. Nature 426, 648-651.
Eglinton, G., and Calvin, M., 1967. Chemical fossils. Scientific American 261, 32-43
Eglinton, G., and Hamilton, R. J., 1963. The distribution of alkanes. In: Swain, T. (Ed.), Chemical Plant Taxonomy. Academic Press, London, 187-217.
Eglinton, G., and Hamilton, R. J., 1967. Leaf epicuticular waxes. Science 156, 1322-1335.
Eglinton, T. I., and Eglinton, G., 2008. Molecular proxies for paleoclimatology. Earth and Planetary Science Letters 257, 1-16.
Elias, V. O., Simoneit, B. R. T., and Cardoso, J. N., 1997. Even n-alkane predominances on the Amazon shelf and a northeast Pacific hydrothermal system. Naturwissenschaften 84, 415-420.
Emerson., S., and Hedges, J., 1988. Processes controlling the organic carbon content of open ocean sediments. Paleoceanography 3(5), 621-634.
Ficken, K. J., Li, B., Swain, D. L., and Eglinton, G., 2000. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Organic Geochemistry 31, 745-749.
Gavey, R., Carter L., Liu, J. T., Talling P. J., Hsu, R., Pope, E., and Evans, G., 2017. Frequent sediment density flows during 2006 to 2015, triggered by competing seismic and weather events: Observations from subsea cable breaks off southern Taiwan. Marine Geology 384, 147-158.
Giger, W., Schaffner, C., and Wakeham, S. G., 1980. Aliphatic and olefinic hydrocarbons in recent sediments of Greifensee, Switzerland. Geochimica et Cosmochimica Acta 44, 119-129.
Grimalt, L., Albaiges, J., Al Saad, H. T., and Douabul, A. A. Z., 1985. n-Alkane distributions in surface sediments from the Arabian Gulf. Naturwissenschaften 72, 35-37.
Grimalt, L., and Albaiges, J., 1987. Sources and occurrence of C12-C22 n-alkane distributions with even carbon-number preference in sedimentary environments. Geochimica et Cosmochimica Acta 51, 1379-1384.
Guo, Y. -L., 2016. Molecular Composition of n-Alkane in the Metamorphic Rocks of Taiwan. Department of Oceanography, National Sun Yat-sen University Master Thesis, 1-51
Hale, R. P., Nittrouer, C. A., Liu, J. T., Keil, R. G., and Ogston, A. S., 2012. Effects of a major typhoon on sediment accumulation in Fangliao Submarine Canyon, SW Taiwan. Marine Geology 326-328, 116-130.
Hedges, J., Keil, R., and Benner, R., 1997. What happens to terrestrial organic matter in the ocean? Organic geochemistry 27(5-6), 81-115.
Houghton, R., 2007. Balancing the global carbon budget. Annual Review of Earth and Planetary Sciences 35, 313-347
Huh, C. -A., Lin, H. -L., Lin, S., and Huang, Y. -W., 2009. Modern accumulation rates and a budget of sediment off the Gaoping (Kaoping) River, SW Taiwan: A tidal and flood dominated depositional environment around a submarine canyon. Journal of Marine Systems 76, 405-416.
Hsu, S. -K., Kuo, J., Lo, C. -L., Tsai, C. -H., Doo, W. -B., Ku, C. -Y., and Sibuet, J. -C., 2008. Turbidity currents, submarine landslides and the 2006 Pingtung earthquake off SW Taiwan. Terrestrial, Atmospheric and Oceanic Sciences journal 19, 767-772.
IPCC, 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Core Writing Team, Pachauri R. K. and L.A. Meyer (Eds.). IPCC, Geneva, Switzerland, 151 pp.
Jeng, W. -L., and Huh, C. -A., 2004. Lipids in suspended matter and sediments from the East China Sea Shelf. Organic Geochemistry 35, 647-660.
Jeng, W. -L., 2006. Higher plant n-alkane average chain length as an indicator of petrogenic hydrocarbon contamination in marine sediments. Marine Chemistry 102, 242-251.
Jeng, W. -L., Huh, C. -A., 2006. A comparison of sedimentary aliphatic hydrocarbon distribution between the southern Okinawa Trough and a nearby river with high sediment discharge. Estuarine, Coastal and Shelf Science 66, 217–224.
Jeng, W. -L., 2007. Aliphatic hydrocarbon concentrations in short sediment cores from the southern Okinawa Trough: Implications for lipid deposition in a complex environment. Continental Shelf Research 27, 2066-2078
Kao, S. -J., Hilton, R. G., Selvaraj, K., Dai, M. Zehetner, F., Huang, T. -C., Hsu, S. -C., Sparkes R., Liu, J. T., Lee, T. -Y., Yang, J. -Y, T., Galy, A., Xu, X., and Hovius, N., 2014. Preservation of terrestrial organic carbon in marine sediments offshore Taiwan: mountain building and atmospheric carbon dioxide sequestration. Earth Surface Dynamics 2, 127-139.
Kao, S. -J., and Milliman, J. D., 2008. Water and sediment discharge from small mountainous rivers, Taiwan: The roles of lithology, episodic events, and human activities. Journal of Geology 116, 431–448.
Killops, S., and Killops, V., 2005. Introduction to Organic Geochemistry. Blackwell Publishing Ltd., USA, 393pp.
Kuhn, T. K., Krull, E. S., Bowater, A., Grice, K., and Gleixner, G., 2010. The occurrence of short chain n-alkanes with an even over odd predominance in higher plants and soils. Organic Geochemistry 41, 88–95.
Leithold, E. L., Blair, N. E., and Wegmann, K. W., 2015. Source-to-sink sedimentary systems and global carbon burial: A river runs through it. Earth-Science Review EARTH-02183, 1-13.
Li, Y. -H., 1976. Denudation of Taiwan island since the Pliocene epoch. Geology 4(2), 105-107
Lichtfouse, E., Bardoux, G., Mariotti, A., Balesdent, J., Ballentine, D.C., and Macko, S. A., 1997. Molecular, 13C, and 14C evidence for the allochthonous and ancient origin of C16–C18 n-alkanes in modern soils. Geochimica et Cosmochimica Acta 61, 1891–1898.
Liu, J. T., Hsu, R. T., Hung, J. -J., Chang, Y. -P., Wang, Y. -H., Rendle-Bühring, R. H., Lee, C. -L., Huh, C. -A., and Yang, R. J., 2016. From the highest to the deepest: The Gaoping River–Gaoping Submarine Canyon dispersal system. Earth-Science Review 153, 274-300.
Liu, J. T., Liu, K. J., and Huang, J. C., 2002. The effect of a submarine canyon on the river sediment dispersal and inner shelf sediment movements in southern Taiwan. Marine Geology 4, 357–386
Loh, P. S., Chen, A. C. -T., Lou, J. -Y., Anshari, G. Z., Chen, H. –Y., and Wang, J. –T., 2012. Comparing lignin-derived pheonls, δ13C values, OC/N ratio and 14C age between sediments in Kaoping (Taiwan) and the Kapuas (Kalimantan, Indonesia) rivers. Aquatic Geochemistry 18, 141-158.
Meyers, P. A., 1994. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology 114, 289-302.
Meyers, P. A., 1997. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Organic Geochemistry 27 (5/6), 213-250.
Meyers, P. A., 2003. Applications of organic geochemistry to paleolimnological reconstructions: A summary of examples from the Laurentian Great Lakes. Organic Geochemistry 34, 261-289.
Millar, A. A., Clemens, S., Zachgo, S., Giblin, E. M., Taylor, D. C., and Kunst, L., 1999. CUT1, an Arabidopsis gene required for cuticular wax biosynthesis and pollen fertility, encodes a very-long- chain fatty acid condensing enzyme. The Plant Cell 11, 825-838.
Mironov, O. G., Shcheckaturina, T. L., and Tsimbal, I, M., 1981. Saturated Hydrocarbons in marine organisms. Marine Ecology Progress Series 3, 303-309.
Nishimura, M., and Bake, E. W., 1986. Possible origin of n-alkane with a remarkable even-to-odd predominance in recent marine sediments Geochimica et Cosmochimica Acta 50, 299-305.
Pedrosa-Pàmies, R., Parinos, C., Sanchez-Vidal, A., Gogou, A., Calafat, A., Canals, M., Bouloubassi, I., and Lampadariou, N., 2015. Composition and sources of sedimentary organic matter in the deep eastern Mediterranean Sea. Biogeosciences 12, 7379-7402.
Poynter, J., and Eglinton, G., 1990. Molecular composition of three sediments from hole 717C: The Bengal fan . Proceedings of the Ocean Drilling Program, Scientific Results 116, 155-161.
Rielley, G., Collier, R. J., Jones, D. M., and Eglinton, G., 1991. The biogeochemistry of Ellesmere Lake, U.K.-I: source correlation of leaf wax inputs to the sedimentary lipid record. Organic Geochemistry 17, 901-912.
Satoshi, F., Ken S., and Gentaro, K., 2014. Evaluation of sedimentary processes of plant particles by gravity flow using biomarkers in plant fragment-concentrated sediments of a turbiditic sequence in the Miocene Kawabata Formation distributed along the Higashiyama-gawa River, Yubari, Hokkaido, Japan. Organic Geochemistry 30, 9-11.
Selvaraj, K., Lee, T. Y., Yang, J. Y. T., Canuel, E. A., Huang, J. C., Dai, M., Liu, J. T., and Kao, S. J., 2015. Stable isotopic and biomarker evidence of terrigenous organic matter export to the deep sea during tropical storms. Marine Geology 364, 32-42.
Su, C. -C., Tseng, J. -Y., Hsu, H. -H., Chiang, C. -S., Yu, H, -S., Lin, S., and Liu, J. T., 2012. Records of submarine natural harzards off SW Taiwan. Geological Society, London, Special Publications 361(1), 41-60.
Tran, K., Charlie C. Y., and Zeng, E. Y., 1997. Organic pollutants in the coastal environment off San Diego, California. 2. Petrogenic and biogenic sources of aliphatic hydrocarbons. Environmental Toxicology and Chemistry 16, 189–195.
Yu, H. -S., Chiang, C. -S., and Shen, S. -M., 2009. Tectonically active sediment dispersal system in SW Taiwan margin with emphasis on the Gaoping (Kaoping) Submarine Canyon. Journal of Marine Systems 76(4), 369-382.
Zheng, L. W., Ding, X., Liu, J. T., Li, D., Lee, T. -Y., Zheng, X., Zheng, Z., Xu, M. N., Dai, M., and Kao, S.-J., 2017. Isotopic evidence for the influence of typhoons and submarine canyons on the sourcing and transport behavior of biospheric organic carbon to the deep sea. Earth and Planetary Science Letters 465, 103-111.
https://www.usgs.gov/ 美國地質調查所(United States Geological Survey, USGS)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔