(3.239.33.139) 您好!臺灣時間:2021/03/02 15:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊士鋒
研究生(外文):Shih-Fong Yang
論文名稱:亞熱帶珊瑚礁魚類初期浮游期之熱回應
論文名稱(外文):Thermal response of pelagic larval duration for subtropical reef fishes
指導教授:王慧瑜王慧瑜引用關係
指導教授(外文):Hui-Yu Wang
口試委員:蕭仁傑單偉彌謝泓諺
口試委員(外文):Jen-Chieh HsiaoVianney DenisHung-yen Hsieh
口試日期:2018-07-19
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:海洋研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:英文
論文頁數:42
中文關鍵詞:珊瑚礁魚類初期浮游期亞熱帶潮池早期生活史耳石
DOI:10.6342/NTU201803609
相關次數:
  • 被引用被引用:0
  • 點閱點閱:84
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
珊瑚礁魚類在珊瑚礁生態系中扮演重要的角色,同時也提供人類部分飲食來源及遊憩活動。珊瑚礁魚類族群數量變動受到與其早期生活史特徵影響 (如幼魚死亡率),而早期生活史特徵變化與環境溫度息息相關。在熱帶地區的研究指出溫度對早期生活史特徵如幼魚時期或稱為初期浮游期 (pelagic larval duration; PLD) 造成非線性的影響:當環境溫度低於最適成長溫度(達到最大成長速率的溫度)時,溫度上升使成長速度增加並縮短PLD;但是,溫度超過最適成長溫度反而使成長速度下降並延長PLD。在亞熱帶地區的水溫變化與魚的最適成長溫度的關係的相關研究很少。多數亞熱帶珊瑚礁魚類產卵季節橫跨數個不同季節、甚至全年,仔魚在初期生長期間可能經歷不同季節的水溫。同時,水溫資料顯示部分臺灣北部以及東北部沿岸水溫超過過去文獻所探討之部分熱帶地區珊瑚礁魚類之最適成長溫度。因此,我們認為:若溫度尚未超過亞熱帶珊瑚礁魚類之最適成長溫度,則珊瑚礁魚種之PLD-溫度的關係呈一負線性相關;若溫度超過亞熱帶珊瑚礁魚類之最適成長溫度,此珊瑚礁魚種之PLD-溫度關係為非線性。吾人選擇五種採樣自不同季節的臺灣北部沿海潮池的珊瑚礁魚類,分析其稚魚的耳石日輪以回推不同種類之初期浮游期長短。吾人亦採用兩種過去文獻常用的溫度資料:平均溫度或是成長積溫度數 (growing degree-days),以評估溫度對珊瑚礁魚類之初期浮游期的影響。本研究發現:以15度C為基礎生長溫度(base temperature)的成長積溫度數得以最佳預測條紋豆娘魚(Abudefduf vaigiensis)以及暗紋蛙䲁 (Istiblennius edentulus)的初期浮游期。其他三個物種:庫氏天竺鯛(Ostorhinchus cookie)、梭地豆娘魚(Abudefduf sordidus)及褐深蝦虎(Bathygobius fuscus)則以平均溫度的評估最佳。PLD-溫度資料的關係在褐深蝦虎呈現負向的線性關係,但其他四種的PLD-溫度關係為非線性趨勢。這些不同的PLD-溫度關係可能與物種利用潮池棲地的程度有關。由於台灣北部夏季潮間帶的溫度已超過某些熱帶珊瑚礁魚種的最適溫度,我們推測台灣北部潮池定棲物種(如褐深蝦虎、暗紋蛙䲁)應該比潮池半棲種(條紋豆娘魚、梭地豆娘魚、庫氏天竺鯛) 更能適應高溫。研究結果亦發現只有褐深蝦虎PLD-溫度關係呈現負向線性關係,而條紋豆娘魚、梭地豆娘魚、庫氏天竺鯛PLD-溫度關係則呈現非線性關係。然而,目前我們仍然無法解釋暗紋蛙䲁的非線性PLD-溫度關係。非線性的PLD-溫度關係顯示亞熱帶地區夏季(六至八月份)水溫已經超過條紋豆娘魚、暗紋蛙䲁、庫氏天竺鯛之最適成長溫度,表示夏季溫度可能對這些魚種的族群數量有負面影響,但是此溫度未超過梭地豆娘魚、褐深蝦虎之最適成長溫度。最後,我們建議未來維護珊瑚礁生態系魚種多樣性與保育需要更審慎地評估溫度對於仔稚魚早期生活史特徵之影響。
Understanding the effects of temperature on length of larval durations (a.k.a. pelagic larval durations, PLDs) provides insight into larval survival, dispersal distance, and ultimately, population persistence. Previous research suggests a nonlinear relationship between the PLDs and temperature for tropical reef fishes: i.e., rising temperature tends to shorten PLDs, but beyond the thermal optima (the temperature corresponding to the shortest PLD) further increases in temperature will lead to extended PLDs. However, such relationships are unclear for subtropical reef fishes. Given that the upper limit of temperature in the subtropical region exceeds the thermal optima of some tropical fishes and that most subtropical reef fishes spawn all-year-around, we hypothesized a nonlinear effect of temperature on PLDs for subtropical reef fishes. To test this hypothesis, we compared PLDs with two temperature indices during PLDs (average temperature and growing degree-day (GDD12 or 15) for five common reef fishes collected from tidal pools at the northern coast of Taiwan throughout a year. We found that these species displayed differential sensitivities to either of temperature indices: i.e., PLDs of two species were sensitive to GDD15 (Abudefduf vaigiensis and Istiblennius edentulus), while those of the other three species were sensitive to average temperature (Ostorhinchus cookii, Abudefduf sordidus, Bathygobius fuscus). Furthermore, a linear (negative) effect of temperature (indexed by average temperature) on PLDs was found for the Bathygobius fuscus, as opposed to nonlinear effects of temperature for the other four species. Most importantly, we found that temperatures have surpassed thermal optima for three species: Abudefduf vaigiensis, Istiblennius edentulus, and Ostorhinchus cookii. A positive or nonlinear effect of temperature on PLDs indicates a negative impact on recruitment for subtropical reef fishes under warming.
口試委員審定書……………………………………………………………………..i
誌謝………………………………………………………………………………......ii
中文摘要......................................................................................................................iii
Abstract........................................................................................................................v
Contents......................................................................................................................vii
Introduction..................................................................................................................1
Material and methods..................................................................................................6
Sampling ……............................................................................................................6
Species identification..................................................................................................8
Information of candidate species................................................................................9
Sample processing, otolith ageing, and PLD estimation..........................................10
Temperature data......................................................................................................11
Data analyses............................................................................................................14
Results.........................................................................................................................15
Environmental conditions of tidal pools and estimated PLD of candidate species.15
Temperature effects on PLDs for the selected 5 species..........................................15
Discussion...................................................................................................................18
Nonlinear and linear temperature effects on PLDs..................................................18
Different temperature effects on PLDs among different species.............................19
Indications of different temperature indices.............................................................20
Other effects on PLDs...............................................................................................21
Implications...............................................................................................................21
References...................................................................................................................22
Tables..........................................................................................................................30
Table 1. Summary of reef fish samples....................................................................30
Table 2. Summary of sampling tidal pools...............................................................32
Table 3. Summary of selected reef fish specimens..................................................33
Table 4. Summary of species-specific regression models.......................................34
Table 5. Summary of the mixed-effect models..........................................................36
Figures.........................................................................................................................37
Figure 1. A map of sampling sites............................................................................37
Figure 2. Photos of candidate species.......................................................................38
Figure 3. Bar plots of number of collected samples by season and sites.................39
Figure 4. Images of otolith of candidate species......................................................40
Figure 5. Boxplots of PLDs among different sites...................................................41
Figure 6. A Scatterplot shows the relationship between the PLDs and two different temperature indices...................................................................................................42
Ackerman, J. L., & Bellwood, D. R. (2002). Comparative efficiency of clove oil and rotenone for sampling tropical reef fish assemblages. Journal of Fish Biology, 60(4), 893-901.
Allen, G. R. (1991). Damselfishes of the world. 271.
Angilletta Jr, M. J. (2006). Estimating and comparing thermal performance curves. Journal of Thermal Biology, 31(7), 541-545.
Angilletta Jr, M. J., & Angilletta, M. J. (2009). Thermal adaptation: a theoretical and empirical synthesis. Oxford University Press.
Angilletta Jr, M. J., Niewiarowski, P. H., & Navas, C. A. (2002). The evolution of thermal physiology in ectotherms. Journal of thermal Biology, 27(4), 249-268.
Angilletta Jr, M. J., Wilson, R. S., Navas, C. A., & James, R. S. (2003). Tradeoffs and the evolution of thermal reaction norms. Trends in Ecology & Evolution, 18(5), 234-240.
Armsworth, P. R. (2000). Modelling the swimming response of late stage larval reef fish to different stimuli. Marine Ecology Progress Series, 195, 231-247.
Bell, J. D., Burchmore, J. J., & Pollard, D. A. (1980). The food and feeding habits of the rock blackfish, Girella elevata (Pisces: Girellidae), from the Sydney region, New South Wales. Australian Zoologist (Australia).
Bergenius, M. A., McCormick, M. I., Meekan, M. G., & Robertson, D. R. (2005). Environmental influences on larval duration, growth and magnitude of settlement of a coral reef fish. Marine Biology, 147(2), 291-300.
Bertrand, J. A., Borsa, P., & Chen, W. J. (2017). Phylogeography of the sergeants Abudefduf sexfasciatus and A. vaigiensis reveals complex introgression patterns between two widespread and sympatric Indo‐West Pacific reef fishes. Molecular ecology, 26(9), 2527-2542.
Biswas, S., Mishra, S. S., Das, N. P., Nayak, L., Selvanayagam, M., & Satpathy, K. K. (2012). First record of eleven reef inhabiting fishes from Tamil Nadu coast of India, Bay of Bengal. Proceedings of the Zoological Society, 65(2),105-113.
Bopp, L., Resplandy, L., Orr, J. C., Doney, S. C., Dunne, J. P., Gehlen, M., ... & Tjiputra, J. (2013). Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences, 10, 6225-6245.
Breder, C. M., & Rosen, D. E. (1966). Modes of reproduction in fishes. 941.
Brenha-Nunes, M. R., Contente, R. F., & Rossi-Wongtschowski, C. L. (2016). A protocol for measuring spatial variables in soft-sediment tide pools. Zoologia (Curitiba), 33(2).
Byers, D. (2008). Components of phenotypic variance. Nature Education, 1(1), 161.
Cesar, H., Burke, L., & Pet-Soede, L. (2003). The economics of worldwide coral reef degradation. Cesar environmental economics consulting (CEEC).
Dell, A. I., Pawar, S., & Savage, V. M. (2011). Systematic variation in the temperature dependence of physiological and ecological traits. Proceedings of the National Academy of Sciences, 108(26), 10591-10596.
Dias, M., Roma, J., Fonseca, C., Pinto, M., Cabral, H. N., Silva, A., & Vinagre, C. (2016). Intertidal pools as alternative nursery habitats for coastal fishes. Marine Biology Research, 12(4), 331-344.
Donelson, J. M., Munday, P. L., McCormick, M. I., Pankhurst, N. W., & Pankhurst, P. M. (2010). Effects of elevated water temperature and food availability on the reproductive performance of a coral reef fish. Marine Ecology Progress Series, 401, 233-243.
Erdmann, M. V. (1999). Clove oil: an ‘eco-friendly’alternative to cyanide use in the live reef fish industry. SPC Live Reef Fish Information Bulletin, 5, 4-7.
Fu, Y.W. (2012) The tidepool fish community structure and its resilience studies in northern Taiwan. Master thesis, Institute of Marine Biology, National Taiwan Ocean University
Gardiner, N. M., Munday, P. L., & Nilsson, G. E. (2010). Counter-gradient variation in respiratory performance of coral reef fishes at elevated temperatures. PloS one, 5(10), e13299.
Gibson, R. N. (1982). Recent studies on the biology of intertidal fishes. Oceanography and Marine Biology, 20, 363-414.
Gopi, K. C., & Palot, M. J. (2003). Record of Abudefduf sordidus (Forskal)(Pomacentridae: Pisces) from Kottapuzha estuary, Kerala, with a note on the ecological attributes of the estuary. Zoos’ Print Journal, 18(10), 1233-1234.
Griffiths, S. P. (2003). Rockpool ichthyofaunas of temperate Australia: species composition, residency and biogeographic patterns. Estuarine, Coastal and Shelf Science, 58(1), 173-186.
Karino, K., & Arai, R. (2006). Effect of clutch size on male egg-fanning behavior and hatching success in the goby, Eviota prasina (Klunzinger). Journal of Experimental Marine Biology and Ecology, 334(1), 43-50.
Kemp, J. O. G. (2009). Effects of temperature and salinity on resting metabolism in two South African rock pool fish: the resident gobiid Caffrogobius caffer and the transient sparid Diplodus capensis. African Zoology, 44(2), 151-158.
Kingsford, M. J., Smith, F. J. A., & Flood, M. J. (2011). Growth and pelagic larval duration of presettlement and newly settled neon damselfish, Pomacentrus coelestis, at multiple spatial scales. Coral reefs, 30(1), 203-214.
Kong, Y. H., & Chen, I. S. (2013). Reproductive biology of intertidal frillfin goby, Bathygobius fuscus in Keelung, Taiwan. Journal of Marine Science and Technology, 21, 213-215.
Kuiter, R. H., & Tonozuka, T. (2001). Pictorial guide to Indonesian reef fishes. Zoonetics.
Kwun, H. J., Park, J., Kim, H. S., & Bae, H. (2017). Preliminary report on fish diversity in the tidal pools of Jeju Island, Korea. Marine Biodiversity, 47(3), 957-963.
Lester, S. E., & Ruttenberg, B. I. (2005). The relationship between pelagic larval duration and range size in tropical reef fishes: a synthetic analysis. Proceedings of the Royal Society of London B: Biological Sciences, 272(1563), 585-591.
Lieske, E., & Myers, R. (1994). Coral reef fishes Caribbean, Indian Ocean and Pacific Ocean including the red sea (No. C/597.092 L5).
Liu, S. Y. V., Wang, C. H., Shiao, J. C., & Dai, C. F. (2011). Population connectivity of neon damsel, Pomacentrus coelestis, inferred from otolith microchemistry and mtDNA. Marine and Freshwater Research, 61(12), 1416-1424.
Lobel, P. S. (1978). Diel, lunar, and seasonal periodicity in the reproductive behavior of the pomacanthid fish, Centropyge potteri, and some other reef fishes in Hawaii.
Lobel, P. S. (1989). Ocean current variability and the spawning season of Hawaiian reef fishes. Environmental Biology of Fishes, 24(3), 161-171.
Lucas, J. S. (1982). Quantitative studies of feeding and nutrition during larval development of the coral reef asteroid Acanthaster planci (L.). Journal of Experimental Marine Biology and Ecology, 65(2), 173-193.
Mahon, R., & Mahon, S. D. (1994). Structure and resilience of a tidepool fish assemblage at Barbados. In Women in ichthyology: an anthology in honour of ET, Ro and Genie (pp. 171-190). Springer, Dordrecht.
McCormick, M. I., & Makey, L. J. (1997). Post-settlement transition in coral reef fishes: overlooked complexity in niche shifts. Marine Ecology Progress Series, 153, 247-257.
McLeod, I. M., McCormick, M. I., Munday, P. L., Clark, T. D., Wenger, A. S., Brooker, R. M., ... & Jones, G. P. (2015). Latitudinal variation in larval development of coral reef fishes: implications of a warming ocean. Marine Ecology Progress Series, 521, 129-141.
McLeod, I. M., Rummer, J. L., Clark, T. D., Jones, G. P., McCormick, M. I., Wenger, A. S., & Munday, P. L. (2013). Climate change and the performance of larval coral reef fishes: the interaction between temperature and food availability. Conservation physiology, 1(1).
McMaster, G. S., & Wilhelm, W. W. (1997). Growing degree-days: one equation, two interpretations. Agricultural and Forest Meteorology, 87(4), 291-300.
Metaxas, A., & Saunders, M. (2009). Quantifying the “bio-” components in biophysical models of larval transport in marine benthic invertebrates: advances and pitfalls. The Biological Bulletin, 216(3), 257-272.
Mora, C., & Ospina, A. (2001). Tolerance to high temperatures and potential impact of sea warming on reef fishes of Gorgona Island (tropical eastern Pacific). Marine Biology, 139(4), 765-769.
Munday, P. L., & Wilson, S. K. (1997). Comparative efficacy of clove oil and other chemicals in anaesthetization of Pomacentrus amboinensis, a coral reef fish. Journal of Fish Biology, 51(5), 931-938.
Munday, P. L., Jones, G. P., Pratchett, M. S., & Williams, A. J. (2008). Climate change and the future for coral reef fishes. Fish and Fisheries, 9(3), 261-285.
Metaxas, A., & Saunders, M. (2009). Quantifying the “bio-” components in biophysical models of larval transport in marine benthic invertebrates: advances and pitfalls. The Biological Bulletin, 216(3), 257-272.
Neuheimer, A. B., & Grønkjær, P. (2012). Climate effects on size‐at‐age: growth in warming waters compensates for earlier maturity in an exploited marine fish. Global Change Biology, 18(6), 1812-1822.
Neuheimer, A. B., & Taggart, C. T. (2007). The growing degree-day and fish size-at-age: the overlooked metric. Canadian Journal of Fisheries and Aquatic Sciences, 64(2), 375-385.
Nilsson, G. E., Crawley, N., Lunde, I. G., & Munday, P. L. (2009). Elevated temperature reduces the respiratory scope of coral reef fishes. Global Change Biology, 15(6), 1405-1412.
Pagel, T., Bekkevold, D., Pohlmeier, S., Wolter, C., & Arlinghaus, R. (2015). Thermal and maternal environments shape the value of early hatching in a natural population of a strongly cannibalistic freshwater fish. Oecologia, 178(4), 951-965.
Paulay, G., Boring, L., & Strathmann, R. R. (1985). Food limited growth and development of larvae: experiments with natural sea water. Journal of experimental marine biology and ecology, 93(1-2), 1-10.
Payne, N. L., Smith, J. A., van der Meulen, D. E., Taylor, M. D., Watanabe, Y. Y., Takahashi, A., ... & Suthers, I. M. (2016). Temperature dependence of fish performance in the wild: links with species biogeography and physiological thermal tolerance. Functional Ecology, 30(6), 903-912.
Peck, M. A., Huebert, K. B., & Llopiz, J. K. (2012). Intrinsic and extrinsic factors driving match–mismatch dynamics during the early life history of marine fishes. In Advances in Ecological Research (Vol. 47, pp. 177-302). Academic Press.
Pörtner, H. O., & Farrell, A. P. (2008). Physiology and climate change. Science, 690-692.
Rangeley, R. W., & Kramer, D. L. (1995). Use of rocky intertidal habitats by juvenile pollock Pollachius virens. Marine Ecology Progress Series, 126, 9-17.
Rodgers, G. G., Donelson, J. M., McCormick, M. I., & Munday, P. L. (2018). In hot water: sustained ocean warming reduces survival of a low-latitude coral reef fish. Marine Biology, 165(4), 73.
Rummer, J. L., Couturier, C. S., Stecyk, J. A., Gardiner, N. M., Kinch, J. P., Nilsson, G. E., & Munday, P. L. (2014). Life on the edge: thermal optima for aerobic scope of equatorial reef fishes are close to current day temperatures. Global Change Biology, 20(4), 1055-1066.
Shao, K.T. (2018). The Fish Datebase of Taiwan. WWW Web electronic publication. http://fishdb.sinica.edu.tw
Sponaugle, S., Grorud-Colvert, K., & Pinkard, D. (2006). Temperature-mediated variation in early life history traits and recruitment success of the coral reef fish Thalassoma bifasciatum in the Florida Keys. Marine Ecology Progress Series, 308, 1-15.
Springer, V. G., & Williams, J. T. (1994). The Indo-West Pacific blenniid fish genus Istiblennius reappraised: a revision of Istiblennius, Blenniella, and Paralticus, new genus.
Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., ... and Midgley, P.M. (2013). Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Climate change 2013: the physical science basis.
Thomas, M. K., Kremer, C. T., Klausmeier, C. A., & Litchman, E. (2012). A global pattern of thermal adaptation in marine phytoplankton. Science, 338(6110), 1085-1088.
Thresher, R. E. (1984). Patterns in the reproduction of reef fishes. Reproduction in reef fishes, 343-387.
Vella, A., Agius Darmanin, S., & Vella, N. (2016). The first records of Indo-Pacific sergeant Abudefduf vaigiensis (Quoy & Gaimard, 1825) and further notes on the occurrence of sergeant major A. saxatilis (Linnaeus, 1758) in Malta: expanding populations of an invasive genus in the Mediterranean Sea. Journal of the Black Sea/Mediterranean Environment, 22(1), 1-15.
Venturelli, P. A., Lester, N. P., Marshall, T. R., & Shuter, B. J. (2010). Consistent patterns of maturity and density-dependent growth among populations of walleye (Sander vitreus): application of the growing degree-day metric. Canadian Journal of Fisheries and Aquatic Sciences, 67(7), 1057-1067.
Walsh, W. J. (1987). Patterns of recruitment and spawning in Hawaiian reef fishes. Environmental Biology of Fishes, 18(4), 257.
Wellington, G. M., & Victor, B. C. (1989). Planktonic larval duration of one hundred species of Pacific and Atlantic damselfishes (Pomacentridae). Marine Biology, 101(4), 557-567.
Wen, C. C., Pratchett, M. S., Shao, K. T., Kan, K. P., & Chan, B. K. K. (2010). Effects of habitat modification on coastal fish assemblages. Journal of Fish Biology, 77(7), 1674-1687.
Wen, C.C. (2002) Feeding guild and ontogenetic diet shifts of tidepool fish Assemblages in North and South Taiwan. Master thesis, Institute of Marine Biology, National Taiwan Ocean University
Wenger, A., McCormick, M., Endo, G., McLeod, I., Kroon, F., & Jones, G. (2013). Suspended sediment prolongs larval development in a coral reef fish. Journal of Experimental Biology, jeb-094409.
Wenger, A., McCormick, M., Endo, G., McLeod, I., Kroon, F., & Jones, G. (2013). Suspended sediment prolongs larval development in a coral reef fish. Journal of Experimental Biology, jeb-094409.
White, G. E., & Brown, C. (2013). Site fidelity and homing behaviour in intertidal fishes. Marine biology, 160(6), 1365-1372.
White, G. E., Hose, G. C., & Brown, C. (2015). Influence of rock‐pool characteristics on the distribution and abundance of inter‐tidal fishes. Marine Ecology, 36(4), 1332-1344.
Wilson, D. T., & McCormick, M. I. (1999). Microstructure of settlement-marks in the otoliths of tropical reef fishes. Marine Biology, 134(1), 29-41.
Wen, K.C. (2002) Feeding Guild and Ontogenetic Diet Shifts of Tidepool Fish Assemblages in North and South Taiwan. Master thesis, Master thesis Institute of Marine Biology, National Taiwan Ocean University.
Yoshida, T., Harazaki, S., & Motomura, H. (2010). Apogonid fishes (Teleostei: Perciformes) of Yaku-shima Island, Kagoshima Prefecture, southern Japan. Fishes of Yaku-shima Island–A World Heritage island in the Osumi Group, Kagoshima Prefecture, southern Japan. National Museum of Nature and Science, Tokyo, 27-64.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔