(3.238.7.202) 您好!臺灣時間:2021/03/04 03:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林晏羽
研究生(外文):Yen-Yu Lin
論文名稱:製備酸鹼應答型規則樹枝狀分子自組裝蜂窩狀孔洞薄膜於染料吸附應用
論文名稱(外文):Preparation of pH-responsive honeycomb-like film from self-assembled dendritic polymers for dye adsorption
指導教授:鄭如忠劉定宇
口試委員:邱文英吳建欣
口試日期:2019-06-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:高分子科學與工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:77
中文關鍵詞:breath figure法規則樹枝狀分子染料吸附蜂窩狀孔洞膜酸鹼應答型材料超分子自組裝
DOI:10.6342/NTU201902545
相關次數:
  • 被引用被引用:0
  • 點閱點閱:44
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用具反應選擇性之單體4-isocyanato-4’-(3,3-dimethyl-2,4-dioxo -azetidino)-diphenylmethane(IDD)作為構築單元,重複單元逐步反應製備出不同代數末端具十八長碳鏈的poly(urea/malonamides) dendrons規則樹枝狀分子(DG0.5-DG2.5),並經由改質成功製備出一系列焦點端帶有羧基官能基之規則樹枝狀分子(a-DG0.5-a-DG2.5)。亦證明了較高代數(G1.5、G2.5)的低分子量poly(urea/malonamide) dendrons能透過分子間氫鍵為主的作用力進行超分子的自組裝,同時雙親性的小分子dendrons具有穩定有機溶液與水的界面、維持breath figure法所產生之蜂窩狀孔洞結構的能力,可單獨作為製備蜂窩狀孔洞膜之材料。此外,也由一系列的實驗設計,探討不同變因對孔洞型態的影響,並證明透過接上羧基官能基,不只增強了dendrons間的分子間氫鍵作用力,有助於分子的自組裝,更賦予它酸鹼應答的特性。羧基的存在使得薄膜在鹼性環境下能因羧基的去質子化使表面帶負電荷,進而選擇性吸附帶正電的染料分子。本研究透過poly(urea/malonamide) dendrons難以取代的獨特性質,成功製備出具有酸鹼應答性—能選擇性吸附帶正電分子的蜂窩狀孔洞薄膜,可望應用在環境檢測的領域。
A series of anionic dendritic polymeric amphiphiles with carboxyl groups at the focal points were successfully prepared through iterative addition reactions. For the self-assembly study, it has been proved that these dendritic amphiphiles can form honeycomb-like structure via breath figure method with relatively small molecular weights of poly(urea/malonamide) dendrons. Due to the presence of hydrogen bonding interactions of malonamide groups, interactions of aromatic moieties, and Van der Waals interactions of long alkyl chains, these dendrons are capable of exhibiting supramolecular self-assembly property, stabilizing the interfaces between water droplets and organic solution to achieve porous ordered arrays. In addition, the effects of different variables such as concentration, relative humidity, the presence of carboxyl groups, and dendron generations on the porous structure were investigated. It is important to note that the attachment of carboxyl groups would enhance the intermolecular hydrogen bonding interactions, leading to the formation of improved hexagonal arrays. Furthermore, with the focal point functionalized with a carboxylic acid group, these dendrons (a-DG1.5, and a-DG2.5) were able to exhibit pH-responsive behavior, which would deprotonate and form negatively charged carboxylate groups under high pH values (e.g., pH 10). Consequently, cationic dye molecules would attach onto the films through Coulomb force under basic conditions. By utilizing the unique properties of poly(urea/malonamide) dendrons, pH-responsive honeycomb-like films with switchable dye adsorption ability were successfully developed.
誌謝 i
中文摘要 ii
Abstract iii
目錄 iv
圖目錄 vii
表目錄 x
第一章、緒論 1
第二章、文獻回顧 2
2.1 蜂窩狀孔洞膜簡介 2
2.1.1 Breath Figure法之機制 2
2.1.2 應用於Breath Figure方法之材料 6
2.1.2.1 高分子材料 6
2.1.2.2 小分子化合物(超分子聚合物) 10
2.1.3 poly(urea/malonamide) dendrons應用於製備蜂窩狀孔洞膜 12
2.1.3.1 poly(urea/malonamide) dendrons作為高分子側鏈 12
2.1.3.2 poly(urea/malonamide) dendrons作為與高分子混摻的界面活性劑 16
2.2 規則樹枝狀高分子 19
2.2.1 Dendrimer合成路徑 20
2.2.2 反應選擇性單體 IDD 製備poly(urea/malonamide) dendrons 22
2.2.2.1 合成具有反應選擇性之建構單元IDD 22
2.2.2.2 利用反應選擇性單體 IDD合成poly(urea/malonamide) dendrons 23
2.3 刺激應答型材料簡介 25
2.3.1 酸鹼應答型材料之簡介 26
2.4 研究動機 29
第三章、實驗內容 30
3.1 藥品及溶劑 30
3.2 實驗儀器 32
3.3 實驗流程圖 34
3.4 實驗步驟 35
3.4.1 Isocyanato-4’(3,3-dimethyl-2,4-dioxo-azetidino) diphenylmethane (IDD) 之合成 35
3.4.2 C18系列poly(urea/malonamide) dendrons 之合成 36
3.4.2.1 DG0.5之合成 36
3.4.2.2 DG1.0之合成 37
3.4.2.3 DG1.5之合成 37
3.4.2.4 DG2.0之合成 37
3.4.2.5 DG2.5之合成 38
3.4.3 酸鹼應答型poly(urea/malonamide) dendrons之合成 38
3.4.3.1 a-DG0.5之合成 39
3.4.3.2 a-DG1.5之合成 39
3.4.3.3 a-DG2.5之合成 40
3.4.4 蜂窩狀孔洞薄膜之製備 40
3.4.5 探討超分子自組裝性質之實驗方法 41
3.4.6 蜂窩狀孔洞薄膜之染料吸附測試 41
第四章、結果與討論 42
4.1 IDD之合成及結構鑑定 42
4.2 C18系列poly(urea/malonamide) dendrons之合成及結構鑑定 45
4.2.1 DG0.5之合成及結構鑑定 45
4.2.2 DG1.0之合成及結構鑑定 46
4.2.3 DG1.5之合成及結構鑑定 48
4.2.4 DG2.0之合成及結構鑑定 50
4.2.5 DG2.5之合成及結構鑑定 52
4.3 酸鹼應答型poly(urea/malonamide) dendrons之合成及結構鑑定 54
4.3.1 a-DG0.5之合成及結構鑑定 54
4.3.2 a-DG1.5之合成及結構鑑定 56
4.3.3 a-DG2.5之合成及結構鑑定 57
4.4 DG系列與a-DG系列規則樹枝狀分子之熱性質 59
4.5 不同變因對於蜂窩狀孔洞形態之影響 60
4.5.1 規則蜂窩狀孔洞最佳化 60
4.5.2 焦點親水官能基對蜂窩狀孔洞膜之影響 63
4.6 超分子自組裝性質之探討 64
4.7 不同系列dendrons製備之孔洞膜對染料吸附效果影響 65
第五章、結論與未來展望 68
第六章、參考文獻 70
[1]Song, L.; Bly, R. K.; Wilson, J. N.; Bakbak, S.; Park, J. O.; Srinivasarao, M.; Bunz, U. H. Facile microstructuring of organic semiconducting polymers by the breath figure method: hexagonally ordered bubble arrays in rigid rod‐polymers. Advanced Materials 2004, 16, 115-118.
[2]Haswell, S. J.; Skelton, V. Chemical and biochemical microreactors. TRAC Trends in Analytical Chemistry 2000, 19, 389-395.
[3]Li, L.; Chen, C.; Li, J.; Zhang, A.; Liu, X.; Xu, B.; Gao, S.; Jin, G.; Ma, Z. Robust and hydrophilic polymeric films with honeycomb pattern and their cell scaffold applications. Journal of Materials Chemistry 2009, 19, 2789-2796.
[4]Nomura, E.; Hosoda, A.; Takagaki, M.; Mori, H.; Miyake, Y.; Shibakami, M.; Taniguchi, H. Self-organized honeycomb-patterned microporous polystyrene thin films fabricated by calix [4] arene derivatives. Langmuir 2010, 26, 10266-10270.
[5]Erdogan, B.; Song, L.; Wilson, J. N.; Park, J. O.; Srinivasarao, M.; Bunz, U. H. Permanent bubble arrays from a cross-linked poly (para-phenyleneethynylene): picoliter holes without microfabrication. Journal of the American Chemical Society 2004, 126, 3678-3679.
[6]Cui, L.; Wang, H.; Ding, Y.; Han, Y. Tunable ordered droplets induced by convection in phase-separating P2VP/PS blend film. Polymer 2004, 45, 8139-8146.
[7]Toma, M.; Jonas, U.; Mateescu, A.; Knoll, W.; Dostalek, J. Active control of SPR by thermoresponsive hydrogels for biosensor applications. The Journal of Physical Chemistry C 2013, 117, 11705-11712.
[8]Ma, Y.; Promthaveepong, K.; Li, N. CO2-responsive polymer-functionalized Au nanoparticles for CO2 sensor. Analytical Chemistry 2016, 88, 8289-8293.
[9]Lok, C. N.; Zou, T.; Zhang, J. J.; Lin, I. W. S.; Che, C. M. Controlled‐release systems for metal‐based nanomedicine: encapsulated/self‐assembled nanoparticles of anticancer gold (III)/platinum (II) complexes and antimicrobial silver nanoparticles. Advanced Materials 2014, 26, 5550-5557.
[10]Lee, D.; Hong, J. W.; Park, C.; Lee, H.; Lee, J. E.; Hyeon, T.; Paik, S. R. Ca2+-dependent intracellular drug delivery system developed with “raspberry-type” particles-on-a-particle comprising mesoporous silica core and α-synuclein-coated gold nanoparticles. ACS Nano 2014, 8, 8887-8895.
[11]Gong, Z.; Li, S.; Han, W.; Wang, J.; Ma, J.; Zhang, X. Recyclable graphene oxide grafted with poly (N-isopropylacrylamide) and its enhanced selective adsorption for phenols. Applied Surface Science 2016, 362, 459-468.
[12]Yabu, H.; Shimomura, M. Single-step fabrication of transparent superhydrophobic porous polymer films. Chemistry of Materials 2005, 17, 5231-5234.
[13]Bormashenko, E.; Schechter, A.; Stanevsky, O.; Stein, T.; Balter, S.; Musin, A.; Bormashenko, Y.; Pogreb, R.; Barkay, Z.; Aurbach, D. Free‐standing, thermostable, micrometer‐scale honeycomb polymer films and their properties. Macromolecular Materials and Engineering 2008, 293, 872-877.
[14]Beattie, D.; Wong, K. H.; Williams, C.; Poole-Warren, L. A.; Davis, T. P.; Barner-Kowollik, C.; Stenzel, M. H. Honeycomb-structured porous films from polypyrrole-containing block copolymers prepared via RAFT polymerization as a scaffold for cell growth. Biomacromolecules 2006, 7, 1072-1082.
[15]Kong, L.; Dong, R.; Ma, H.; Hao, J. Au NP honeycomb-patterned films with controllable pore size and their surface-enhanced Raman scattering. Langmuir 2013, 29, 4235-41.
[16]Widawski, G.; Rawiso, M.; Francois, B. Self-organized honeycomb morphology of star-polymer polystyrene films. Nature 1994, 369, 387-389.
[17]Jenekhe, S. A.; Chen, X. L. Self-assembly of ordered microporous materials from rod-coil block copolymers. Science 1999, 283, 372-375.
[18]Bunz, U. H. F. Breath figures as a dynamic templating method for polymers and nanomaterials. Advanced Materials 2006, 18, 973-989.
[19]Maruyama, N.; Koito, T.; Nishida, J.; Sawadaishi, T.; Cieren, X.; Ijiro, K.; Karthaus, O.; Shimomura, M. Mesoscopic patterns of molecular aggregates on solid substrates. Thin Solid Films 1998, 327, 854-856.
[20]Srinivasarao, M.; Collings, D.; Philips, A.; Patel, S. Three-dimensionally ordered array of air bubbles in a polymer film. Science 2001, 292, 79-83.
[21]Beysens, D. Dew nucleation and growth. Comptes Rendus Physique 2006, 7, 1082-1100.
[22]Muñoz-Bonilla, A.; Fernández-García, M.; Rodríguez-Hernández, J. Towards hierarchically ordered functional porous polymeric surfaces prepared by the breath figures approach. Progress in Polymer Science 2014, 39, 510-554.
[23]Wong, K. H.; Hernández-Guerrero, M.; Granville, A. M.; Davis, T. P.; Barner-Kowollik, C.; Stenzel, M. H. Water-assisted formation of honeycomb structured porous films. Journal of Porous Materials 2006, 13, 213-223.
[24]Stenzel, M. H.; Barner‐Kowollik, C.; Davis, T. P. Formation of honeycomb‐structured, porous films via breath figures with different polymer architectures. Journal of Polymer Science Part A: Polymer Chemistry 2006, 44, 2363-2375.
[25]Orlov, M.; Tokarev, I.; Scholl, A.; Doran, A.; Minko, S. PH-responsive thin film membranes from poly (2-vinylpyridine): water vapor-induced formation of a microporous structure. Macromolecules 2007, 40, 2086-2091.
[26]Roszol, L.; Lawson, T.; Koncz, V.; Noszticzius, Z. n.; Wittmann, M.; Sarkadi, T.; Koppa, P. l. Micropatterned polyvinyl butyral membrane for acid−base diodes. The Journal of Physical Chemistry B 2010, 114, 13718-13725.
[27]Peng, J.; Han, Y.; Yang, Y.; Li, B. The influencing factors on the macroporous formation in polymer films by water droplet templating. Polymer 2004, 45, 447-452.
[28]Bormashenko, E.; Pogreb, R.; Stanevsky, O.; Bormashenko, Y.; Socol, Y.; Gendelman, O. Self‐assembled honeycomb polycarbonate films deposited on polymer piezoelectric substrates and their applications. Polymers for Advanced Technologies 2005, 16, 299-304.
[29]Saunders, A. E.; Dickson, J. L.; Shah, P. S.; Lee, M. Y.; Lim, K. T.; Johnston, K. P.; Korgel, B. A. Breath figure templated self-assembly of porous diblock copolymer films. Physical Review E 2006, 73, 031608.
[30]Stenzel‐Rosenbaum, M. H.; Davis, T. P.; Fane, A. G.; Chen, V. Porous polymer films and honeycomb structures made by the self‐organization of well‐defined macromolecular structures created by living radical polymerization techniques. Angewandte Chemie International Edition 2001, 40, 3428-3432.
[31]Chen, J. Z.; Zhao, Q. L.; Lu, H. C.; Huang, J.; Cao, S. K.; Ma, Z. Polymethylene‐b‐polystyrene diblock copolymer: synthesis, property, and application. Journal of Polymer Science Part A: Polymer Chemistry 2010, 48, 1894-1900.
[32]de León, A. S.; Muñoz‐Bonilla, A.; Fernández‐García, M.; Rodríguez‐Hernández, J. Breath figures method to control the topography and the functionality of polymeric surfaces in porous films and microspheres. Journal of Polymer Science Part A: Polymer Chemistry 2012, 50, 851-859.
[33]Deepak, V.; Asha, S. Self-organization-induced three-dimensional honeycomb pattern in structure-controlled bulky methacrylate polymers: synthesis, morphology, and mechanism of pore formation. The Journal of Physical Chemistry B 2006, 110, 21450-21459.
[34]Böker, A.; Lin, Y.; Chiapperini, K.; Horowitz, R.; Thompson, M.; Carreon, V.; Xu, T.; Abetz, C.; Skaff, H.; Dinsmore, A. D. Hierarchical nanoparticle assemblies formed by decorating breath figures. Nature Materials 2004, 3, 302.
[35]Yonezawa, T.; Onoue, S.-y.; Kimizuka, N. Self‐organized superstructures of fluorocarbon‐stabilized silver nanoparticles. Advanced Materials 2001, 13, 140-142.
[36]Jiang, X.; Zhou, X.; Zhang, Y.; Zhang, T.; Guo, Z.; Gu, N. Interfacial effects of in situ-synthesized Ag nanoparticles on breath figures. Langmuir 2009, 26, 2477-2483.
[37]Zhang, N.; Li, J.; Ni, D.; Sun, K. Preparation of honeycomb porous La0. 6Sr0. 4Co0. 2Fe0. 8O3− δ–Gd0. 2Ce0. 8O2− δ composite cathodes by breath figures method for solid oxide fuel cells. Applied Surface Science 2011, 258, 50-57.
[38]Saito, Y.; Shimomura, M.; Yabu, H. Dispersion of Al2O3 nanoparticles stabilized with mussel-inspired amphiphilic copolymers in organic solvents and formation of hierarchical porous films by the breath figure technique. Chemical Communications (Cambridge) 2013, 49, 6081-6083.
[39]Wakamatsu, N.; Takamori, H.; Fujigaya, T.; Nakashima, N. Self‐organized single‐walled carbon nanotube conducting thin films with honeycomb structures on flexible plastic films. Advanced Functional Materials 2009, 19, 311-316.
[40]Stenzel-Rosenbaum, M. H.; Davis, T. P.; Fane, A. G.; Chen, V. Porous polymer films and honeycomb structures made by the self-organization of well-defined macromolecular structures created by living radical polymerization techniques. Angewandte Chemie International Edition 2001, 40, 3428-3432.
[41]Deepak, V. D.; Asha, S. K. Self-organization-induced three-dimensional honeycomb pattern in structure-controlled bulky methacrylate polymers:  synthesis, morphology, and mechanism of pore formation. The Journal of Physical Chemistry B 2006, 110, 21450-21459.
[42]Stenzel, M. H.; Davis, T. P.; Fane, A. G. Honeycomb structured porous films prepared from carbohydrate based polymers synthesized via the RAFT process. Journal of Materials Chemistry 2003, 13, 2090-2097.
[43]Kim, J. H.; Seo, M.; Kim, S. Y. Lithographically patterned breath figure of photoresponsive small molecules: dual‐patterned honeycomb lines from a combination of bottom‐up and top‐down lithography. Advanced Materials 2009, 21, 4130-4133.
[44]Babu, S. S.; Mahesh, S.; Kartha, K. K.; Ajayaghosh, A. Solvent‐directed self‐assembly of π gelators to hierarchical macroporous structures and aligned fiber bundles. Chemistry–An Asian Journal 2009, 4, 824-829.
[45]Yu, Y.; Ma, Y. Breath figure fabrication of honeycomb films with small molecules through hydrogen bond mediated self-assembly. Soft Matter 2011, 7, 884-886.
[46]Ting, W.-H.; Chen, C.-C.; Dai, S. A.; Suen, S.-Y.; Yang, I.-K.; Liu, Y.-L.; Chen, F. M.; Jeng, R.-J. Superhydrophobic waxy-dendron-grafted polymer films via nanostructure manipulation. Journal of Materials Chemistry 2009, 19, 4819-4828.
[47]Chang, C.-C.; Juang, T.-Y.; Ting, W.-H.; Lin, M.-S.; Yeh, C.-M.; Dai, S. A.; Suen, S.-Y.; Liu, Y.-L.; Jeng, R.-J. Using a breath-figure method to self-organize honeycomb-like polymeric films from dendritic side-chain polymers. Materials Chemistry and Physics 2011, 128, 157-165.
[48]Su, Y.-A.; Chen, W.-F.; Juang, T.-Y.; Ting, W.-H.; Liu, T.-Y.; Hsieh, C.-F.; Dai, S. A.; Jeng, R.-J. Honeycomb-like polymeric films from dendritic polymers presenting reactive pendent moieties. Polymer 2014, 55, 1481-1490.
[49]Wu, C.-H.; Ting, W.-H.; Lai, Y.-W.; Dai, S. A.; Su, W.-C.; Tung, S.-H.; Jeng, R.-J. Tailored honeycomb-like polymeric films based on amphiphilic poly (urea/malonamide) dendrons. RSC Advances 2016, 6, 91981-91990.
[50]Tomalia, D. A. Supramolecular chemistry: fluorine makes a difference. Nature Materials 2003, 2, 711.
[51]Carlmark, A.; Hawker, C.; Hult, A.; Malkoch, M. New methodologies in the construction of dendritic materials. Chemical Society Reviews 2009, 38, 352-362.
[52]Tomalia, D.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. A new class of polymers: starburst-dendritic. Polymer Journal 1985, 17, 117-132.
[53]Hawker, C.; Fréchet, J. M. A new convergent approach to monodisperse dendritic macromolecules. Journal of the Chemical Society, Chemical Communications 1990, 1010-1013.
[54]Tomalia, D. A.; Baker, H.; J., D.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. A new class of polymers: starburst-dendritic macromolecules. Polymer Journal 1985, 17, 117-132.
[55]Newkome, G. R.; Yao, Z.; Baker, G. R.; Gupta, V. K. Micelles. Part 1. Cascade molecules: a new approach to micelles. A [27]-arborol. Journal of Organic Chemistry 1985, 50, 2003-2004.
[56]Lothian-Tomalia, M. K.; Hedstrand, D. M.; Tomalia, D. A.; Padias, A. B.; H. K. Hall Jr. A contemporary survey of covalent connectivity and complexity. The divergent synthesis of poly(thioether) dendrimers. Amplified, genealogically directed synthesis leading to the de gennes dense packed state. Tetrahedron 1997, 53, 15495-15513.
[57]Padias, A. B.; Hall, H. K.; Tomalia, D. A.; McConnell, J. R. Starburst polyether dendrimers Journal of Organic Chemistry 1987, 52, 5305-5312.
[58]Miller, T. M.; Neenan, T. X. Convergent synthesis of monodisperse dendrimers based upon 1,3,5-trisubstituted benzenes. Chemistry of Materials 1990, 2, 346-349.
[59]Hawker, C. J.; Frechet, J. M. J. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. Journal of the American Chemical Society 1990, 112, 7638-7647.
[60]Cheng, C. X.; Tian, Y.; Shi, Y. Q.; Tang, R. P.; Xi, F. Porous polymer films and honeycomb structures based on amphiphilic dendronized block copolymers. Langmuir 2005, 21, 6576-6581.
[61]Schluter, A. D.; Rabe, J. P. Dendronized polymers: synthesis, characterization, assembly at Interfaces, and manipulation. Angewandte Chemie International Edition 2000, 39, 864-883.
[62]Cheng, C.-X.; Huang, Y.; Tang, R.-P.; Chen, E.-q.; Xi, F. Molecular architecture effect on self-assembled nanostructures of a linear-dendritic rod triblock copolymer in solution. Macromolecules 2005, 38, 3044-3047.
[63]Roovers, J.; Comanita, B. Dendrimers and dendrimer-polymer hybrids Advances in Polymer Science 1999, 142, 179-228.
[64]Zhao, Y.; Shuai, X.; Chen, C.; Xi, F. Synthesis of novel dendrimer-like star block copolymers with definite numbers of arms by combination of ROP and ATRP. Chemical Communications 2004, 1608-1609.
[65]Darcos, V.; Dureault, A.; Taton, D.; Gnanou, Y.; Marchand, P.; Caminade, A.-M.; Majoral, J.-P.; Destarac, M.; Leising, F. Synthesis of hybrid dendrimer-star polymers by the RAFT process. Chemical Communications 2004, 2110-2111.
[66]Chen, C. P.; Dai, S. A.; Chang, H. L.; Su, W. C.; Jeng, R. J. Facile approach to polyurea/malonamide dendrons via a selective ring‐opening addition reaction of azetidine‐2, 4‐dione. Journal of Polymer Science Part A: Polymer Chemistry 2005, 43, 682-688.
[67]Gil, E. S.; Hudson, S. M. Stimuli-reponsive polymers and their bioconjugates. Progress in Polymer Science 2004, 29, 1173-1222.
[68]Cabane, E.; Zhang, X.; Langowska, K.; Palivan, C. G.; Meier, W. Stimuli-responsive polymers and their applications in nanomedicine. Biointerphases 2012, 7, 9.
[69]Ganesh, V. A.; Baji, A.; Ramakrishna, S. Smart functional polymers–a new route towards creating a sustainable environment. RSC Advances 2014, 4, 53352-53364.
[70]Canadell, J.; Goossens, H.; Klumperman, B. Self-healing materials based on disulfide links. Macromolecules 2011, 44, 2536-2541.
[71]Rivero, G.; Nguyen, L.-T. T.; Hillewaere, X. K.; Du Prez, F. E. One-pot thermo-remendable shape memory polyurethanes. Macromolecules 2014, 47, 2010-2018.
[72]Hu, J.; Zhang, G.; Ge, Z.; Liu, S. Stimuli-responsive tertiary amine methacrylate-based block copolymers: Synthesis, supramolecular self-assembly and functional applications. Progress in Polymer Science 2014, 39, 1096-1143.
[73]Hoffman, A. S. Hydrogels for biomedical applications. Advanced Drug Delivery Reviews 2012, 64, 18-23.
[74]Dai, S.; Ravi, P.; Tam, K. C. pH-Responsive polymers: synthesis, properties and applications. Soft Matter 2008, 4, 435-449.
[75]Jia, T.; Huang, S.; Yang, C.; Wang, M. Unimolecular micelles of amphiphilic cyclodextrin-core star-like copolymers with covalent pH-responsive linkage of anticancer prodrugs. Molecular pharmaceutics 2016, 14, 2529-2537.
[76]Zhou, F.; Huck, W. T. Three-stage switching of surface wetting using phosphate-bearing polymer brushes. Chemical Communications 2005, 5999-6001.
[77]Mi, L.; Bernards, M. T.; Cheng, G.; Yu, Q.; Jiang, S. pH responsive properties of non-fouling mixed-charge polymer brushes based on quaternary amine and carboxylic acid monomers. Biomaterials 2010, 31, 2919-2925.
[78]Wu, C.-H.; Chen, Y.-C.; Dai, S. A.; Chen, S.-C.; Tung, S.-H.; Lee, R.-H.; Su, W.-C.; Jeng, R.-J. Iterative synthesis of monodisperse pendants for making comb-like polyurethanes. Polymer 2017, 119, 1-12.
[79]Yu, X.; Xie, D.; Lan, H.; Li, Y.; Zhen, X.; Ren, J.; Yi, T. Effect of water on the supramolecular assembly and functionality of a naphthalimide derivative: tunable honeycomb structure with mechanochromic properties. Journal of Materials Chemistry C 2017, 5, 5910-5916.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔