跳到主要內容

臺灣博碩士論文加值系統

(44.192.48.196) 您好!臺灣時間:2024/06/16 09:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳雋豪
研究生(外文):Jun-Hao Wu
論文名稱:油運企業短期業績分析:以中遠海能和招商輪船爲例
論文名稱(外文):Oil shipping companies valuation in short run: taking COSCO and CMES as example
指導教授:石百達石百達引用關係
指導教授(外文):Pai-Ta Shih
口試委員:莊文議張景宏
口試委員(外文):Wen-I ChuangChing-Hung Chang
口試日期:2019-06-05
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:財務金融學研究所
學門:商業及管理學門
學類:財務金融學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:57
中文關鍵詞:TCE(期租價)ARIMAX模型交易盈利預測中國A股
DOI:10.6342/NTU201900864
相關次數:
  • 被引用被引用:0
  • 點閱點閱:274
  • 評分評分:
  • 下載下載:43
  • 收藏至我的研究室書目清單書目收藏:0
本文出發點為航運產業研究業内最爲關心的運價問題。本文先給出航運產業研究的範式定性研究框架爲例,隨後建立定量模型。本文將TCE的自回歸性和外生解釋變量共同放入ARIMAX模型,并且所需資料容易獲得。本文提供模型I和模型II,其中模型I屬於同步模型,而模型II屬於預測模型,可預測2期。儘管模型II由模型I推導得出,但是模型II的預測能力卻不亞於模型I。
模型II的實務應用是本文的一大創新點。本文將模型II應用於買方和賣方證券從業者,並選取A股上市油運公司(中遠海能和招商輪船)為例。買方從業者可以模型II的預測方向為交易基準,結果表明投資組合業績優於買入持有策略或以真實運價爲基准的投資組合。賣方研究員可以模型II預測全年運價水平,以得出更可信的盈利預測。根據模型II,本文得出招商輪船和中遠海能的油運業務將在2019年同比分別增加5.4億美元和9.39億美元。
The thesis begins from practical shipping industry research puzzle on how to predict TCE level. The thesis gives a standard qualitative analysis framework as shipping industry research example, and then comes to model construction. The thesis combines both autocorrelation factors and exogenous explanatory variables together and construct ARIMAX model, with data needed easily available. The thesis provides two models, where Model I contains coincident variables and Model II is a pure leading model for 2 period ahead. Although Model II is derived from Model I, however the predicting power is no less than Model I.
The application of Model II is an innovation compared with preceding literatures. The thesis applies Model II to both sell side and buy side practical field. As illustration, the thesis chooses two listed companies in China A share exchange, namely COSCO and CMES. The buy side can trade according to Model II indication on TCE changes direction and achieve a sound result compared to buy-and-hold strategy or trading with real TCE changes. The sell side can predict the whole year earnings forecast by Model II, with crude oil shipping segment results increment estimates to be US$540 mn for CMES and US$939 mn for COSCO as for 2019 fiscal year.
口試委員會審定書 …………………………………………………i
誌謝 …………………………………………………………………ii
中文摘要……………………………………………………………iii
英文摘要……………………………………………………………iv
圖目錄……………………………………………………………vii
表目錄……………………………………………………………ix
Chapter 1 Introduction……………………………………………………………1
Chapter 2 Industry research in qualitative method……………4
2.1 Tanker market overview ……………4
2.2 Supply side ……………7
2.3 Demand side ……………11
Chapter 3 Literature review……………17
3.1 Equilibrium ……………17
3.2 Time series model ……………18
3.3 Cycle ……………19
3.4 AIS modeling ……………20
3.5 Stochastic process simulation ……………21
3.6 Seasonality ……………21
3.7 Risk management ……………22
3.8 Market spillover ……………23
3.9 Business operation ……………23
Chapter 4 Methodology and data description……………27
4.1 Methodology ……………27
4.2 Data description ……………27
4.3 Procedure ……………29
4.4 descriptive summarize ……………29
Chapter 5 Empirical results……………34
5.1 Model I ……………34
5.2 Model II ……………37
Chapter 6 Robust test……………39
Chapter 7 Applications……………42
7. 1 Listed companies in China-A share exchange ……………42
7. 2 Application for buy side ……………43
7. 3 Application for sell side ……………47
Chapter 8 Conclusion……………50
參考文獻…………………………………………………………………52
附錄…………………………………………………………………56
Aßmann, L. M., Andersson, J., & Eskeland, G. S. (2015). Missing in Action? Speed optimization and slow steaming in maritime shipping. Speed Optimization and Slow Steaming in Maritime Shipping (March 12, 2015). NHH Dept. of Business and Management Science Discussion Paper, (2015/13).

Adland, R. O., & Jia, H. (2016, December). Vessel speed analytics using satellite-based ship position data. In 2016 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM) (pp. 1299-1303). IEEE.

Adland, R., Jia, H., & Strandenes, S. P. (2017). Are AIS-based trade volume estimates reliable? The case of crude oil exports. Maritime Policy & Management, 44(5), 657-665.

Alexandridis, G., Sahoo, S., & Visvikis, I. (2017). Economic information transmissions and liquidity between shipping markets: New evidence from freight derivatives. Transportation Research Part E: Logistics and Transportation Review, 98, 82-104.

Alizadeh, A., & Nomikos, N. (2009). Shipping derivatives and risk management. Springer.

Alizadeh, A. H., Huang, C. Y., & van Dellen, S. (2015). A regime switching approach for hedging tanker shipping freight rates. Energy Economics, 49, 44-59.

Alizadeh, A. H., Kappou, K., Tsouknidis, D., & Visvikis, I. (2015). Liquidity effects and FFA returns in the international shipping derivatives market. Transportation Research Part E: Logistics and Transportation Review, 76, 58-75.

Batchelor, R., Alizadeh, A., & Visvikis, I. (2007). Forecasting spot and forward prices in the international freight market. International Journal of Forecasting, 23(1), 101-114.

Beenstock, M., & Vergottis, A. (1989). An econometric model of the world tanker market. Journal of Transport Economics and Policy, 263-280.

Beenstock, M., & Vergottis, A. (1989). An econometric model of the world market for dry cargo freight and shipping. Applied Economics, 21(3), 339-356.

Bessembinder, H., & Lemmon, M. L. (2002). Equilibrium pricing and optimal hedging in electricity forward markets. the Journal of Finance, 57(3), 1347-1382.

Benth, F. E., Koekebakker, S., & Taib, C. M. I. C. (2014). Stochastic dynamical modelling of spot freight rates. IMA Journal of Management Mathematics, 26(3), 273-297.

Brancaccio, G., Kalouptsidi, M., & Papageorgiou, T. (2017). Geography, search frictions and endogenous trade costs (No. w23581). National Bureau of Economic Research.

Chou, H. C., & Chen, D. H. (2019). The use of technical analysis in sale-and-purchase transactions of secondhand ships. Maritime Economics & Logistics, 21(2), 223-240.

Cullinane, K. P. B., Mason, K. J., & Cape, M. (1999). A comparison of models for forecasting the Baltic freight index: Box-Jenkins revisited. International journal of maritime economics, 1(2), 15-39.

Dai, L., Hu, H., & Zhang, D. (2015). An empirical analysis of freight rate and vessel price volatility transmission in global dry bulk shipping market. Journal of Traffic and Transportation Engineering (English Edition), 2(5), 353-361.

Gong, X., & Lu, J. (2013). Volatility of forward price in dry shipping market. Procedia-Social and Behavioral Sciences, 96, 1528-1537.

Karakitsos, E., & Varnavides, L. (2014). Investment Strategy. In Maritime Economics (pp. 328-341). Palgrave Macmillan, London.

Kalouptsidi, M. (2014). Time to build and fluctuations in bulk shipping. American Economic Review, 104(2), 564-608.

Karakitsos, E., & Varnavides, L. (2014). Maritime Economics: A macroeconomic approach. Springer.

Kavussanos, M. G. (1997). The dynamics of time-varying volatilities in different size second-hand ship prices of the dry-cargo sector. Applied Economics, 29(4), 433-443.

Kavussanos, M. G., & Visvikis, I. D. (2004). Market interactions in returns and volatilities between spot and forward shipping freight markets. Journal of Banking & Finance, 28(8), 2015-2049.

Kavussanos, M. G., Visvikis, I. D., & Dimitrakopoulos, D. N. (2014). Economic spillovers between related derivatives markets: The case of commodity and freight markets. Transportation Research Part E: Logistics and Transportation Review, 68, 79-102.

Ko, B. W. (2013). Analysis of term structure in dry bulk freight market. The Asian Journal of Shipping and Logistics, 29(1), 1-22.

Koopmans, T. C. (1939). Tanker Freight Rates and Tankship Building: An Analysis of Cyclical Fluctuations, by Dr. T. Koopmans (No. 27). De erven F. Bohn nv.

Lee, T. T. H., & Yip, T. L. (2018). A cause of oversupply and failure in the shipping market: measuring herding behavior effects. Maritime Policy & Management, 45(8), 995-1006.

Li, T., Xue, L., Chen, Y., Chen, F., Miao, Y., Shao, X., & Zhang, C. (2018). Insights from multifractality analysis of tanker freight market volatility with common external factor of crude oil price. Physica A: Statistical Mechanics and its Applications, 505, 374-384.

Parker, S. (2014). Matching in the oil tanker industry: implications for energy efficiency (Doctoral dissertation, UCL (University College London)).

Poblacion, J. (2015). The stochastic seasonal behavior of freight rate dynamics. Maritime Economics & Logistics, 17(2), 142-162.

Población, J. (2017). Are recent tanker freight rates stationary?. Maritime Economics & Logistics, 19(4), 650-666.

Pruyn, J. F. J., Van de Voorde, E., & Meersman, H. (2011). Second hand vessel value estimation in maritime economics: A review of the past 20 years and the proposal of an elementary method. Maritime Economics & Logistics, 13(2), 213-236.

Randers, J., & Göluke, U. (2007). Forecasting turning points in shipping freight rates: lessons from 30 years of practical effort. System Dynamics Review: The Journal of the System Dynamics Society, 23(2‐3), 253-284.

Regli, F., & Adland, R. (2019). Crude oil contango arbitrage and the floating storage decision. Transportation Research Part E: Logistics and Transportation Review, 122, 100-118.

Ronen, D. (1982). The effect of oil price on the optimal speed of ships. Journal of the Operational Research Society, 33(11), 1035-1040.

Stopford, M. (2009). Maritime economics 3e. Routledge.

Tezuka, K., Ishii, M., & Ishizaka, M. (2012). An equilibrium price model of spot and forward shipping freight markets. Transportation Research Part E: Logistics and Transportation Review, 48(4), 730-742.

Westgaard, S., Osmundsen, P., Stenslet, D., & Ringheim, J. (2017). Modeling superior predictors for crude oil prices.

Wohlstrand, P., & Marek, J. J. (2015). Capital structure in bulk shipping.

Xu, J. J., Yip, T. L., & Marlow, P. B. (2011). The dynamics between freight volatility and fleet size growth in dry bulk shipping markets. Transportation research part E: logistics and transportation review, 47(6), 983-991.

Yu, H., Fang, Z., Lu, F., Murray, A. T., Zhang, H., Peng, P., ... & Chen, J. (2019). Impact of oil price fluctuations on tanker maritime network structure and traffic flow changes. Applied Energy, 237, 390-403.

Zannetos, Z. (1966). The theory of oil tankership rates.

Zhang, Y. (2018). Investigating dependencies among oil price and tanker market variables by copula-based multivariate models. Energy, 161, 435-446.

Clarksons data: https://sin.clarksons.net/

Bloomberg data: https://www.bloomberg.com

Wind data: https://www.wind.com.cn
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top