(3.239.192.241) 您好!臺灣時間:2021/03/02 13:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:朱佳儀
研究生(外文):Jia-Yi Chu
論文名稱:分枝側鏈對聚噻酚物性與太陽能電池效能之影響
論文名稱(外文):Effects of Branched Side Chain on the Physical Properties and Solar Cell Performance of Polythiophene
指導教授:童世煌
口試委員:詹益慈劉振良趙基揚
口試日期:2019-07-17
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:高分子科學與工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:92
中文關鍵詞:聚3-己基噻吩聚(3-2-甲基戊基)噻吩太陽能電池塊材異質介面長效穩定性小角X光散射廣角X光散射
DOI:10.6342/NTU201903343
相關次數:
  • 被引用被引用:0
  • 點閱點閱:32
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
以共軛高分子作為電子予體並以富勒烯衍生物作電子受體的異質接面太陽能電池近年來被廣泛研究;除了發展新材料或添加添加劑來提高效率,其穩定性提升也是另一個很重要的議題。
在本研究中,我們合成了聚(3-2-甲基戊基噻吩)(P3MPT),一種具有分枝(branch)側鏈的聚噻吩,並研究了P3MPT的形態,熱性能和光伏性能以及搭配不同電子受體(PC61BM、PC71BM、IC60BA)製作反式太陽能電池,觀察到P3MPT/PC61BM系統擁有最高的效率,可能原因為此系統兩相的混合程度較其他兩者來得佳,且較不容易產生相分離。將P3MPT物性結果與具線性(linear)側鏈的常用聚(3-己基噻吩)(P3HT)進行比較,研究側鏈構型的影響。我們發現P3MPT / PC61BM太陽能電池不僅有較高的效率,而且可以比P3HT / PC61BM系統的太陽能電池維持更長時間的高效率。除此之外,通過小角X光散射(SAXS)得知P3MPT / PC61BM系統具備更穩定的結構。由循環伏安法,得知P3MPT的HOMO較P3HT的高,此為P3MPT/PC61BM系統之Voc較高的原因。
另外,我們認為具分枝側鏈比線性側鏈更有立體障礙,這更剛性的側鍊可以減緩P3MPT和PC61BM之間的相分離速率。通過差示掃描量熱法(DSC)了解到P3MPT的玻璃轉移溫度(Tg)高於P3HT,且P3MPT/PC61BM系統的高分子與PC61BM相容度較好,較不易產生大量的PC61BM聚集。此外,DSC和廣角X射線散射表明,由於較大的側鏈,P3MPT的結晶能力低於P3HT的結晶能力。P3MPT較高的玻璃轉移溫度和較低的結晶能力有助於P3MPT / PC61BM系統在效率方面具有優異的長期穩定性。
Over the past decade, the polymer/fullerene-based organic solar cell has rapidly developed. In addition to the increase of power conversion efficiency (PCE) by adding additives or synthesizing new structure, the improvement of stability has also been a key issue for the organic solar cell.
In this study, we synthesized poly(3-2-methylpentylthiophene) (P3MPT), a polythiophene with branched side chain and studied the morphology, thermal properties, and photovoltaic performance of P3MPT blended with different fullerene derivatives. The results are compared to those of the commonly used poly(3-hexylthiopene) (P3HT) with linear side chains to investigate the effects of side chain configuration. We found that P3MPT/PC61BM solar cells not only show a higher efficiency but can maintain the high efficiency much longer than the P3HT/PC61BM solar cells. Compared to P3HT/PC61BM systems, the size of domains extracted by the small-angle X-ray scattering (SAXS) profiles implies a more stable phase separated structure in P3MPT/PC61BM blends. We suggest that the branched side chains are bulkier than the linear side chains and thus can provide a higher steric hindrance, which causes more rigid side chains and backbones to slow down the phase separation rate between P3MPT and PC61BM. The higher glass transition temperature of P3MPT than that of P3HT was confirmed by differential scanning calorimetry (DSC). In addition, DSC and Wide-angle X-ray scattering show that the crystallization ability of P3MPT is lower than that of P3HT also due to the bulkier side chains. The higher glass transition temperature and the lower crystallization ability of P3MPT contribute to the superior long-term stability of P3MPT/PC61BM system.
口試委員會審定書 i
致謝 i
摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 xi
第一章 簡介 1
第二章 緒論 2
2.1 前言 2
2.2 太陽能光譜介紹 2
2.3 太陽能電池介紹 4
2.3.1 有機太陽能電池 5
2.3.2 有機太陽能電池運作機制 6
2.3.3 本研究中所使用之材料 8
2.4 X-ray 繞射 9
2.4.1 x-ray 繞射之簡介 9
2.4.2 X光散射於塊材異質接面太陽能電池之應用 12
2.5 太陽能電池效率與穩定度 17
2.5.1 太陽能電池表現參數 17
2.5.2 量測有機太陽能電池穩定度之 ISOS 標準程序 19
2.6 研究動機 20
第三章 實驗方法與儀器 28
3.1 實驗儀器 28
3.2 藥品 31
3.2.1 提供電子材料 31
3.2.2 接受電子材料 32
3.2.3 實驗合成藥品 33
3.3 實驗步驟 34
3.3.1 合成高分子之熱穩定性 43
3.4 太陽能電池元件製程及量測 44
第四章 結果與討論 46
4.1 結構與性質 46
4.1.1 化學結構 46
4.1.2 紫外可見光吸收光譜(UV/Vis Spectroscope) 46
4.1.3 示差掃描量熱儀(DSC) 55
4.1.4 掠角廣角X光散射(Grazing incidence wide angle X-ray scattering, GIWAXS) 62
4.1.5 循環伏安法(Cyclic voltammetry, CV) 64
4.2 元件效率 67
4.2.1 P3HT或P3MPT搭配PC61BM之效率 67
4.2.2 添加劑DIO對元件效率之影響 70
4.3 元件之長效穩定性 75
4.4 放置時間對型態的影響 80
4.4.1 掠角廣角X光散射(Grazing incidence wide angle X-ray scattering, GIWAXS) 80
4.4.2 掠角小角X光散射(Grazing incidence small angle X-ray scattering, GISAXS) 84
第五章 結論 87
第六章 參考文獻 88
[1] Günes, S.; Neugebauer, H.; Sariciftci, N. S. Chemical Reviews. 2007, 107 (4), 1324-1338.
[2] Brabec, C. J.; Gowrisanker, S.; Halls, J. J. M.; Laird, D.; Jia, S.; Williams, S. P. Advanced Materials. 2010, 22 (34), 3839-3856.
[3] He, Z.; Zhong, C.; Su, S.; Xu, M.; Wu, H.; Cao, Y. Nature Photonics. 2012, 6, 591.
[4] Chen, H.-C.; Wu, I. C.; Hung, J.-H.; Chen, F.-J.; Chen, I. W. P.; Peng, Y.-K.; Lin, C.-S.; Chen, C.-H.; Sheng, Y.-J.; Tsao, H.-K.; Chou, P.-T. Small. 2011, 7 (8), 1098-1107.
[5] Chang, Y.-Y. Relationship between Phase-Seperated Structures and the Efficiency and Stability of Polymer Solar Cells. Master NTU, College of Engineering, 2016.
[6] Kallmann, H.; Pope, M. The Journal of Chemical Physics. 1959, 30 (2), 585-586.
[7] Chapin, D. M.; Fuller, C. S.; Pearson, G. L. Journal of Applied Physics. 1954, 25 (5), 676-677.
[8] Tang, C. W. Applied Physics Letters. 1986, 48 (2), 183-185.
[9] Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. J. S. 1995, 270 (5243), 1789-1791.
[10] Chochos, C. L.; Choulis, S. A. Progress in Polymer Science. 2011, 36 (10), 1326-1414.
[11] Zhang, F.; Wu, D.; Xu, Y.; Feng, X. Journal of Materials Chemistry. 2011, 21 (44), 17590-17600.
[12] Zhou, H.; Yang, L.; You, W. Macromolecules. 2012, 45 (2), 607-632.
[13] Yang, X.; Uddin, A. Renewable and Sustainable Energy Reviews. 2014, 30, 324-336.
[14] Facchetti, A. Materials Today. 2013, 16 (4), 123-132.
[15] Meng, L.; Zhang, Y.; Wan, X.; Li, C.; Zhang, X.; Wang, Y.; Ke, X.; Xiao, Z.; Ding, L.; Xia, R.; Yip, H.-L.; Cao, Y.; Chen, Y. Science. 2018, 361 (6407), 1094.
[16] Wong, K. W.; Yip, H. L.; Luo, Y.; Wong, K. Y.; Lau, W. M.; Low, K. H.; Chow, H. F.; Gao, Z. Q.; Yeung, W. L.; Chang, C. C. Applied Physics Letters. 2002, 80 (15), 2788-2790.
[17] Yip, H.-L.; Hau, S. K.; Baek, N. S.; Ma, H.; Jen, A. K. Y. Advanced Materials. 2008, 20 (12), 2376-2382.
[18] Reese, M. O.; Gevorgyan, S. A.; Jørgensen, M.; Bundgaard, E.; Kurtz, S. R.; Ginley, D. S.; Olson, D. C.; Lloyd, M. T.; Morvillo, P.; Katz, E. A.; Elschner, A.; Haillant, O.; Currier, T. R.; Shrotriya, V.; Hermenau, M.; Riede, M.; R. Kirov, K.; Trimmel, G.; Rath, T.; Inganäs, O.; Zhang, F.; Andersson, M.; Tvingstedt, K.; Lira-Cantu, M.; Laird, D.; McGuiness, C.; Gowrisanker, S.; Pannone, M.; Xiao, M.; Hauch, J.; Steim, R.; DeLongchamp, D. M.; Rösch, R.; Hoppe, H.; Espinosa, N.; Urbina, A.; Yaman-Uzunoglu, G.; Bonekamp, J.-B.; van Breemen, A. J. J. M.; Girotto, C.; Voroshazi, E.; Krebs, F. C. Solar Energy Materials and Solar Cells. 2011, 95 (5), 1253-1267.
[19] Hummelen, J. C.; Knight, B. W.; LePeq, F.; Wudl, F.; Yao, J.; Wilkins, C. L. The Journal of Organic Chemistry. 1995, 60 (3), 532-538.
[20] Wöbkenberg, P. H.; Bradley, D. D. C.; Kronholm, D.; Hummelen, J. C.; de Leeuw, D. M.; Cölle, M.; Anthopoulos, T. D. Synthetic Metals. 2008, 158 (11), 468-472.
[21] Kot, M. In-operando hard X-ray photoelectron spectroscopy study on the resistive switching physics of HfO2-based RRAM. 2014.
[22] Kiel, J. W.; Eberle, A. P. R.; Mackay, M. E. Physical Review Letters. 2010, 105 (16), 168701.
[23] Liao, H.-C.; Tsao, C.-S.; Lin, T.-H.; Chuang, C.-M.; Chen, C.-Y.; Jeng, U. S.; Su, C.-H.; Chen, Y.-F.; Su, W.-F. Journal of the American Chemical Society. 2011, 133 (33), 13064-13073.
[24] Liu, C.-H.; Tseng, W.-H.; Cheng, C.-Y.; Wu, C.-I.; Chou, P.-T.; Tung, S.-H. Journal of Polymer Science Part B: Polymer Physics. 2016, 54 (10), 975-985.
[25] Debye, P.; Anderson, H. R.; Brumberger, H. Journal of Applied Physics. 1957, 28 (6), 679-683.
[26] Vandewal, K.; Gadisa, A.; Oosterbaan, W. D.; Bertho, S.; Banishoeib, F.; Van Severen, I.; Lutsen, L.; Cleij, T. J.; Vanderzande, D.; Manca, J. V. Advanced Functional Materials. 2008, 18 (14), 2064-2070.
[27] Yu, G.; Zhang, C.; Heeger, A. J. Applied Physics Letters. 1994, 64 (12), 1540-1542.
[28] Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F. Science. 1992, 258 (5087), 1474-1476.
[29] Schilinsky, P.; Waldauf, C.; Brabec, C. J. Applied Physics Letters. 2002, 81 (20), 3885-3887.
[30] Yang, X.; Loos, J.; Veenstra, S. C.; Verhees, W. J. H.; Wienk, M. M.; Kroon, J. M.; Michels, M. A. J.; Janssen, R. A. J. Nano Letters. 2005, 5 (4), 579-583.
[31] Dang, M. T.; Hirsch, L.; Wantz, G. Advanced Materials. 2011, 23 (31), 3597-3602.
[32] Park, Y. D.; Kim, D. H.; Jang, Y.; Cho, J. H.; Hwang, M.; Lee, H. S.; Lim, J. A.; Cho, K. Organic Electronics. 2006, 7 (6), 514-520.
[33] Samitsu, S.; Shimomura, T.; Heike, S.; Hashizume, T.; Ito, K. Macromolecules. 2008, 41 (21), 8000-8010.
[34] Sun, Y.; Cui, C.; Wang, H.; Li, Y. Advanced Energy Materials. 2012, 2 (8), 966-969.
[35] Woo, C. H.; Thompson, B. C.; Kim, B. J.; Toney, M. F.; Fréchet, J. M. J. Journal of the American Chemical Society. 2008, 130 (48), 16324-16329.
[36] Ding, Z.; Kettle, J.; Horie, M.; Chang, S. W.; Smith, G. C.; Shames, A. I.; Katz, E. A. Journal of Materials Chemistry A. 2016, 4 (19), 7274-7280.
[37] Westacott, P.; Tumbleston, J. R.; Shoaee, S.; Fearn, S.; Bannock, J. H.; Gilchrist, J. B.; Heutz, S.; deMello, J.; Heeney, M.; Ade, H.; Durrant, J.; McPhail, D. S.; Stingelin, N. Energy & Environmental Science. 2013, 6 (9), 2756-2764.
[38] Zhao, J.; Swinnen, A.; Van Assche, G.; Manca, J.; Vanderzande, D.; Mele, B. V. The Journal of Physical Chemistry B. 2009, 113 (6), 1587-1591.
[39] Cui, C.; Sun, Y.; Zhang, Z.-G.; Zhang, M.; Zhang, J.; Li, Y. Macromolecular Chemistry and Physics. 2012, 213 (21), 2267-2274.
[40] Chen, W.-c.; Xiao, M.-j.; Yang, C.-p.; Duan, L.-r.; Yang, R.-q. Chinese Journal of Polymer Science. 2017, 35 (2), 302-308.
[41] Li, Y.; Cao, Y.; Gao, J.; Wang, D.; Yu, G.; Heeger, A. J. Synthetic Metals. 1999, 99 (3), 243-248.
[42] Chen, C.-M.; Jen, T.-H.; Chen, S.-A. ACS Applied Materials & Interfaces. 2015, 7 (37), 20548-20555.
[43] Leman, D.; Kelly, M. A.; Ness, S.; Engmann, S.; Herzing, A.; Snyder, C.; Ro, H. W.; Kline, R. J.; DeLongchamp, D. M.; Richter, L. J. Macromolecules. 2015, 48 (2), 383-392.
[44] Wu, W.-R.; Jeng, U. S.; Su, C.-J.; Wei, K.-H.; Su, M.-S.; Chiu, M.-Y.; Chen, C.-Y.; Su, W.-B.; Su, C.-H.; Su, A.-C. ACS Nano. 2011, 5 (8), 6233-6243.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔