|
[1] Günes, S.; Neugebauer, H.; Sariciftci, N. S. Chemical Reviews. 2007, 107 (4), 1324-1338. [2] Brabec, C. J.; Gowrisanker, S.; Halls, J. J. M.; Laird, D.; Jia, S.; Williams, S. P. Advanced Materials. 2010, 22 (34), 3839-3856. [3] He, Z.; Zhong, C.; Su, S.; Xu, M.; Wu, H.; Cao, Y. Nature Photonics. 2012, 6, 591. [4] Chen, H.-C.; Wu, I. C.; Hung, J.-H.; Chen, F.-J.; Chen, I. W. P.; Peng, Y.-K.; Lin, C.-S.; Chen, C.-H.; Sheng, Y.-J.; Tsao, H.-K.; Chou, P.-T. Small. 2011, 7 (8), 1098-1107. [5] Chang, Y.-Y. Relationship between Phase-Seperated Structures and the Efficiency and Stability of Polymer Solar Cells. Master NTU, College of Engineering, 2016. [6] Kallmann, H.; Pope, M. The Journal of Chemical Physics. 1959, 30 (2), 585-586. [7] Chapin, D. M.; Fuller, C. S.; Pearson, G. L. Journal of Applied Physics. 1954, 25 (5), 676-677. [8] Tang, C. W. Applied Physics Letters. 1986, 48 (2), 183-185. [9] Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. J. S. 1995, 270 (5243), 1789-1791. [10] Chochos, C. L.; Choulis, S. A. Progress in Polymer Science. 2011, 36 (10), 1326-1414. [11] Zhang, F.; Wu, D.; Xu, Y.; Feng, X. Journal of Materials Chemistry. 2011, 21 (44), 17590-17600. [12] Zhou, H.; Yang, L.; You, W. Macromolecules. 2012, 45 (2), 607-632. [13] Yang, X.; Uddin, A. Renewable and Sustainable Energy Reviews. 2014, 30, 324-336. [14] Facchetti, A. Materials Today. 2013, 16 (4), 123-132. [15] Meng, L.; Zhang, Y.; Wan, X.; Li, C.; Zhang, X.; Wang, Y.; Ke, X.; Xiao, Z.; Ding, L.; Xia, R.; Yip, H.-L.; Cao, Y.; Chen, Y. Science. 2018, 361 (6407), 1094. [16] Wong, K. W.; Yip, H. L.; Luo, Y.; Wong, K. Y.; Lau, W. M.; Low, K. H.; Chow, H. F.; Gao, Z. Q.; Yeung, W. L.; Chang, C. C. Applied Physics Letters. 2002, 80 (15), 2788-2790. [17] Yip, H.-L.; Hau, S. K.; Baek, N. S.; Ma, H.; Jen, A. K. Y. Advanced Materials. 2008, 20 (12), 2376-2382. [18] Reese, M. O.; Gevorgyan, S. A.; Jørgensen, M.; Bundgaard, E.; Kurtz, S. R.; Ginley, D. S.; Olson, D. C.; Lloyd, M. T.; Morvillo, P.; Katz, E. A.; Elschner, A.; Haillant, O.; Currier, T. R.; Shrotriya, V.; Hermenau, M.; Riede, M.; R. Kirov, K.; Trimmel, G.; Rath, T.; Inganäs, O.; Zhang, F.; Andersson, M.; Tvingstedt, K.; Lira-Cantu, M.; Laird, D.; McGuiness, C.; Gowrisanker, S.; Pannone, M.; Xiao, M.; Hauch, J.; Steim, R.; DeLongchamp, D. M.; Rösch, R.; Hoppe, H.; Espinosa, N.; Urbina, A.; Yaman-Uzunoglu, G.; Bonekamp, J.-B.; van Breemen, A. J. J. M.; Girotto, C.; Voroshazi, E.; Krebs, F. C. Solar Energy Materials and Solar Cells. 2011, 95 (5), 1253-1267. [19] Hummelen, J. C.; Knight, B. W.; LePeq, F.; Wudl, F.; Yao, J.; Wilkins, C. L. The Journal of Organic Chemistry. 1995, 60 (3), 532-538. [20] Wöbkenberg, P. H.; Bradley, D. D. C.; Kronholm, D.; Hummelen, J. C.; de Leeuw, D. M.; Cölle, M.; Anthopoulos, T. D. Synthetic Metals. 2008, 158 (11), 468-472. [21] Kot, M. In-operando hard X-ray photoelectron spectroscopy study on the resistive switching physics of HfO2-based RRAM. 2014. [22] Kiel, J. W.; Eberle, A. P. R.; Mackay, M. E. Physical Review Letters. 2010, 105 (16), 168701. [23] Liao, H.-C.; Tsao, C.-S.; Lin, T.-H.; Chuang, C.-M.; Chen, C.-Y.; Jeng, U. S.; Su, C.-H.; Chen, Y.-F.; Su, W.-F. Journal of the American Chemical Society. 2011, 133 (33), 13064-13073. [24] Liu, C.-H.; Tseng, W.-H.; Cheng, C.-Y.; Wu, C.-I.; Chou, P.-T.; Tung, S.-H. Journal of Polymer Science Part B: Polymer Physics. 2016, 54 (10), 975-985. [25] Debye, P.; Anderson, H. R.; Brumberger, H. Journal of Applied Physics. 1957, 28 (6), 679-683. [26] Vandewal, K.; Gadisa, A.; Oosterbaan, W. D.; Bertho, S.; Banishoeib, F.; Van Severen, I.; Lutsen, L.; Cleij, T. J.; Vanderzande, D.; Manca, J. V. Advanced Functional Materials. 2008, 18 (14), 2064-2070. [27] Yu, G.; Zhang, C.; Heeger, A. J. Applied Physics Letters. 1994, 64 (12), 1540-1542. [28] Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F. Science. 1992, 258 (5087), 1474-1476. [29] Schilinsky, P.; Waldauf, C.; Brabec, C. J. Applied Physics Letters. 2002, 81 (20), 3885-3887. [30] Yang, X.; Loos, J.; Veenstra, S. C.; Verhees, W. J. H.; Wienk, M. M.; Kroon, J. M.; Michels, M. A. J.; Janssen, R. A. J. Nano Letters. 2005, 5 (4), 579-583. [31] Dang, M. T.; Hirsch, L.; Wantz, G. Advanced Materials. 2011, 23 (31), 3597-3602. [32] Park, Y. D.; Kim, D. H.; Jang, Y.; Cho, J. H.; Hwang, M.; Lee, H. S.; Lim, J. A.; Cho, K. Organic Electronics. 2006, 7 (6), 514-520. [33] Samitsu, S.; Shimomura, T.; Heike, S.; Hashizume, T.; Ito, K. Macromolecules. 2008, 41 (21), 8000-8010. [34] Sun, Y.; Cui, C.; Wang, H.; Li, Y. Advanced Energy Materials. 2012, 2 (8), 966-969. [35] Woo, C. H.; Thompson, B. C.; Kim, B. J.; Toney, M. F.; Fréchet, J. M. J. Journal of the American Chemical Society. 2008, 130 (48), 16324-16329. [36] Ding, Z.; Kettle, J.; Horie, M.; Chang, S. W.; Smith, G. C.; Shames, A. I.; Katz, E. A. Journal of Materials Chemistry A. 2016, 4 (19), 7274-7280. [37] Westacott, P.; Tumbleston, J. R.; Shoaee, S.; Fearn, S.; Bannock, J. H.; Gilchrist, J. B.; Heutz, S.; deMello, J.; Heeney, M.; Ade, H.; Durrant, J.; McPhail, D. S.; Stingelin, N. Energy & Environmental Science. 2013, 6 (9), 2756-2764. [38] Zhao, J.; Swinnen, A.; Van Assche, G.; Manca, J.; Vanderzande, D.; Mele, B. V. The Journal of Physical Chemistry B. 2009, 113 (6), 1587-1591. [39] Cui, C.; Sun, Y.; Zhang, Z.-G.; Zhang, M.; Zhang, J.; Li, Y. Macromolecular Chemistry and Physics. 2012, 213 (21), 2267-2274. [40] Chen, W.-c.; Xiao, M.-j.; Yang, C.-p.; Duan, L.-r.; Yang, R.-q. Chinese Journal of Polymer Science. 2017, 35 (2), 302-308. [41] Li, Y.; Cao, Y.; Gao, J.; Wang, D.; Yu, G.; Heeger, A. J. Synthetic Metals. 1999, 99 (3), 243-248. [42] Chen, C.-M.; Jen, T.-H.; Chen, S.-A. ACS Applied Materials & Interfaces. 2015, 7 (37), 20548-20555. [43] Leman, D.; Kelly, M. A.; Ness, S.; Engmann, S.; Herzing, A.; Snyder, C.; Ro, H. W.; Kline, R. J.; DeLongchamp, D. M.; Richter, L. J. Macromolecules. 2015, 48 (2), 383-392. [44] Wu, W.-R.; Jeng, U. S.; Su, C.-J.; Wei, K.-H.; Su, M.-S.; Chiu, M.-Y.; Chen, C.-Y.; Su, W.-B.; Su, C.-H.; Su, A.-C. ACS Nano. 2011, 5 (8), 6233-6243.
|