|
1.Boys, C. V., On the Production, Properties, and some suggested Uses of the Finest Threads. Proceedings of the Physical Society of London 1887, 9 (1), 8-19. 2.Francis, C. J., Improved Methods of and Apparatus for Electrically Separating the Relatively Volatile Liquid Component from the Component of Relatively Fixed Substances of Composite Fluids. U.K. Patent 1900, ( 06385). 3.Francis, C. J., Apparatus for electrically dispersing fluids. U.S. Patent 1902, (692,631). 4.Formhals, A., Process and apparatus for preparing artificial threads. U.S. Patent 1934, (1,975,504). 5.Formhals, A., Method and apparatus for spinning. U.S. Patent 1939, (2,160,962). 6.Formhals, A., Artificial thread and method of producing same. U.S. Patent 1940, (2,187,306). 7.Formhals, A., Production of artificial fibers from fiber forming liquids. U.S. patent 1943, (2,323,025). 8.Formhals, A., Method and apparatus for spinning. U.S. Patent 1944, (2,349,950). 9.Filatov, Y. B., A. Kirichenko, V., Electrospinning of micro- and nanofibers: fundamentals and applications in separation and filtration processes. 2007. 10.Melcher, J. R.; Taylor, G. I., Electrohydrodynamics: A Review of the Role of Interfacial Shear Stresses. Annual Review of Fluid Mechanics 1969, 1 (1), 111-146. 11.Taylor Geoffrey, I., Disintegration of water drops in an electric field. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 1964, 280 (1382), 383-397. 12.Taylor Geoffrey, I.; Van Dyke, M. D., The force exerted by an electric field on a long cylindrical conductor. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 1966, 291 (1425), 145-158. 13.Taylor Geoffrey, I.; Van Dyke, M. D., Electrically driven jets. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 1969, 313 (1515), 453-475. 14.Hohman, M. M.; Shin, M.; Rutledge, G.; Brenner, M. P., Electrospinning and electrically forced jets. I. Stability theory. Physics of Fluids 2001, 13 (8), 2201-2220. 15.Agarwal, S.; Wendorff, J. H.; Greiner, A., Use of electrospinning technique for biomedical applications. Polymer 2008, 49 (26), 5603-5621. 16.Kim, G. H., Electrospun PCL nanofibers with anisotropic mechanical properties as a biomedical scaffold. Biomedical Materials 2008, 3 (2), 025010. 17.Liang, D.; Hsiao, B. S.; Chu, B., Functional electrospun nanofibrous scaffolds for biomedical applications. Advanced Drug Delivery Reviews 2007, 59 (14), 1392-1412. 18.Chew, S. Y.; Wen, J.; Yim, E. K. F.; Leong, K. W., Sustained Release of Proteins from Electrospun Biodegradable Fibers. Biomacromolecules 2005, 6 (4), 2017-2024. 19.Kim, K.; Luu, Y. K.; Chang, C.; Fang, D.; Hsiao, B. S.; Chu, B.; Hadjiargyrou, M., Incorporation and controlled release of a hydrophilic antibiotic using poly(lactide-co-glycolide)-based electrospun nanofibrous scaffolds. Journal of Controlled Release 2004, 98 (1), 47-56. 20.Luong-Van, E.; Grøndahl, L.; Chua, K. N.; Leong, K. W.; Nurcombe, V.; Cool, S. M., Controlled release of heparin from poly(ε-caprolactone) electrospun fibers. Biomaterials 2006, 27 (9), 2042-2050. 21.Bagbi, Y.; Pandey, A.; Solanki, P. R., Chapter 10 - Electrospun Nanofibrous Filtration Membranes for Heavy Metals and Dye Removal. In Nanoscale Materials in Water Purification, Thomas, S.; Pasquini, D.; Leu, S.-Y.; Gopakumar, D. A., Eds. Elsevier: 2019; pp 275-288. 22.Gibson, P.; Schreuder-Gibson, H.; Rivin, D., Transport properties of porous membranes based on electrospun nanofibers. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2001, 187-188, 469-481. 23.Makaremi, M.; De Silva, R. T.; Pasbakhsh, P., Electrospun Nanofibrous Membranes of Polyacrylonitrile/Halloysite with Superior Water Filtration Ability. The Journal of Physical Chemistry C 2015, 119 (14), 7949-7958. 24.Sundarrajan, S.; Tan, K. L.; Lim, S. H.; Ramakrishna, S., Electrospun Nanofibers for Air Filtration Applications. Procedia Engineering 2014, 75, 159-163. 25.Yoon, K.; Kim, K.; Wang, X.; Fang, D.; Hsiao, B. S.; Chu, B., High flux ultrafiltration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating. Polymer 2006, 47 (7), 2434-2441. 26.Kim, C.; Yang, K. S., Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospinning. Applied Physics Letters 2003, 83 (6), 1216-1218. 27.Liu, Y.; Teng, H.; Hou, H.; You, T., Nonenzymatic glucose sensor based on renewable electrospun Ni nanoparticle-loaded carbon nanofiber paste electrode. Biosensors and Bioelectronics 2009, 24 (11), 3329-3334. 28.Yeon Song, M.; Kyun Kim, D.; Jin Ihn, K.; Mu Jo, S.; Young Kim, D., Electrospun TiO2 Electrodes for Dye-Sensitized Solar Cells. 2004; Vol. 15, p 1861. 29.Matthews, J. A.; Wnek, G. E.; Simpson, D. G.; Bowlin, G. L., Electrospinning of Collagen Nanofibers. Biomacromolecules 2002, 3 (2), 232-238. 30.Mo, X. M.; Xu, C. Y.; Kotaki, M.; Ramakrishna, S., Electrospun P(LLA-CL) nanofiber: a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials 2004, 25 (10), 1883-1890. 31.Yoshimoto, H.; Shin, Y. M.; Terai, H.; Vacanti, J. P., A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 2003, 24 (12), 2077-2082. 32.Ma, M.; Hill, R. M.; Lowery, J. L.; Fridrikh, S. V.; Rutledge, G. C., Electrospun Poly(Styrene-block-dimethylsiloxane) Block Copolymer Fibers Exhibiting Superhydrophobicity. Langmuir 2005, 21 (12), 5549-5554. 33.Ma, M.; Gupta, M.; Li, Z.; Zhai, L.; Gleason, K. K.; Cohen, R. E.; Rubner, M. F.; Rutledge, G. C., Decorated Electrospun Fibers Exhibiting Superhydrophobicity. Advanced Materials 2007, 19 (2), 255-259. 34.Feng, L.; Li, S.; Li, H.; Zhai, J.; Song, Y.; Jiang, L.; Zhu, D., Super-Hydrophobic Surface of Aligned Polyacrylonitrile Nanofibers. Angewandte Chemie International Edition 2002, 41 (7), 1221-1223. 35.Casper, C. L.; Stephens, J. S.; Tassi, N. G.; Chase, D. B.; Rabolt, J. F., Controlling Surface Morphology of Electrospun Polystyrene Fibers: Effect of Humidity and Molecular Weight in the Electrospinning Process. Macromolecules 2004, 37 (2), 573-578. 36.Fashandi, H.; Karimi, M., Pore formation in polystyrene fiber by superimposing temperature and relative humidity of electrospinning atmosphere. Polymer 2012, 53 (25), 5832-5849. 37.Medeiros, E. S.; Mattoso, L. H. C.; Offeman, R. D.; Wood, D. F.; Orts, W. J., Effect of relative humidity on the morphology of electrospun polymer fibers. Canadian Journal of Chemistry 2008, 86 (6), 590-599. 38.Qi, Z.; Yu, H.; Chen, Y.; Zhu, M., Highly porous fibers prepared by electrospinning a ternary system of nonsolvent/solvent/poly(l-lactic acid). Materials Letters 2009, 63 (3), 415-418. 39.Rezabeigi, E.; Sta, M.; Swain, M.; McDonald, J.; Demarquette, N. R.; Drew, R. A. L.; Wood-Adams, P. M., Electrospinning of porous polylactic acid fibers during nonsolvent induced phase separation. Journal of Applied Polymer Science 2017, 134 (20). 40.Nayani, K.; Katepalli, H.; Sharma, C. S.; Sharma, A.; Patil, S.; Venkataraghavan, R., Electrospinning Combined with Nonsolvent-Induced Phase Separation To Fabricate Highly Porous and Hollow Submicrometer Polymer Fibers. Industrial & Engineering Chemistry Research 2012, 51 (4), 1761-1766. 41.Pant, H. R.; Neupane, M. P.; Pant, B.; Panthi, G.; Oh, H.-J.; Lee, M. H.; Kim, H. Y., Fabrication of highly porous poly (ɛ-caprolactone) fibers for novel tissue scaffold via water-bath electrospinning. Colloids and Surfaces B: Biointerfaces 2011, 88 (2), 587-592. 42.Zhang, Y.; Li, J.; An, G.; He, X., Highly porous SnO2 fibers by electrospinning and oxygen plasma etching and its ethanol-sensing properties. Sensors and Actuators B: Chemical 2010, 144 (1), 43-48. 43.Gupta, A.; Saquing, C. D.; Afshari, M.; Tonelli, A. E.; Khan, S. A.; Kotek, R., Porous Nylon-6 Fibers via a Novel Salt-Induced Electrospinning Method. Macromolecules 2009, 42 (3), 709-715. 44.Chen, P.-Y.; Tung, S.-H., One-Step Electrospinning To Produce Nonsolvent-Induced Macroporous Fibers with Ultrahigh Oil Adsorption Capability. Macromolecules 2017, 50 (6), 2528-2534. 45.Li, D.; Xia, Y., Direct Fabrication of Composite and Ceramic Hollow Nanofibers by Electrospinning. Nano Letters 2004, 4 (5), 933-938. 46.Zhang, Y.; Ouyang, H.; Lim, C. T.; Ramakrishna, S.; Huang, Z.-M., Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2005, 72B (1), 156-165. 47.Lu, X.; Wang, C.; Wei, Y., One-Dimensional Composite Nanomaterials: Synthesis by Electrospinning and Their Applications. Small 2009, 5 (21), 2349-2370. 48.Khil, M.-S.; Cha, D.-I.; Kim, H.-Y.; Kim, I.-S.; Bhattarai, N., Electrospun nanofibrous polyurethane membrane as wound dressing. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2003, 67B (2), 675-679. 49.Chen, J.-P.; Chang, G.-Y.; Chen, J.-K., Electrospun collagen/chitosan nanofibrous membrane as wound dressing. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2008, 313-314, 183-188. 50.Doshi, J.; Reneker, D. H., Electrospinning process and applications of electrospun fibers. Journal of Electrostatics 1995, 35 (2), 151-160. 51.Shin, Y. M.; Hohman, M. M.; Brenner, M. P.; Rutledge, G. C., Experimental characterization of electrospinning: the electrically forced jet and instabilities. Polymer 2001, 42 (25), 09955-09967. 52.Reneker, D. H.; Yarin, A. L.; Fong, H.; Koombhongse, S., Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. Journal of Applied Physics 2000, 87 (9), 4531-4547. 53.Chiu, Y.-J.; Tseng, H.-F.; Lo, Y.-C.; Wu, B.-H.; Chen, J.-T., Plateau–Rayleigh Instability Morphology Evolution (PRIME): From Electrospun Core–Shell Polymer Fibers to Polymer Microbowls. Macromolecular Rapid Communications 2017, 38 (5), 1600689. 54.Zuo, W.; Zhu, M.; Yang, W.; Yu, H.; Chen, Y.; Zhang, Y., Experimental study on relationship between jet instability and formation of beaded fibers during electrospinning. Polymer Engineering & Science 2005, 45 (5), 704-709. 55.Haefner, S.; Benzaquen, M.; Bäumchen, O.; Salez, T.; Peters, R.; McGraw, J. D.; Jacobs, K.; Raphaël, E.; Dalnoki-Veress, K., Influence of slip on the Plateau–Rayleigh instability on a fibre. Nature Communications 2015, 6, 7409. 56.Theron, S. A.; Yarin, A. L.; Zussman, E.; Kroll, E., Multiple jets in electrospinning: experiment and modeling. Polymer 2005, 46 (9), 2889-2899. 57.Yarin, A. L.; Koombhongse, S.; Reneker, D. H., Bending instability in electrospinning of nanofibers. Journal of Applied Physics 2001, 89 (5), 3018-3026. 58.Buchko, C. J.; Chen, L. C.; Shen, Y.; Martin, D. C., Processing and microstructural characterization of porous biocompatible protein polymer thin films. Polymer 1999, 40 (26), 7397-7407. 59.Fong, H.; Chun, I.; Reneker, D. H., Beaded nanofibers formed during electrospinning. Polymer 1999, 40 (16), 4585-4592. 60.Hajra, M. G.; Mehta, K.; Chase, G. G., Effects of humidity, temperature, and nanofibers on drop coalescence in glass fiber media. Separation and Purification Technology 2003, 30 (1), 79-88. 61.Norris, I. D.; Shaker, M. M.; Ko, F. K.; MacDiarmid, A. G., Electrostatic fabrication of ultrafine conducting fibers: polyaniline/polyethylene oxide blends. Synthetic Metals 2000, 114 (2), 109-114. 62.Deitzel, J. M.; Kleinmeyer, J.; Harris, D.; Beck Tan, N. C., The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 2001, 42 (1), 261-272. 63.Gupta, P.; Elkins, C.; Long, T. E.; Wilkes, G. L., Electrospinning of linear homopolymers of poly(methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent. Polymer 2005, 46 (13), 4799-4810. 64.Schaub, N. J.; Britton, T.; Rajachar, R.; Gilbert, R. J., Engineered Nanotopography on Electrospun PLLA Microfibers Modifies RAW 264.7 Cell Response. ACS Applied Materials & Interfaces 2013, 5 (20), 10173-10184. 65.Natarajan, L.; New, J.; Dasari, A.; Yu, S.; Manan, M. A., Surface morphology of electrospun PLA fibers: mechanisms of pore formation. RSC Advances 2014, 4 (83), 44082-44088. 66.Lu, P.; Xia, Y., Maneuvering the Internal Porosity and Surface Morphology of Electrospun Polystyrene Yarns by Controlling the Solvent and Relative Humidity. Langmuir 2013, 29 (23), 7070-7078. 67.Megelski, S.; Stephens, J. S.; Chase, D. B.; Rabolt, J. F., Micro- and Nanostructured Surface Morphology on Electrospun Polymer Fibers. Macromolecules 2002, 35 (22), 8456-8466. 68.Kim, C. H.; Jung, Y. H.; Kim, H. Y.; Lee, D. R.; Dharmaraj, N.; Choi, K. E., Effect of collector temperature on the porous structure of electrospun fibers. Macromolecular Research 2006, 14 (1), 59-65. 69.McCann, J. T.; Marquez, M.; Xia, Y., Highly Porous Fibers by Electrospinning into a Cryogenic Liquid. Journal of the American Chemical Society 2006, 128 (5), 1436-1437. 70.Sanjay K Sharma, A. M., A Handbook of Applied Biopolymer Technology: Synthesis, Degradation and Applications. Royal Society of Chemistry: 2011. 71.Fiore, G. L.; Jing, F.; Young, J. V. G.; Cramer, C. J.; Hillmyer, M. A., High Tg aliphatic polyesters by the polymerization of spirolactide derivatives. Polymer Chemistry 2010, 1 (6), 870-877. 72.Rafael A. Auras, L.-T. L., Susan E. M. Selke, Hideto Tsuji, Poly(lactic acid): Synthesis, Structures, Properties, Processing, and Applications. Wiley: 2010. 73.Alarifi, I. M.; Khan, W. S.; Asmatulu, R., Synthesis of electrospun polyacrylonitrile- derived carbon fibers and comparison of properties with bulk form. PLOS ONE 2018, 13 (8), e0201345. 74.Liu, D.; Chen, H.; Yin, P.; Ji, N.; Zong, G.; Qu, R., Synthesis of polyacrylonitrile by single-electron transfer-living radical polymerization using Fe(0) as catalyst and its adsorption properties after modification. Journal of Polymer Science Part A: Polymer Chemistry 2011, 49 (13), 2916-2923. 75.Shen, W.; Zhang, S.; He, Y.; Li, J.; Fan, W., Hierarchical porous polyacrylonitrile-based activated carbon fibers for CO2 capture. Journal of Materials Chemistry 2011, 21 (36), 14036-14040. 76.Liu, C.; Hsu, P.-C.; Lee, H.-W.; Ye, M.; Zheng, G.; Liu, N.; Li, W.; Cui, Y., Transparent air filter for high-efficiency PM2.5 capture. Nature Communications 2015, 6, 6205. 77.Shobhana, E., X-Ray Diffraction and UV-Visible Studies of PMMA Thin Films. International Journal of Modern Engineering Research 2012, 2 (3), 1092-1095. 78.Yang, R.; Xu, H.; Zhang, Y., Preparation, physical property and thermal physical property of phase change microcapsule slurry and phase change emulsion. Solar Energy Materials and Solar Cells 2003, 80 (4), 405-416. 79.Suppes, G. J.; Dasari, M. A.; Doskocil, E. J.; Mankidy, P. J.; Goff, M. J., Transesterification of soybean oil with zeolite and metal catalysts. Applied Catalysis A: General 2004, 257 (2), 213-223. 80.Chen, N. Y.; Kaeding, W. W.; Dwyer, F. G., Para-directed aromatic reactions over shape-selective molecular sieve zeolite catalysts. Journal of the American Chemical Society 1979, 101 (22), 6783-6784. 81.Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359 (6397), 710-712. 82.Tang, Q.; Xu, H.; Zheng, Y.; Wang, J.; Li, H.; Zhang, J., Catalytic dehydration of methanol to dimethyl ether over micro–mesoporous ZSM-5/MCM-41 composite molecular sieves. Applied Catalysis A: General 2012, 413-414, 36-42. 83.Nanotechnology for membranes, filters and sieves A series of mini-reviews covering new trends in fundamental and applied research, and potential applications of miniaturised technologies. Lab on a Chip 2006, 6 (1), 19-23. 84.Khouw, C. B.; Davis, M. E., Shape-Selective Catalysis with Zeolites and Molecular Sieves. In Selectivity in Catalysis, American Chemical Society: 1993; Vol. 517, pp 206-221. 85.van Donk, S.; Janssen, A. H.; Bitter, J. H.; de Jong, K. P., Generation, Characterization, and Impact of Mesopores in Zeolite Catalysts. Catalysis Reviews 2003, 45 (2), 297-319. 86.Chang, C. D.; Silvestri, A. J., The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts. Journal of Catalysis 1977, 47 (2), 249-259. 87.Xu, C.; Lin, Y.; Wang, J.; Wu, L.; Wei, W.; Ren, J.; Qu, X., Nanoceria-Triggered Synergetic Drug Release Based on CeO2-Capped Mesoporous Silica Host–Guest Interactions and Switchable Enzymatic Activity and Cellular Effects of CeO2. Advanced Healthcare Materials 2013, 2 (12), 1591-1599. 88.Li, M.; Shi, P.; Xu, C.; Ren, J.; Qu, X., Cerium oxide caged metal chelator: anti-aggregation and anti-oxidation integrated H2O2-responsive controlled drug release for potential Alzheimer''s disease treatment. Chemical Science 2013, 4 (6), 2536-2542. 89.Lee, K. X.; Valla, J. A., Investigation of metal-exchanged mesoporous Y zeolites for the adsorptive desulfurization of liquid fuels. Applied Catalysis B: Environmental 2017, 201, 359-369. 90.Chaitanya Kumar Narula, S. R. N.-P., Mesoporous oxide molecular sieves for absorbing nitrogen oxides in oxidizing engine exhaust gas. U.S. Patent 2000, (6146602). 91.Archer, M.; Christophersen, M.; Fauchet, P. M., Macroporous Silicon Electrical Sensor for DNA Hybridization Detection. Biomedical Microdevices 2004, 6 (3), 203-211. 92.Gu, Z.-Z.; Horie, R.; Kubo, S.; Yamada, Y.; Fujishima, A.; Sato, O., Fabrication of a Metal-Coated Three-Dimensionally Ordered Macroporous Film and its Application as a Refractive Index Sensor. Angewandte Chemie International Edition 2002, 41 (7), 1153-1156. 93.Wang, Y.; Park, S.; Yeow, J. T. W.; Langner, A.; Müller, F., A capacitive humidity sensor based on ordered macroporous silicon with thin film surface coating. Sensors and Actuators B: Chemical 2010, 149 (1), 136-142. 94.Montoya, P.; Mejía, S.; Gonçales, V. R.; Torresi, S. I. C. d.; Calderón, J. A., Performance improvement of macroporous polypyrrole sensor for detection of ammonia by incorporation of magnetite nanoparticles. Sensors and Actuators B: Chemical 2015, 213, 444-451. 95.Rothschild, A.; Tuller, H. L., Gas sensors: New materials and processing approaches. Journal of Electroceramics 2006, 17 (2), 1005-1012. 96.Marcacci, M.; Kon, E.; Moukhachev, V.; Lavroukov, A.; Kutepov, S.; Quarto, R.; Mastrogiacomo, M.; Cancedda, R., Stem Cells Associated with Macroporous Bioceramics for Long Bone Repair: 6- to 7-Year Outcome of a Pilot Clinical Study. Tissue Engineering 2007, 13 (5), 947-955. 97.Kim, H. J.; Kim, U.-J.; Vunjak-Novakovic, G.; Min, B.-H.; Kaplan, D. L., Influence of macroporous protein scaffolds on bone tissue engineering from bone marrow stem cells. Biomaterials 2005, 26 (21), 4442-4452. 98.Xiao, Q.; Wang, X.; Li, W.; Li, Z.; Zhang, T.; Zhang, H., Macroporous polymer electrolytes based on PVDF/PEO-b-PMMA block copolymer blends for rechargeable lithium ion battery. Journal of Membrane Science 2009, 334 (1), 117-122. 99.Lin, J.; Shang, Y.; Ding, B.; Yang, J.; Yu, J.; Al-Deyab, S. S., Nanoporous polystyrene fibers for oil spill cleanup. Marine Pollution Bulletin 2012, 64 (2), 347-352. 100.Jing, P.; Fang, X.; Yan, J.; Guo, J.; Fang, Y., Ultra-low density porous polystyrene monolith: facile preparation and superior application. Journal of Materials Chemistry A 2013, 1 (35), 10135-10141. 101.Li, P.; Qiao, Y.; Zhao, L.; Yao, D.; Sun, H.; Hou, Y.; Li, S.; Li, Q., Electrospun PS/PAN fibers with improved mechanical property for removal of oil from water. Marine Pollution Bulletin 2015, 93 (1), 75-80. 102.Kaur, S.; Sundarrajan, S.; Rana, D.; Matsuura, T.; Ramakrishna, S., Influence of electrospun fiber size on the separation efficiency of thin film nanofiltration composite membrane. Journal of Membrane Science 2012, 392-393, 101-111. 103.Desai, K.; Kit, K.; Li, J.; Michael Davidson, P.; Zivanovic, S.; Meyer, H., Nanofibrous chitosan non-wovens for filtration applications. Polymer 2009, 50 (15), 3661-3669. 104.Davies, C. N., Filtration of aerosols. Journal of Aerosol Science 1983, 14 (2), 147-161. 105.Yang, Z. Z.; Lin, J. H.; Tsai, I. S.; Kuo, T. Y., Particle Filtration with an Electret of Nonwoven Polypropylene Fabric. Textile Research Journal 2002, 72 (12), 1099-1104. 106.Washburn, E. W., Note on a Method of Determining the Distribution of Pore Sizes in a Porous Material. Proceedings of the National Academy of Sciences of the United States of America 1921, 7 (4), 115-116. 107.Drake, L. C.; Ritter, H. L., Macropore-Size Distributions in Some Typical Porous Substances. Industrial & Engineering Chemistry Analytical Edition 1945, 17 (12), 787-791. 108.Ritter, H. L.; Drake, L. C., Pressure Porosimeter and Determination of Complete Macropore-Size Distributions. Pressure Porosimeter and Determination of Complete Macropore-Size Distributions. Industrial & Engineering Chemistry Analytical Edition 1945, 17 (12), 782-786. 109.Ritter, H. L.; Erich, L. C., Pore Size Distribution in Porous Materials. Analytical Chemistry 1948, 20 (7), 665-670.
|