跳到主要內容

臺灣博碩士論文加值系統

(44.192.115.114) 您好!臺灣時間:2023/09/30 16:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:湯梓杭
研究生(外文):Zih-Hang Tang
論文名稱:四十萬年來珠江峽谷下游重力流沈積紀錄
論文名稱(外文):The records of gravity flow deposits in the down reach of Pearl River Canyon over the last 400 ky
指導教授:蘇志杰
指導教授(外文):Chih-Chieh Su
口試委員:林殷田王珮玲張詠斌尤柏森
口試日期:2019-07-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:海洋研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:94
中文關鍵詞:南海北部古海洋環境重力流有機碳特徵正烷烴
DOI:10.6342/NTU201904064
相關次數:
  • 被引用被引用:1
  • 點閱點閱:83
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
國際海洋探測計畫367航次(IODP Expedition 367)在南海北部珠江峽谷下游水深3760.2公尺處的站位點U1499取得沈積物岩芯,其中表層50公尺處在船上以生物地層方法得知年代約為四十萬年,並以367航次現有觀測資料如岩芯攝影、岩芯描述與多重感應元岩芯紀錄儀資料辨識出七十餘個重力流沈積物層位,而重力流沈積物再依其厚度區分成大於5公分厚事件層與小於5公分薄事件層。其中厚事件層出現於特定層位,應為古海洋環境影響南海北部沈積物傳輸有關。為瞭解厚事件層分布與古海洋環境之關係,本研究分析U1499岩芯表層50公尺的碳氮含量與有機指標變化來重建站位U1499四十萬年來的古海洋環境,並分析重力流沈積物的有機碳特徵,進而追蹤重力流所夾帶的有機碳來源。從事件層的分布顯示,事件層由50公尺處至表層變得越來越少且薄,這暗示著南海北部四十萬年來的沈積環境可能由較動態的環境轉趨穩定,或是能傳輸至站位U1499的重力流變得愈來越少。而厚事件層僅出現在岩芯中較高碳酸鈣濃度的層位,說明產生厚事件層之重力流幾乎都發生在南海北部深海可以較好保存碳酸鈣的時期。而這時期可能為冰期,因海平面下降的關係導致珠江河口銜接至珠江峽谷,使陸源物質更有機會藉由重力流的機制與珠江峽谷的通道傳輸至深海。此結果顯示古海洋環境與厚事件層在岩芯中分布的關係。至於有機碳特徵上,岩芯中有兩種不同有機碳特徵之層位,分別以陸源有機碳為主的0-45 m層位與海源有機碳為主的45-48.85 m層位。而薄事件的有機碳特徵較接近0-45 m層位;厚事件的有機碳特徵則較接近45-48.85 m層位,說明兩種事件層所夾帶的有機碳來源不同。形成厚事件層之重力流夾帶較多陸源有機碳,其沈積物來自陸地;而形成薄事件層之重力流含有較多的海洋有機碳,因此可能為海床沈積物再搬運的結果。而正烷烴指標應用上,四十萬年的沈積物仍能表現出明顯的新鮮陸源植物訊號,說明正烷烴指標仍能適用於南海北部深海沈積物四十萬年以內的時間尺度。
In 2017, International Ocean Discovery Program (IODP) retrieved sediment cores from site U1499 which located at the down reach of Pearl River Canyon with 3760.2 m water depth at the northern South China Sea during expeditions 367. The age from upper 50 meters is approximately 400 ky by biostratigraphy and more than 70 gravity flow deposits from upper 50 meters were identified by core images, core description and multi-sensor core logger data which measured on board. Gravity flow deposits were divided into thick event layers (>=5 cm) and thin event layers (<5 cm). Thick event layers deposited in specific depths and may be closely related to paleo climate condition that affected sediment transport. Carbon, nitrogen concentrations and organic proxies were analyzed to investigate the relationship between gravity flows and paleo deep water environment from 400 kyr BP and trace organic carbon source of gravity flows. From distributions of event layers, event layers are thinner and fewer from 50 m to surface. This observation implies that environment of sedimentation is from dynamic to stable in the northern South China Sea or fewer gravity flows were transported to Site U1499. Thick event layers only appear in high carbonate concentration layers indicated that gravity flows which caused thick event layers occurred in specific periods when carbonates had well preservation. Specific periods are supposed to glacial periods. During glacial periods, lower sea level made the mouth of Pearl River closer to Pearl River Canyon and lead to frequent gravity flows transported terrestrial materials through the pathway of Pearl River Canyon into deep-sea. This result illustrates the relationship between gravity flows and paleo deep water environment. For characteristics of organic matters, two layers from upper 50 meters have different types of organic matters. 0-45 m layers are dominated by marine source organic matter and 45-48.85 m layers are predominated by terrigenous source organic matter. For gravity flow deposits, the type of organic matter about thin event layers is close to 0-45 m layers and the organic characteristic of thick event layers is close to 45-48.85 m layers. Thin event layers and thick event layers have different source of organic matter. This result demonstrates that gravity flows caused thick event layers were originated from lands and transported terrestrial materials into deep-sea and gravity flows caused thin event layers were originated from sea floor and redeposited sediments to Site U1499. For application of n-alkanes, deep-sea sediments with 400 ky still have fresh higher plants signals which indicate that n-alkanes as biomarker can apply to the South China deep-sea sediment within the age of 400 ky.
口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
目 錄 vi
圖目錄 viii
表目錄 x
第一章 緒論 1
1.1 國際海洋探測計畫站位U1499岩芯初步調查與研究目的 1
1.2 南海北部沈積物來源與傳輸途徑 6
1.3 南海北部沈積物傳輸環境之氣候影響 8
1.4 重力流傳輸機制 12
1.5 有機碳代用指標 14
1.5.1 碳氮比與δ13C 14
1.5.2 生物指標與正烷烴 17
第二章 研究方法 21
2.1 岩芯採樣 21
2.1.1 採樣站位 21
2.1.2 採樣方法 21
2.2深度單位 24
2.3 樣本命名規則 24
2.4 船上沈積物岩芯處理 25
2.4.1生物地層 26
2.4.2全管多重感應元岩芯紀錄儀 27
2.4.3岩芯攝影 29
2.4.4半管多重感應元岩芯紀錄儀 30
2.4.5岩芯描述 31
2.5 分辨事件層 35
2.6 樣本處理與分析 36
2.6.1 含水量與統體密度 37
2.6.2 粒徑分析 38
2.6.3 碳氮含量 39
2.6.4 穩定有機碳同位素(δ13Corg)分析 41
2.6.5 正烷烴分析 42
第三章 實驗結果 45
3.1 事件層所在深度以及薄事件層與厚事件層 45
3.2 岩芯影像與事件層外觀 45
3.3 統體密度 55
3.4 碳氮含量與穩定有機碳同位素(δ13Corg) 56
3.5 正烷烴 61
3.6 粒徑 67
第四章 討論 70
4.1 U1499A表層50公尺沈積環境 70
4.1.1 45-48.85 m層位-大量陸源有機碳供應層位 70
4.1.2 25-45 m層位與碳酸鈣循環 73
4.1.3 7.5-25 m層位 76
4.1.4 0-7.5 m 層位與末次冰期 77
4.2 U1499A表層50公尺事件層與非事件特徵差異 78
4.3 南海過去四十萬年來站位U1499重力流傳輸模型 83
第五章 結論 86
參考文獻 87
英文部分
Arrhenius, G., 1952. Sediment core from the East Pacific, Swedish deep Sea Expedition Report, No. 5, Gotenbog, 1-227.
Arrhenius, G., 1988. Rate of production, dissolution and accumulation of biogenic solids in the ocean. Palaeogeography, Palaeoclimatology, Palaeoecology 67, 119-146.
Barckhausen, U., Engels, M., Franke, D., Ladage, S., and Pubellier, M., 2014. Evolution of the South China Sea: revised ages for breakup and seafloor spreading. Marine and Petroleum Geology, 58(Part B):599–611.
Baudin, F., Disnar, J.-R., Martinez, P., Dennielou, B., 2010. Distribution of the organic matter in the channel-levees systems of the Congo mud-rich deep-sea fan (West Africa). Implication for deep offshore petroleum source rocks and global carbon cycle. Marine and Petroleum Geology 27, 995-1010.
Berger, W.H., 1973. Deep-sea carbonates: Pleistocene dissolution cycle. Foraminiferal Research 3, 187-195.
Berger, W.H., 1977. Deep-sea carbonate and the deglaciation preservation spike in pteropods and foraminifera. Nature 269, 301-304.
Berger, W.H., 1992. Pacific carbonate cycles revisited: Arguments for and against productivity control. In: K. Ishizaki and T. Saito (eds), Centenary of Janpanese 66 Micro-paleontology, Terra, Tokyo, 15-25.
Bianchi, T.S., Canuel E.A., 2011. Chemical Biomarkers in Aquatic Ecosystems. Princeton University Press, New Jersey, 396 pp.
Bouma, A.H., 1962. Sedimentology of Some Flysch Deposits. Elsevier Publication., Amsterdam, 168 pp.
Bray, E.E., Evans, E.D., 1961. Distribution of n-paraffins as a clue to recognition of source beds. Geochimica et Cosmochimica Acta 22, 2-15.
Chen, M., Chen, S., 1989. On the carbonate dissolution and the distribution model of deep sea sediment types in the South China Sea. Tropical Oceanography 8 (3): 20-26 (in Chinese, with English abstr.).
Chen, Q., Liu, Z., Kissel, C., 2017. Clay mineralogical and geochemical proxies of the East Asian summer monsoon evolution in the South China Sea during Late Quaternary. Scientific Reports 7, 42083.
Clark, Jr.R.C., Blumer, M., 1967. Distribution of n-paraffins in marine organisms and sediments. Limnology and Oceanography 12, 79-87.
Cloern, J.E., Canuel, E.A., Harris D., 2002. Stable carbon and nitrogen isotope composition of aquatic and terrestrial plants of the San Francisco Bay estuarine system. Limnology and Oceanography 47: 713-729.
Cranwell, P.A., 1973. Chain-length distribution of n-alkanes from lake sediments in relation to post-glacial environmental change. Freshwater Biology, 3, 259-265.
Cranwell, P.A., 1982. Lipids of aquatic sediments from Upton Broad, a small productive lake. Organic Geochemistry 7: 25-37.
Currin, C.A., Newell, S.Y., Paerl, H.W., 1995. The role of standing dead Spartina alterniflora and benthic microalgae in salt-marsh food webs: Considerations based on multiple stable-isotope analysis. Marine Ecology-Progress Series 121: 99-116.
Deegan, C.E., Garritt, R.H., 1997. Evidence for spatial variability in estuarine food webs. Marine Ecology Progress Series 147: 31-47.
Ding, W., Li, J., Li, J., Fang, Y., Tang, Y., 2013. Morphotectonics and evolutionary controls on the Pearl River Canyon system, South China Sea. Marine Geophysical Research 34, 221-238.
Eglinton, G., Hamilton, R.J., 1967. Leaf Epicuticular Waxes. Science 156, 1322.
Emerson, S., Hedges, J., 2008. Chemical Oceanography and the marine carbon cycle. Cambridge University Press, Cambridge, UK, 470 pp.
Expedition 339 Scientists, 2013. Methods. In Stow, D.A.V., HernándezMolina, F.J., Alvarez Zarikian, C.A., and the Expedition 339 Scientists, Proceedings of the Integrated Ocean Drilling Program, 339: Tokyo (Integrated Ocean Drilling Program Management International, Inc.).
Ficken, K.J., Li, B., Swain, D.L., Eglinton, G. 2000. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Organic Geochemistry 32: 1153-1167.
Franke, D., 2013. Rifting, lithosphere breakup and volcanism: comparison of magma-poor and volcanic rifted margins. Marine and Petroleum Geology, 43:63–87
Fry , B., Sherr, E.B., 1984. δ13C measurements as indicators of carbon flow in marine and fresh-water ecosystems. Contribution in Marine Science 27: 13-47.
Furota, S., Sawada, K., Kawakami, G., 2014. Evaluation of sedimentary processes of plant particles by gravity flow using biomarkers in plant fragment-concentrated sediments of a turbiditic sequence in the Miocene Kawabata Formation distributed along the Higashiyama-gawa River, Yubari, Hokkaido, Japan. Researches in Organic Geochemistry 30, 9-21.
Galy, V., Eglinton, T., France-Lanord, C., Sylva, S., 2011. The provenance of vegetation and environmental signatures encoded in vascular plant biomarkers carried by the Ganges–Brahmaputra rivers. Earth and Planetary Science Letters 304, 1-12.
Gelpi, E., Schneider, H., Mann, J., Oró, J., 1970. Hydrocarbons of geochemical significance in microscopic algae. Phytochemistry 9, 603-612.
Goñi, M.A., Hedges, J.I., 1995. Sources and reactivities of marine-derived organic matter in coastal sediments as determined by alkaline CuO oxidation. Geochemica et Cosmochimica Acta 59: 2965-2981.
Goñi, M.A., Ruttenberg, K.C., Eglinton, T.I., 1998. A reassessment of the sources and importance of land-derived organic matter in surface sediments from the Gulf of Mexico. Geochimica et Cosmochimica Acta 62, 3055-3075.
Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M. (Eds.), 2012. The Geological Time Scale 2012. Elsevier Publication, Oxford, United Kingdom, 1144 pp.
Grimalt, J., Albaigés, J., Al-Saad, H.T., Douabul, A., 1985. n-Alkane distributions in surface sediments from the Arabian Gulf. Naturwissenschaften, 72, 35-37.
Grimalt, J., Albaigés, J., 1987. Sources and occurrence of C12-C22 n-alkane distributions with even carbon-number preference in sedimentary environments. Geochimica et Cosmochimica Acta, 51, 1379-1384.
Guy, R., Fogel, M., Berry, J., C. Hoering, T., 1987. Isotope Fractionation during Oxygen Production and Consumption by Plants. Progress in Photosynthesis Research III.9, 597-600.
Hedges, J.I., Oades, J.M., 1997. Comparative organic geochemistries of soils and marine sediments. Organic Geochemistry 27, 319-361.
Killops, S., Killops, V., 2005. Introduction to organic geochemistry. Blackwell Publishing Ltd., USA, 393 pp.
Laws, E.A., Popp, B.N., Bidigare, R.R., Kennicutt, M.C., Macko, S.A., 1995. Dependence of phytoplankton carbon isotopic composition on growth rate and [CO2]aq: Theoretical considerations and experimental results. Geochimica et Cosmochimica Acta 59, 1131-1138.
Li, C., 1989. Deep water carbonate sedimentation of the South China Sea. Acta Sedimental. Sinica 7(2): 35-44 (in Chinese, with English abstr.).
Li, C.-F., Lin, J., Kulhanek, D.K., Williams, T., Bao, R., Briais, A., Brown, E.A., Chen, Y., Clift, P.D., Colwell, F.S., Dadd, K.A., Ding, W., HernándezAlmeida, I., Huang, X.-L., Hyun, S., Jiang, T., Koppers, A.A.P., Li, Q., Liu, C., Liu, Q., Liu, Z., Nagai, R.H., Peleo-Alampay, A., Su, X., Sun, Z., Tejada, M.L.G., Trinh, H.S., Yeh, Y.-C., Zhang, C., Zhang, F., Zhang, G.-L., and Zhao, X., 2015. Methods. In Li, C.-F., Lin, J., Kulhanek, D.K., and the Expedition 349 Scien-tists, South China Sea Tectonics. Proceedings of the International Ocean Discovery Program, 349: College Station, TX (International Ocean Discovery Program).
Lisiecki, L., Raymo, M., 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic 18O records. Paleoceanography 20, PA1003.
Liu, J.P., Liu, C.S., Xu, K.H., Milliman, J.D., Chiu, J.K., Kao, S.J., Lin, S.W., 2008b. Flux and fate of small mountainous rivers derived sediments into the Taiwan Strait. Marine Geology 256, 65-76.
Liu, Z., Colin, C., Huang, W., Chen, Z., Trentesaux, A., Chen, J., 2007a. Clay minerals in surface sediments of the Pearl River drainage basin and their contribution to the South China Sea. Chinese Science Bulletin 52, 1101-1111.
Liu, Z., Colin, C., Huang, W., Le, K.P., Tong, S., Chen, Z., Trentesaux, A., 2007b. Climatic and tectonic controls on weathering in south China and Indochina Peninsula: Clay mineralogical and geochemical investigations from the Pearl, Red, and Mekong drainage basins. Geochemistry, Geophysics, Geosystems 8.
Liu, Z., Colin, C., Li, X., Zhao, Y., Tuo, S., Chen, Z., Siringan, F.P., Liu, J.T., Huang, C.-Y., You, C.-F., Huang, K.-F., 2010a. Clay mineral distribution in surface sediments of the northeastern South China Sea and surrounding fluvial drainage basins: Source and transport. Marine Geology 277, 48-60.
Liu, Z., Li, X., Colin, C., Ge, H., 2010b. A high-resolution clay mineralogical record in the northern South China Sea since the Last Glacial Maximum, and its time series provenance analysis. Chinese Science Bulletin 55, 4058-4068.
Liu, Z., Trentesaux, A., Clemens, S.C., Colin, C., Wang, P., Huang, B., Boulay, S., 2003. Clay mineral assemblages in the northern South China Sea: implications for East Asian monsoon evolution over the past 2 million years. Marine Geology 201, 133-146.
Liu, Z., Tuo, S., Colin, C., Liu, J.T., Huang, C.-Y., Selvaraj, K., Chen, C.-T.A., Zhao, Y., Siringan, F.P., Boulay, S., Chen, Z., 2008a. Detrital fine-grained sediment contribution from Taiwan to the northern South China Sea and its relation to regional ocean circulation. Marine Geology 255, 149-155.
Liu, Z., Zhao, Y., Colin, C., Stattegger, K., Wiesner, M.G., Huh, C.-A., Zhang, Y., Li, X., Sompongchaiyakul, P., You, C.-F., Huang, C.-Y., Liu, J.T., Siringan, F.P., Le, K.P., Sathiamurthy, E., Hantoro, W.S., Liu, J., Tuo, S., Zhao, S., Zhou, S., He, Z., Wang, Y., Bunsomboonsakul, S., Li, Y., 2016. Source-to-sink transport processes of fluvial sediments in the South China Sea. Earth-Science Reviews 153, 238-273.
Lucas, W.J., Berry, J.A., 1985. Inorganic carbon transport in aquatic photosynthetic organisms. Physiologia Plantarum 65, 539-543.
Mazzullo, J.M., Meyer, A., Kidd, R.B., 1988. New sediment classification scheme for the Ocean Drilling Program. In Mazzullo, J., and Graham, A.G. (Eds.), Technical Note 8: Handbook for Shipboard Sedimentologists. Ocean Drilling Program, 44–67.
Meyers, P.A., 1994. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology 114, 289-302.
Meyers, P.A., 2003. Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Organic Geochemistry 34, 261-290.
Mironov, O.G., Shchekaturina, T.L., Tsimbal, I.M., 1981. Saturated Hydrocarbons in marine organisms. Marine Ecology Progress Series, 3, 303-309.
Müller, P.J., 1977. CN ratios in Pacific deep-sea sediments: Effect of inorganic ammonium and organic nitrogen compounds sorbed by clays. Geochimica et Cosmochimica Acta 41, 765-776.
Nishimura, M., Baker, E.W., 1986. Possible origin of n-alkanes with a remarkable even-to-odd predominance in recent marine sediments. Geochimica et Cosmochimica Acta, 50, 299-305.
Olausson, E., 1965. Evidence of climatic changes in North Atlantic deep-sea cores, with remarks on isotopic paleotemperature analysis. Progress in Oceanography 3, 221-252.
Olausson, E., 1971. Quaternary correlations and the geochemistry of oozes. The Micropalaeontology of Oceans 29, 375-398.
O''Leary, M.H., 1981. Carbon isotope fractionation in plants. Phytochemistry 20, 553-567.
O''Leary, M.H., 1988. Carbon Isotopes in Photosynthesis. BioScience 38, 328-336.
Pelejero, C., 2003. Terrigenous n-alkane input in the South China Sea: high-resolution records and surface sediments. Chemical Geology 200, 89-103.
Poynter, J., Eglinton, G., 1990. Molecular Composition of Three Sediments from Hole 717C: The Bengal Fan. Ocean Drilling Program, Scientific Results 116, 155-161.
Qu, T., Girton, J.B., Whitehead, J.A., 2006. Deepwater overflow through Luzon Strait. Journal of Geophysical Research: Oceans 111, Issue C1.
Rau, G.H., Riebesell, U., Wolf-Gladrow, D., 1997. CO2aq-dependent photosynthetic 13C fractionation in the ocean: A model versus measurements. Global Biogeochemical Cycles 11, 267-278.
Rau, G.H., Takahashi, T., Des Marais, D.J., Repeta, D.J., Martin, J.H., 1992. The relationship between delta 13C of organic matter and [CO2(aq)] in ocean surface water: data from a JGOFS site in the northeast Atlantic Ocean and a model. Geochim Cosmochim Acta 56, 1413-1419.
Rau, G.H., Takahashi, T., Marais, D.J.D., 1989. Latitudinal variations in plankton δ13C: implications for CO2 and productivity in past oceans. Nature 341, 516-518.
Rieley, G., Collier, R.J., Jones, D.M., Eglinton, G., 1991. The biogeochemistry of Ellesmere Lake, U.K.-I: source correlation of leaf wax inputs to the sedimentary record. Organic Geochemistry, 17, 901-912.
Rottman, M.L., 1979. Dissolution of planktonic foraminifera and pteropods in the South China Sea sediments. Foraminiferal Research 9, 41-49.
Sakata, S., Hayes, J.M., McTaggart, A.R., Evans, R.A., Leckrone, K.J., Togasaki, R.K., 1997. Carbon isotopic fractionation associated with lipid biosynthesis by a cyanobacterium: Relevance for interpretation of biomarker records. Geochimica et Cosmochimica Acta 61, 5379-5389.
Seibold, E. Berger, W.H., 1982. The Sea Floor. An Introduction to Marine Geology. Springer, Berlin, 288 pp.
Schmidt, F., Hinrichs, K.-U., Elvert, M., 2010. Sources, transport, and partitioning of organic matter at a highly dynamic continental margin. Marine Chemistry 118, 37-55.
Schubert, C., Calvert, S., 2001. Nitrogen and carbon isotopic composition of marine and terrestrial organic matter in Arctic Ocean sediments: implications for nutrient utilization and organic matter composition. Deep-Sea Research I 48, 789-810.
Shackleton, N.J., 1987. Oxygen isotopes, ice volume and sea level. Quaternary Science Reviews 6, 183-190.
Shanmugam, G., 2002. Ten turbidite myths. Earth-Science Reviews 58, 311-341.
Shepard, F.P., 1954. Nomenclature Based on Sand-silt-clay Ratios. Sedimentary Petrology 24, 151-158.
Sterner, R.W., Elser, J.J., 2002. Ecological stoichiometry-the biology of elements from molecules to the biosphere. Princeton University Press, New Jersey, 464 pp.
Stuiver, M., 1978. Atmospheric Carbon Dioxide and Carbon Reservoir Changes. Science 199, 253.
Sun, Z., Jian, Z., Stock, J.M., Larsen, H.C., Klaus, A., Zarikian, C.A.A., Boaga, J., Bowden, S.A., Briais, A., Chen, Y., Cukur, D., Dadd, K.A., Ding, W., Dorais, M.J., Ferré, E.C., Ferreira, F., Furusawa, A., Gewecke, A.J., Hinojosa, J.L., Höfig, T.W., Hsiung, K., Huang, B., Huang, E., Huang, X., Jiang, S., Jin, H., Johnson, B.G., Kurzawski, R.M., Lei, C., Li, B., Li, L., Li, Y., Lin, J., Liu, C., Liu, C., Liu, Z., Luna, A., Lupi, C., McCarthy, A.J., Mohn, G., Ningthoujam, L.S., Nirrengarten, M., Osono, N., Peate, D.W., Persaud, P., Qiu, N., Robinson, C.M., Satolli, S., Sauermilch, I., Schindlbeck, J.C., Skinner, S.M., Straub, S.M., Su, X., Tian, L., Zwan, F.M., Wan, S., Wu, H., Xiang, R., Yadav, R., Yi, L., Zhang, C., Zhang, J., Zhang, Y., Zhao, N., Zhong, G., Zhonget, L., 2018a. South China Sea Rifted Margin. Method. In Proceedings of the International Ocean Discovery Program, Vol. 367/368, Chapter 2: College Station, TX (International Ocean Discovery Program).
Sun, Z., Stock, J.M., Klaus, A., Larsen, H.C., Jian, Z., Zarikian, C.A.A., Boaga, J., Bowden, S.A., Briais, A., Chen, Y., Cukur, D., Dadd, K.A., Ding, W., Dorais, M.J., Ferré, E.C., Ferreira, F., Furusawa, A., Gewecke, A.J., Hinojosa, J.L., Höfig, T.W., Hsiung, K., Huang, B., Huang, E., Huang, X., Jiang, S., Jin, H., Johnson, B.G., Kurzawski, R.M., Lei, C., Li, B., Li, L., Li, Y., Lin, J., Liu, C., Liu, C., Liu, Z., Luna, A., Lupi, C., McCarthy, A.J., Mohn, G., Ningthoujam, L.S., Nirrengarten, M., Osono, N., Peate, D.W., Persaud, P., Qiu, N., Robinson, C.M., Satolli, S., Sauermilch, I., Schindlbeck, J.C., Skinner, S.M., Straub, S.M., Su, X., Tian, L., Zwan, F.M., Wan, S., Wu, H., Xiang, R., Yadav, R., Yi, L., Zhang, C., Zhang, J., Zhang, Y., Zhao, N., Zhong, G., Zhonget, L., 2018b. South China Sea Rifted Margin. Site U1499. In Proceedings of the International Ocean Discovery Program, Vol. 367/368, Chapter 3: College Station, TX (International Ocean Discovery Program).
Thunell, R.C., Qingmin, M., Calvert, S.E., Pedersen, T.F., 1992. Glacial-holocene biogenic sedimentation patterns in the South China Sea: Productivity variations and surface water pCO2. Paleoceanography 7, 143-162.
Treignier, C., Derenne, S., Saliot, A., 2006. Terrestrial and marine n-alcohol inputs and degradation processes relating to a sudden turbidity current in the Zaire canyon. Organic Geochemistry 37, 1170-1184.
Wan, S., Li, A., Clift, P.D., Stuut, J.B.W., 2007. Development of the East Asian monsoon: Mineralogical and sedimentologic records in the northern South China Sea since 20 Ma. Palaeogeography, Palaeoclimatology, Palaeoecology 254, 561-582.
Wan, S., Li, A., Clift, P.D., Wu, S., Xu, K., Li, T., 2010. Increased contribution of terrigenous supply from Taiwan to the northern South China Sea since 3Ma. Marine Geology 278, 115-121.
Wang, P., Wang, L., Bian, Y., Jian, Z., 1995. Late Quaternary paleoceanography of the South China Sea: Surface circulation and carbonate cycles. Marine Geology 127, 145-165.
Xing, L., Zhang, H., Yuan, Z., Sun, Y., Zhao, M., 2011. Terrestrial and marine biomarker estimates of organic matter sources and distributions in surface sediments from the East China Sea shelf. Continental Shelf Research 31, 1106-1115.
Xu, K., Milliman, J.D., Li, A., Liu, J.P., Kao, S.-J., Wan, S., 2009. Yangtze- and Taiwan-derived sediments on the inner shelf of East China Sea. Continental Shelf Research 29, 2240-2256.
Zavala, C., Arcuri, M., Valiente, L., 2011. The importance of plant remains as diagnostic criteria for the recognition of ancient hyperpycnites. Revue de Paléobiologie 11, 457-469.
Zhang, Y., Liu, Z., Zhao, Y., Wang, W., Li, J., Xu, J., 2014. Mesoscale eddies transport deep-sea sediments. Scientific Reports 4, 5937.
Zhao, W., Zhou, C., Tian, J., Yang, Q., Wang, B., Xie, L., Qu, T., 2014. Deep water circulation in the Luzon Strait. Journal of Geophysical Research: Oceans 119, 790-804.
Zhu, C., Wagner, T., Pan, J.-M., Pancost, R.D., 2011. Multiple sources and extensive degradation of terrestrial sedimentary organic matter across an energetic, wide continental shelf. Geochemistry, Geophysics, Geosystems 12.

中文部分
阮行健,2017,南海現代深海事件層中顆粒性有機碳之組成與來源。國立臺灣大學理學院海洋研究所碩士論文,共91頁。
游智謙,2002,南海北坡晚第四紀沈積物有機碳碳同位素的變化。國立中山大學海洋地質及化學研究所碩士論文,共83頁。
蔡帛軒,2014,台灣西南海域極端事件引發海底地質災害對有機碳埋藏的影響。國立臺灣大學理學院海洋研究所碩士論文,共71頁。
盧榮泰,2013,飽和脂肪烴類於濁水溪流域及臺灣海峽沉積物中之分布與特徵。國立中山大學海洋科學系碩士論文,共155頁。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top