跳到主要內容

臺灣博碩士論文加值系統

(44.222.82.133) 您好!臺灣時間:2024/09/21 02:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳衍儒
研究生(外文):Yan-Ru Chen
論文名稱:探討非溶劑誘導巨孔電紡絲的形成機制與吸附應用
論文名稱(外文):Study on the Formation Mechanism of Nonsolvent-Induced Macroporous Electrospun Fibers and Their Adsorption Applications
指導教授:童世煌
口試委員:邱文英廖文彬賴偉淇
口試日期:2019-07-12
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:高分子科學與工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:102
中文關鍵詞:非溶劑良溶劑非溶劑誘導相分離(NIPS)巨孔纖維溶劑揮發相分離
DOI:10.6342/NTU201903839
相關次數:
  • 被引用被引用:0
  • 點閱點閱:289
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
通過在電紡絲中將非溶劑和良溶劑結合到聚合物溶液中的非溶劑誘導相分離(NIPS)方法是製造具有多孔聚合物纖維的便利方式。此方法不但創造出纖維表面上的孔洞,更使孔洞延伸至纖維的內部。靜電紡絲過程受兩個因素的影響:溶劑揮發和相分離。水蒸氣是聚合物的非溶劑,在靜電紡絲過程中也起著重要作用,其在溶劑蒸發過程中凝結並促進相分離以形成更大的孔。在本研究中,我們使用環保型聚合物 - 聚乳酸(PLA)與不同的良溶劑和非溶劑對來闡明靜電紡絲過程中巨孔纖維形成的機制。均勻的巨孔纖維只能在特定條件下獲得:首先,良溶劑必須不溶於水,非溶劑必須可溶於水,並且必須是高極性的(介電常數>35)。第二,必須選擇具有較低揮發性的良溶劑(飽和蒸汽壓在20以下)和和飽和蒸汽壓低於良溶劑的非溶劑。另外,良溶劑和非溶劑的蒸氣壓差異必須足夠大。 (蒸氣壓差須至少在6 mmHg以上)
我們使用PLA /氯苯(CB)/二甲基亞砜(DMSO)系統靜電紡絲PLA巨孔纖維,從接觸角圖中顯示出其高疏水性。在油吸附試驗中,每公克的巨孔PLA纖維可以吸附船舶廢油達到800克,並且可以有效地去除水面上的油污。此外,我們採用綠色環保的靜電紡絲技術:使用低毒性的乙酸乙酯(EA)作為良溶劑,製備具有相當的油吸附能力的PLA纖維。空氣吸附實驗表明,與光滑的高分子纖維相比,巨孔高分子纖維具有更強的捕獲懸浮粒子能力。通過使用PMMA等高極性聚合物作為電紡巨孔纖維的原料,最高可以吸附懸浮顆粒達2.5 g / g纖維。透過此方法可以輕易的選擇適合的溶劑和適當的溶液比率來電紡具有高吸附效能的巨孔纖維,以去海面油污染物和空氣中的懸浮顆粒。
Non-solvent induced phase separation (NIPS) process by combining a non-solvent and a good solvent in a polymer solution to electrospin is a convenient way to make porous polymer fibers with uniform pores extending into the interior of the fibers. The electrospun fibers are affected by two factors during electrospinning using NIPS method: solvent evaporation and phase separation. In addition, water is a non-solvent for the polymer and also plays an important role in the electrospinning process. It condenses during solvent evaporation and promotes phase separation to cause larger pores. In this study, we used an environment-friendly polymer, polylactic acid (PLA), with different pairs of good and non-solvent to clarify the formation mechanism of macroporous fibers during electrospinning. Uniform macroporous fibers can only be obtained under specific conditions: First, saturated vapor pressure of the non-solvent must be 6 mmHg lower than that of the good solvent. Second, the good solvent must be water-insoluble and the saturated vapor pressure must lower than 20 mmHg. Third, the non-solvent must be water-soluble and its dielectric constant must be higher than 35.
We use PLA/chlorobenzene (CB)/dimethyl sulfoxide (DMSO) system to electrospin PLA macroporous fiber mats with a high hydrophobicity. In the oil adsorption test, the macroporous PLA fibers can effectively remove the ship waste oil on the water surface and adsorb the oil up to 800 g per gram of fibers. In addition, a green electrospinning process by using low toxicity ethyl acetate (EA) as a good solvent instead of the toxic halogenated solvents can fabricate PLA porous fibers with high oil adsorption capabilities. The smoke adsorption tests reveal that the macroporous polymer fibers are more efficient to capture the particles in the air than the smooth polymer fibers. Furthermore, the porous fibers with higher polarity, such as PMMA, show a higher efficiency of smoke adsorption up to 2.5 g/g. This work provides guidance for finding the solvents and the solution ratio for electrospinning macroporous fibers with high adsorption ability to remove oil in the leakage accidents or particles pollutants in the air.
中文摘要 i
Abstract ii
Chapter1 Introduction 1
1-1 Preface 1
1-2 Motivation and Purpose 3
1-3 System Architecture 4
Chapter2 Literature Review and Theoretical Background 5
2-1 Electrospinning Process 5
2-1-1 Introduction of Electrospinning 5
2-1-2 Plateau-Rayleigh instability 50, 53, 54 6
2-1-3 Bending Instability 51, 52, 56, 57 7
2-1-4 Electrospinning Parameters 35-37, 51, 58-63 9
2-1-3 Electrospinning Process 11
2-2 Phase Separation Methods in Electrospinning 12
2-2-1 Vapor-Induced Phase Separation (VIPS) 35-37, 60, 65-67 13
2-2-2 Thermally-Induced Phase Separation (TIPS) 68, 69 15
2-2-3 Nonsolvent-Induced Phase Separation (NIPS) 38-40 15
2-3 Polymer 18
2-3-1 Polylactic Acid (PLA) 70-72 18
2-3-2 Polyacrylonitrile (PAN) 73-76 19
2-3-3 Poly(methyl methacrylate) (PMMA) 77, 78 20
2-4 Applications of Porous Materials 21
2-4-1 Introduction to Porous Materials 79, 80 21
2-4-2 Porous Material Applications 21
2-4-3 Oil Adsorption 23
2-4-4 PM2.5 Adsorption 24
Chapter3 Experimental Section 27
3-1 Materials 27
3-1-1 Polymer 27
3-1-2 Good Solvent of PLA 28
3-1-3 Poor Solvent of PLA 29
3-1-4 Salt 30
3-1-5 Solvent physical properties 30
3-2 Polymer solutions and Electrospinning Equipment 32
3-2-1 Three-Phase Diagram Drawing 32
3-2-2 Phase Separation Rate 32
3-2-3 PLA Solution Preparation 33
3-2-4 Electrospinning Equipment and Parameter Setting 33
3-2-5 Fiber Cross Section Preparation 34
3-2-5 Oil Adsorption Test - Oil Adsorption Capacity 34
3-2-6 Oil Adsorption Test - Oil Adsorption Rate 35
3-2-7 Practical Application of Oil Adsorption 35
3-2-8 Qualitative Analysis of Aerosol Particles Adsorption - Particles Conc. vs. Time 35
3-2-9 Quantitative Analysis of Aerosol Particles Adsorption - Air Adsorption Content 35
3-2-10 Calculation of Aerosol Particles Content 36
3-3 Analytical Instruments 37
3-3-1 Field Emission Scanning Electron Microscope (FE-SEM) 37
3-3-2 Platinum Sputtering Machine 37
3-3-3 Mercury Porosimeter 106-109 38
3-3-4 Fiber Diameter and Pore Size Measurement 38
3-3-5 Water Contact Angle System 39
3-3-6 Thermogravimetric Analyzer (TGA) 39
3-3-7 Dynamic Light Scattering Analyzer (DLS) 39
3-3-8 PM2.5 Detector 40
Chapter4 Results and Discussion 41
4-1 Solvent Effect on Macropores Formation 41
4-1-1 Saturated Vapor Pressure of Solvents 41
4-1-2 Water-soluble good solvent with water-insoluble poor solvent 46
4-1-3 Water-soluble good solvent with water-soluble poor solvent 48
4-1-4 Water-insoluble good solvent with water-insoluble poor solvent 50
4-1-5 Water-insoluble good solvent with water-soluble poor solvent 56
4-2 Humidity Effect of Macropores Formation 64
4-2-1 Phase Diagram and Phase Separation Time 64
4-2-2 Electrospinning in Different Humidity 66
4-3 Salt Effect of Macropores Formation 67
4-4 Effect of Fiber Thickness and Voltage on Macropores Formation 69
4-5 Solvent Choice for Electrospinning Macroporous Fiber 70
4-6 Oil Adsorption Test 74
4-6-1 Morphologies of Macroporous Fibers 74
4-6-2 Contact Angle of Macroporous Fibers 77
4-6-3 Oil Adsorption Capacity 78
4-6-4 Oil Adsorption Rate 81
4-6-5 Practical Application of Oil Adsorption 82
4-7 Aerosol Particles Adsorption Test 83
4-7-1 Morphologies and Characteristic of Macroporous Fibers 83
4-7-2 Qualitative Analysis of Aerosol Particles Adsorption 85
4-7-3 Quantitative Analysis of Aerosol Particles Adsorption 87
Chapter5 Conclusion 93
Chapter 6 Future Study 94
Reference 95
1.Boys, C. V., On the Production, Properties, and some suggested Uses of the Finest Threads. Proceedings of the Physical Society of London 1887, 9 (1), 8-19.
2.Francis, C. J., Improved Methods of and Apparatus for Electrically Separating the Relatively Volatile Liquid Component from the Component of Relatively Fixed Substances of Composite Fluids. U.K. Patent 1900, ( 06385).
3.Francis, C. J., Apparatus for electrically dispersing fluids. U.S. Patent 1902, (692,631).
4.Formhals, A., Process and apparatus for preparing artificial threads. U.S. Patent 1934, (1,975,504).
5.Formhals, A., Method and apparatus for spinning. U.S. Patent 1939, (2,160,962).
6.Formhals, A., Artificial thread and method of producing same. U.S. Patent 1940, (2,187,306).
7.Formhals, A., Production of artificial fibers from fiber forming liquids. U.S. patent 1943, (2,323,025).
8.Formhals, A., Method and apparatus for spinning. U.S. Patent 1944, (2,349,950).
9.Filatov, Y. B., A. Kirichenko, V., Electrospinning of micro- and nanofibers: fundamentals and applications in separation and filtration processes. 2007.
10.Melcher, J. R.; Taylor, G. I., Electrohydrodynamics: A Review of the Role of Interfacial Shear Stresses. Annual Review of Fluid Mechanics 1969, 1 (1), 111-146.
11.Taylor Geoffrey, I., Disintegration of water drops in an electric field. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 1964, 280 (1382), 383-397.
12.Taylor Geoffrey, I.; Van Dyke, M. D., The force exerted by an electric field on a long cylindrical conductor. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 1966, 291 (1425), 145-158.
13.Taylor Geoffrey, I.; Van Dyke, M. D., Electrically driven jets. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 1969, 313 (1515), 453-475.
14.Hohman, M. M.; Shin, M.; Rutledge, G.; Brenner, M. P., Electrospinning and electrically forced jets. I. Stability theory. Physics of Fluids 2001, 13 (8), 2201-2220.
15.Agarwal, S.; Wendorff, J. H.; Greiner, A., Use of electrospinning technique for biomedical applications. Polymer 2008, 49 (26), 5603-5621.
16.Kim, G. H., Electrospun PCL nanofibers with anisotropic mechanical properties as a biomedical scaffold. Biomedical Materials 2008, 3 (2), 025010.
17.Liang, D.; Hsiao, B. S.; Chu, B., Functional electrospun nanofibrous scaffolds for biomedical applications. Advanced Drug Delivery Reviews 2007, 59 (14), 1392-1412.
18.Chew, S. Y.; Wen, J.; Yim, E. K. F.; Leong, K. W., Sustained Release of Proteins from Electrospun Biodegradable Fibers. Biomacromolecules 2005, 6 (4), 2017-2024.
19.Kim, K.; Luu, Y. K.; Chang, C.; Fang, D.; Hsiao, B. S.; Chu, B.; Hadjiargyrou, M., Incorporation and controlled release of a hydrophilic antibiotic using poly(lactide-co-glycolide)-based electrospun nanofibrous scaffolds. Journal of Controlled Release 2004, 98 (1), 47-56.
20.Luong-Van, E.; Grøndahl, L.; Chua, K. N.; Leong, K. W.; Nurcombe, V.; Cool, S. M., Controlled release of heparin from poly(ε-caprolactone) electrospun fibers. Biomaterials 2006, 27 (9), 2042-2050.
21.Bagbi, Y.; Pandey, A.; Solanki, P. R., Chapter 10 - Electrospun Nanofibrous Filtration Membranes for Heavy Metals and Dye Removal. In Nanoscale Materials in Water Purification, Thomas, S.; Pasquini, D.; Leu, S.-Y.; Gopakumar, D. A., Eds. Elsevier: 2019; pp 275-288.
22.Gibson, P.; Schreuder-Gibson, H.; Rivin, D., Transport properties of porous membranes based on electrospun nanofibers. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2001, 187-188, 469-481.
23.Makaremi, M.; De Silva, R. T.; Pasbakhsh, P., Electrospun Nanofibrous Membranes of Polyacrylonitrile/Halloysite with Superior Water Filtration Ability. The Journal of Physical Chemistry C 2015, 119 (14), 7949-7958.
24.Sundarrajan, S.; Tan, K. L.; Lim, S. H.; Ramakrishna, S., Electrospun Nanofibers for Air Filtration Applications. Procedia Engineering 2014, 75, 159-163.
25.Yoon, K.; Kim, K.; Wang, X.; Fang, D.; Hsiao, B. S.; Chu, B., High flux ultrafiltration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating. Polymer 2006, 47 (7), 2434-2441.
26.Kim, C.; Yang, K. S., Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospinning. Applied Physics Letters 2003, 83 (6), 1216-1218.
27.Liu, Y.; Teng, H.; Hou, H.; You, T., Nonenzymatic glucose sensor based on renewable electrospun Ni nanoparticle-loaded carbon nanofiber paste electrode. Biosensors and Bioelectronics 2009, 24 (11), 3329-3334.
28.Yeon Song, M.; Kyun Kim, D.; Jin Ihn, K.; Mu Jo, S.; Young Kim, D., Electrospun TiO2 Electrodes for Dye-Sensitized Solar Cells. 2004; Vol. 15, p 1861.
29.Matthews, J. A.; Wnek, G. E.; Simpson, D. G.; Bowlin, G. L., Electrospinning of Collagen Nanofibers. Biomacromolecules 2002, 3 (2), 232-238.
30.Mo, X. M.; Xu, C. Y.; Kotaki, M.; Ramakrishna, S., Electrospun P(LLA-CL) nanofiber: a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials 2004, 25 (10), 1883-1890.
31.Yoshimoto, H.; Shin, Y. M.; Terai, H.; Vacanti, J. P., A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 2003, 24 (12), 2077-2082.
32.Ma, M.; Hill, R. M.; Lowery, J. L.; Fridrikh, S. V.; Rutledge, G. C., Electrospun Poly(Styrene-block-dimethylsiloxane) Block Copolymer Fibers Exhibiting Superhydrophobicity. Langmuir 2005, 21 (12), 5549-5554.
33.Ma, M.; Gupta, M.; Li, Z.; Zhai, L.; Gleason, K. K.; Cohen, R. E.; Rubner, M. F.; Rutledge, G. C., Decorated Electrospun Fibers Exhibiting Superhydrophobicity. Advanced Materials 2007, 19 (2), 255-259.
34.Feng, L.; Li, S.; Li, H.; Zhai, J.; Song, Y.; Jiang, L.; Zhu, D., Super-Hydrophobic Surface of Aligned Polyacrylonitrile Nanofibers. Angewandte Chemie International Edition 2002, 41 (7), 1221-1223.
35.Casper, C. L.; Stephens, J. S.; Tassi, N. G.; Chase, D. B.; Rabolt, J. F., Controlling Surface Morphology of Electrospun Polystyrene Fibers:  Effect of Humidity and Molecular Weight in the Electrospinning Process. Macromolecules 2004, 37 (2), 573-578.
36.Fashandi, H.; Karimi, M., Pore formation in polystyrene fiber by superimposing temperature and relative humidity of electrospinning atmosphere. Polymer 2012, 53 (25), 5832-5849.
37.Medeiros, E. S.; Mattoso, L. H. C.; Offeman, R. D.; Wood, D. F.; Orts, W. J., Effect of relative humidity on the morphology of electrospun polymer fibers. Canadian Journal of Chemistry 2008, 86 (6), 590-599.
38.Qi, Z.; Yu, H.; Chen, Y.; Zhu, M., Highly porous fibers prepared by electrospinning a ternary system of nonsolvent/solvent/poly(l-lactic acid). Materials Letters 2009, 63 (3), 415-418.
39.Rezabeigi, E.; Sta, M.; Swain, M.; McDonald, J.; Demarquette, N. R.; Drew, R. A. L.; Wood-Adams, P. M., Electrospinning of porous polylactic acid fibers during nonsolvent induced phase separation. Journal of Applied Polymer Science 2017, 134 (20).
40.Nayani, K.; Katepalli, H.; Sharma, C. S.; Sharma, A.; Patil, S.; Venkataraghavan, R., Electrospinning Combined with Nonsolvent-Induced Phase Separation To Fabricate Highly Porous and Hollow Submicrometer Polymer Fibers. Industrial & Engineering Chemistry Research 2012, 51 (4), 1761-1766.
41.Pant, H. R.; Neupane, M. P.; Pant, B.; Panthi, G.; Oh, H.-J.; Lee, M. H.; Kim, H. Y., Fabrication of highly porous poly (ɛ-caprolactone) fibers for novel tissue scaffold via water-bath electrospinning. Colloids and Surfaces B: Biointerfaces 2011, 88 (2), 587-592.
42.Zhang, Y.; Li, J.; An, G.; He, X., Highly porous SnO2 fibers by electrospinning and oxygen plasma etching and its ethanol-sensing properties. Sensors and Actuators B: Chemical 2010, 144 (1), 43-48.
43.Gupta, A.; Saquing, C. D.; Afshari, M.; Tonelli, A. E.; Khan, S. A.; Kotek, R., Porous Nylon-6 Fibers via a Novel Salt-Induced Electrospinning Method. Macromolecules 2009, 42 (3), 709-715.
44.Chen, P.-Y.; Tung, S.-H., One-Step Electrospinning To Produce Nonsolvent-Induced Macroporous Fibers with Ultrahigh Oil Adsorption Capability. Macromolecules 2017, 50 (6), 2528-2534.
45.Li, D.; Xia, Y., Direct Fabrication of Composite and Ceramic Hollow Nanofibers by Electrospinning. Nano Letters 2004, 4 (5), 933-938.
46.Zhang, Y.; Ouyang, H.; Lim, C. T.; Ramakrishna, S.; Huang, Z.-M., Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2005, 72B (1), 156-165.
47.Lu, X.; Wang, C.; Wei, Y., One-Dimensional Composite Nanomaterials: Synthesis by Electrospinning and Their Applications. Small 2009, 5 (21), 2349-2370.
48.Khil, M.-S.; Cha, D.-I.; Kim, H.-Y.; Kim, I.-S.; Bhattarai, N., Electrospun nanofibrous polyurethane membrane as wound dressing. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2003, 67B (2), 675-679.
49.Chen, J.-P.; Chang, G.-Y.; Chen, J.-K., Electrospun collagen/chitosan nanofibrous membrane as wound dressing. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2008, 313-314, 183-188.
50.Doshi, J.; Reneker, D. H., Electrospinning process and applications of electrospun fibers. Journal of Electrostatics 1995, 35 (2), 151-160.
51.Shin, Y. M.; Hohman, M. M.; Brenner, M. P.; Rutledge, G. C., Experimental characterization of electrospinning: the electrically forced jet and instabilities. Polymer 2001, 42 (25), 09955-09967.
52.Reneker, D. H.; Yarin, A. L.; Fong, H.; Koombhongse, S., Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. Journal of Applied Physics 2000, 87 (9), 4531-4547.
53.Chiu, Y.-J.; Tseng, H.-F.; Lo, Y.-C.; Wu, B.-H.; Chen, J.-T., Plateau–Rayleigh Instability Morphology Evolution (PRIME): From Electrospun Core–Shell Polymer Fibers to Polymer Microbowls. Macromolecular Rapid Communications 2017, 38 (5), 1600689.
54.Zuo, W.; Zhu, M.; Yang, W.; Yu, H.; Chen, Y.; Zhang, Y., Experimental study on relationship between jet instability and formation of beaded fibers during electrospinning. Polymer Engineering & Science 2005, 45 (5), 704-709.
55.Haefner, S.; Benzaquen, M.; Bäumchen, O.; Salez, T.; Peters, R.; McGraw, J. D.; Jacobs, K.; Raphaël, E.; Dalnoki-Veress, K., Influence of slip on the Plateau–Rayleigh instability on a fibre. Nature Communications 2015, 6, 7409.
56.Theron, S. A.; Yarin, A. L.; Zussman, E.; Kroll, E., Multiple jets in electrospinning: experiment and modeling. Polymer 2005, 46 (9), 2889-2899.
57.Yarin, A. L.; Koombhongse, S.; Reneker, D. H., Bending instability in electrospinning of nanofibers. Journal of Applied Physics 2001, 89 (5), 3018-3026.
58.Buchko, C. J.; Chen, L. C.; Shen, Y.; Martin, D. C., Processing and microstructural characterization of porous biocompatible protein polymer thin films. Polymer 1999, 40 (26), 7397-7407.
59.Fong, H.; Chun, I.; Reneker, D. H., Beaded nanofibers formed during electrospinning. Polymer 1999, 40 (16), 4585-4592.
60.Hajra, M. G.; Mehta, K.; Chase, G. G., Effects of humidity, temperature, and nanofibers on drop coalescence in glass fiber media. Separation and Purification Technology 2003, 30 (1), 79-88.
61.Norris, I. D.; Shaker, M. M.; Ko, F. K.; MacDiarmid, A. G., Electrostatic fabrication of ultrafine conducting fibers: polyaniline/polyethylene oxide blends. Synthetic Metals 2000, 114 (2), 109-114.
62.Deitzel, J. M.; Kleinmeyer, J.; Harris, D.; Beck Tan, N. C., The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 2001, 42 (1), 261-272.
63.Gupta, P.; Elkins, C.; Long, T. E.; Wilkes, G. L., Electrospinning of linear homopolymers of poly(methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent. Polymer 2005, 46 (13), 4799-4810.
64.Schaub, N. J.; Britton, T.; Rajachar, R.; Gilbert, R. J., Engineered Nanotopography on Electrospun PLLA Microfibers Modifies RAW 264.7 Cell Response. ACS Applied Materials & Interfaces 2013, 5 (20), 10173-10184.
65.Natarajan, L.; New, J.; Dasari, A.; Yu, S.; Manan, M. A., Surface morphology of electrospun PLA fibers: mechanisms of pore formation. RSC Advances 2014, 4 (83), 44082-44088.
66.Lu, P.; Xia, Y., Maneuvering the Internal Porosity and Surface Morphology of Electrospun Polystyrene Yarns by Controlling the Solvent and Relative Humidity. Langmuir 2013, 29 (23), 7070-7078.
67.Megelski, S.; Stephens, J. S.; Chase, D. B.; Rabolt, J. F., Micro- and Nanostructured Surface Morphology on Electrospun Polymer Fibers. Macromolecules 2002, 35 (22), 8456-8466.
68.Kim, C. H.; Jung, Y. H.; Kim, H. Y.; Lee, D. R.; Dharmaraj, N.; Choi, K. E., Effect of collector temperature on the porous structure of electrospun fibers. Macromolecular Research 2006, 14 (1), 59-65.
69.McCann, J. T.; Marquez, M.; Xia, Y., Highly Porous Fibers by Electrospinning into a Cryogenic Liquid. Journal of the American Chemical Society 2006, 128 (5), 1436-1437.
70.Sanjay K Sharma, A. M., A Handbook of Applied Biopolymer Technology: Synthesis, Degradation and Applications. Royal Society of Chemistry: 2011.
71.Fiore, G. L.; Jing, F.; Young, J. V. G.; Cramer, C. J.; Hillmyer, M. A., High Tg aliphatic polyesters by the polymerization of spirolactide derivatives. Polymer Chemistry 2010, 1 (6), 870-877.
72.Rafael A. Auras, L.-T. L., Susan E. M. Selke, Hideto Tsuji, Poly(lactic acid): Synthesis, Structures, Properties, Processing, and Applications. Wiley: 2010.
73.Alarifi, I. M.; Khan, W. S.; Asmatulu, R., Synthesis of electrospun polyacrylonitrile- derived carbon fibers and comparison of properties with bulk form. PLOS ONE 2018, 13 (8), e0201345.
74.Liu, D.; Chen, H.; Yin, P.; Ji, N.; Zong, G.; Qu, R., Synthesis of polyacrylonitrile by single-electron transfer-living radical polymerization using Fe(0) as catalyst and its adsorption properties after modification. Journal of Polymer Science Part A: Polymer Chemistry 2011, 49 (13), 2916-2923.
75.Shen, W.; Zhang, S.; He, Y.; Li, J.; Fan, W., Hierarchical porous polyacrylonitrile-based activated carbon fibers for CO2 capture. Journal of Materials Chemistry 2011, 21 (36), 14036-14040.
76.Liu, C.; Hsu, P.-C.; Lee, H.-W.; Ye, M.; Zheng, G.; Liu, N.; Li, W.; Cui, Y., Transparent air filter for high-efficiency PM2.5 capture. Nature Communications 2015, 6, 6205.
77.Shobhana, E., X-Ray Diffraction and UV-Visible Studies of PMMA Thin Films. International Journal of Modern Engineering Research 2012, 2 (3), 1092-1095.
78.Yang, R.; Xu, H.; Zhang, Y., Preparation, physical property and thermal physical property of phase change microcapsule slurry and phase change emulsion. Solar Energy Materials and Solar Cells 2003, 80 (4), 405-416.
79.Suppes, G. J.; Dasari, M. A.; Doskocil, E. J.; Mankidy, P. J.; Goff, M. J., Transesterification of soybean oil with zeolite and metal catalysts. Applied Catalysis A: General 2004, 257 (2), 213-223.
80.Chen, N. Y.; Kaeding, W. W.; Dwyer, F. G., Para-directed aromatic reactions over shape-selective molecular sieve zeolite catalysts. Journal of the American Chemical Society 1979, 101 (22), 6783-6784.
81.Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359 (6397), 710-712.
82.Tang, Q.; Xu, H.; Zheng, Y.; Wang, J.; Li, H.; Zhang, J., Catalytic dehydration of methanol to dimethyl ether over micro–mesoporous ZSM-5/MCM-41 composite molecular sieves. Applied Catalysis A: General 2012, 413-414, 36-42.
83.Nanotechnology for membranes, filters and sieves A series of mini-reviews covering new trends in fundamental and applied research, and potential applications of miniaturised technologies. Lab on a Chip 2006, 6 (1), 19-23.
84.Khouw, C. B.; Davis, M. E., Shape-Selective Catalysis with Zeolites and Molecular Sieves. In Selectivity in Catalysis, American Chemical Society: 1993; Vol. 517, pp 206-221.
85.van Donk, S.; Janssen, A. H.; Bitter, J. H.; de Jong, K. P., Generation, Characterization, and Impact of Mesopores in Zeolite Catalysts. Catalysis Reviews 2003, 45 (2), 297-319.
86.Chang, C. D.; Silvestri, A. J., The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts. Journal of Catalysis 1977, 47 (2), 249-259.
87.Xu, C.; Lin, Y.; Wang, J.; Wu, L.; Wei, W.; Ren, J.; Qu, X., Nanoceria-Triggered Synergetic Drug Release Based on CeO2-Capped Mesoporous Silica Host–Guest Interactions and Switchable Enzymatic Activity and Cellular Effects of CeO2. Advanced Healthcare Materials 2013, 2 (12), 1591-1599.
88.Li, M.; Shi, P.; Xu, C.; Ren, J.; Qu, X., Cerium oxide caged metal chelator: anti-aggregation and anti-oxidation integrated H2O2-responsive controlled drug release for potential Alzheimer''s disease treatment. Chemical Science 2013, 4 (6), 2536-2542.
89.Lee, K. X.; Valla, J. A., Investigation of metal-exchanged mesoporous Y zeolites for the adsorptive desulfurization of liquid fuels. Applied Catalysis B: Environmental 2017, 201, 359-369.
90.Chaitanya Kumar Narula, S. R. N.-P., Mesoporous oxide molecular sieves for absorbing nitrogen oxides in oxidizing engine exhaust gas. U.S. Patent 2000, (6146602).
91.Archer, M.; Christophersen, M.; Fauchet, P. M., Macroporous Silicon Electrical Sensor for DNA Hybridization Detection. Biomedical Microdevices 2004, 6 (3), 203-211.
92.Gu, Z.-Z.; Horie, R.; Kubo, S.; Yamada, Y.; Fujishima, A.; Sato, O., Fabrication of a Metal-Coated Three-Dimensionally Ordered Macroporous Film and its Application as a Refractive Index Sensor. Angewandte Chemie International Edition 2002, 41 (7), 1153-1156.
93.Wang, Y.; Park, S.; Yeow, J. T. W.; Langner, A.; Müller, F., A capacitive humidity sensor based on ordered macroporous silicon with thin film surface coating. Sensors and Actuators B: Chemical 2010, 149 (1), 136-142.
94.Montoya, P.; Mejía, S.; Gonçales, V. R.; Torresi, S. I. C. d.; Calderón, J. A., Performance improvement of macroporous polypyrrole sensor for detection of ammonia by incorporation of magnetite nanoparticles. Sensors and Actuators B: Chemical 2015, 213, 444-451.
95.Rothschild, A.; Tuller, H. L., Gas sensors: New materials and processing approaches. Journal of Electroceramics 2006, 17 (2), 1005-1012.
96.Marcacci, M.; Kon, E.; Moukhachev, V.; Lavroukov, A.; Kutepov, S.; Quarto, R.; Mastrogiacomo, M.; Cancedda, R., Stem Cells Associated with Macroporous Bioceramics for Long Bone Repair: 6- to 7-Year Outcome of a Pilot Clinical Study. Tissue Engineering 2007, 13 (5), 947-955.
97.Kim, H. J.; Kim, U.-J.; Vunjak-Novakovic, G.; Min, B.-H.; Kaplan, D. L., Influence of macroporous protein scaffolds on bone tissue engineering from bone marrow stem cells. Biomaterials 2005, 26 (21), 4442-4452.
98.Xiao, Q.; Wang, X.; Li, W.; Li, Z.; Zhang, T.; Zhang, H., Macroporous polymer electrolytes based on PVDF/PEO-b-PMMA block copolymer blends for rechargeable lithium ion battery. Journal of Membrane Science 2009, 334 (1), 117-122.
99.Lin, J.; Shang, Y.; Ding, B.; Yang, J.; Yu, J.; Al-Deyab, S. S., Nanoporous polystyrene fibers for oil spill cleanup. Marine Pollution Bulletin 2012, 64 (2), 347-352.
100.Jing, P.; Fang, X.; Yan, J.; Guo, J.; Fang, Y., Ultra-low density porous polystyrene monolith: facile preparation and superior application. Journal of Materials Chemistry A 2013, 1 (35), 10135-10141.
101.Li, P.; Qiao, Y.; Zhao, L.; Yao, D.; Sun, H.; Hou, Y.; Li, S.; Li, Q., Electrospun PS/PAN fibers with improved mechanical property for removal of oil from water. Marine Pollution Bulletin 2015, 93 (1), 75-80.
102.Kaur, S.; Sundarrajan, S.; Rana, D.; Matsuura, T.; Ramakrishna, S., Influence of electrospun fiber size on the separation efficiency of thin film nanofiltration composite membrane. Journal of Membrane Science 2012, 392-393, 101-111.
103.Desai, K.; Kit, K.; Li, J.; Michael Davidson, P.; Zivanovic, S.; Meyer, H., Nanofibrous chitosan non-wovens for filtration applications. Polymer 2009, 50 (15), 3661-3669.
104.Davies, C. N., Filtration of aerosols. Journal of Aerosol Science 1983, 14 (2), 147-161.
105.Yang, Z. Z.; Lin, J. H.; Tsai, I. S.; Kuo, T. Y., Particle Filtration with an Electret of Nonwoven Polypropylene Fabric. Textile Research Journal 2002, 72 (12), 1099-1104.
106.Washburn, E. W., Note on a Method of Determining the Distribution of Pore Sizes in a Porous Material. Proceedings of the National Academy of Sciences of the United States of America 1921, 7 (4), 115-116.
107.Drake, L. C.; Ritter, H. L., Macropore-Size Distributions in Some Typical Porous Substances. Industrial & Engineering Chemistry Analytical Edition 1945, 17 (12), 787-791.
108.Ritter, H. L.; Drake, L. C., Pressure Porosimeter and Determination of Complete Macropore-Size Distributions. Pressure Porosimeter and Determination of Complete Macropore-Size Distributions. Industrial & Engineering Chemistry Analytical Edition 1945, 17 (12), 782-786.
109.Ritter, H. L.; Erich, L. C., Pore Size Distribution in Porous Materials. Analytical Chemistry 1948, 20 (7), 665-670.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top