跳到主要內容

臺灣博碩士論文加值系統

(44.210.83.132) 您好!臺灣時間:2024/05/22 23:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曹少樺
研究生(外文):Shao-Hua Tsao
論文名稱:小型垂直軸風力機發電功率與環境紊流分析
論文名稱(外文):Analysis of Power Output of Small Vertical-Axis Wind Turbinesand Environmental Turbulence
指導教授:李坤彥
口試委員:江茂雄李佳翰
口試日期:2018-11-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:中文
論文頁數:84
中文關鍵詞:紊流小型垂直軸風力機功率性能穩態模擬暫態模擬
DOI:10.6342/NTU201900039
相關次數:
  • 被引用被引用:0
  • 點閱點閱:136
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文主要針對小型垂直軸風力發電機的發電功率與環境條件進行探討,並將研究內容分為兩大項:第一分項為小型垂直軸風力機在高紊流環境下的發電效率分析,第二分項為小型垂直軸風力發電機架設處之環境的模擬計算分析。
都會區地形複雜多變,加上高樓林立,在都會區的風場容易與地形和障礙物的干擾而形成紊流,不利於風力機運轉而致使風力機發電效率不佳。本研究之內容的第一分項的研究內容為:量測此測試環境的自然條件對風力發電機功率的影響,如:風向、水平風速和垂直風速。實驗結果顯示,發現超過90%的發電功率都來自當垂直風速小於或等於水平風速時,而垂直風速在水平風速介於6 m/s到8 m/s之間時有明顯的影響,最多僅剩下沒有垂直風速時的44%,而紊流強度在風速大於8 m/s時會開始收斂,逐漸趨近於約30%。本研究第二部分則是藉由穩態模擬及暫態模擬和長時間蒐集的數據進行比對,了解此測試環境的紊流強度,找出在此環境下風力發電機效率不彰的主因。實驗結果顯示,環境中高聳之建築物為主要障礙,導致風力發電機架設處風速偏低,且紊流強度高,因此理解此測試環境並不適宜於此風力發電機之運作。
The main theme of this thesis is discussing about the relationship between wind turbines’ power output and the environment, and have divided into two parts mainly. The first part is talking about the power efficiency of small vertical wind turbine which operates in high turbulence environment. The second part is the analysis and simulation of the test environment where the small vertical axes wind turbine located.
There has complicated topography and lots of buildings in metropolitan areas. The turbulence formed as a result of the interference of the topography and obstacles in urban areas easily. The content of the first part of this thesis: It is going to measure and analyze the test environment which affects the power output of the wind turbine, such as wind direction, horizontal wind speed and vertical wind speed. According to the result of experiment, we found that over than 90% of power output was generated when vertical wind speed is less than or equal to horizontal wind speed. In addition, vertical wind speed has obvious influence when horizontal wind speed is between 6 m/s and 8 m/s, only 44% of the power output without vertical wind speed, and the turbulence intensity will converge about 30 % when the wind speed is larger than 8 m/s. We analyze the turbulence intensity by steady state simulation, transient simulation and compare with the collected data, and find some key points about the worse efficiency of this test environment. According to the result of experiment, we found that the higher building in the environment is the main obstacle, resulting in the low wind speed where the wind turbine located, and the turbulence intensity is high. We get this environment is not suitable for the operation of this test wind turbine.
誌謝 I
中文摘要 II
Abstract III
圖目錄 V
表目錄 VII
第一章 序論 1
1.1. 前言 1
1.2 文獻回顧 3
1.3 論文架構 6
第二章 研究背景與測試規劃 8
2.1 受測風力發電機介紹 8
2.2 場地介紹 13
2.2.1 澎湖國際標準測試場 13
2.2.2 台北海洋技術學院淡水校區 15
2.3 測試儀器介紹 18
2.3.1 澎湖國際標準測試場 18
2.3.2 台北海洋技術學院淡水校區 20
2.4 紊流介紹 24
第三章 高紊流環境下風力發電機功率分析 28
3.1 功率性能測試方法 28
3.1.1 資料剔除 28
3.1.2 Bin值法 29
3.2 功率分析 30
3.3 紊流強度分析 47
第四章 模擬計算與分析 51
4.1 模型建立 51
4.2 三維流場模擬 53
4.2.1 穩態模擬計算 56
4.2.2 暫態模擬計算 75
第五章 結論 79
第六章 未來工作項目與展望 81
參考文獻 82
[1]IEC. International Standard 61400-2: Small Wind Turbines, 2013.
[2]AWEA. AWEA Standard: Small Wind Turbine Performance and Safety Standard, 2009.
[3]BWEA. BWEA Standard: Small Wind Turbine Performance and Safety Standard, 2008.
[4]IEC. Wind turbines─part 12-1: Power performance measurements of electricity producing wind turbines(IEC 61400-12-1), 2005.
[5]Emanuel, H., et al. Power quality measurements of wind energy converters with full-scale converter according to IEC 61400-21. in Electrical Power Quality and Utilisation, 2009. EPQU 2009. 10th International Conference on. 2009. IEEE.
[6]Frandsen ST. Turbulence and turbulence-generated structural loading in wind turbine clusters. Book, Risø National Laboratory, Denmark, 2007.
[7]Lundquist J, Clifton A. How turbulence can impact power performance, North American Windpower, 2012.
[8]Arifujjaman M, Iqbal MT, Quaicoe JE. Energy capture by a small wind-energy conversion system. Applied Energy 2008; 85(1): p. 41-51.
[9]Jimenez A, Crespo A, Migoya E, Garcia J. Advances in large-eddy simulation of a wind turbine wake. Journal of Physics: Conference Series 2007; 75: p. 012041.
[10]Wu YT, Porte-Agel F. Large-Eddy Simulation of Wind-Turbine Wakes: Evaluation of Turbine Parametrisations. Boundary-Layer Meteorology 2011; 138(3): p. 345-366.
[11]Bowen AJ, Lindley D. A wind-tunnel investigation of the wind speed and turbulence characteristics close to the ground over various escarpment shapes. Boundary-Layer Meteorology 1977; 12(3): p. 259-271.
[12]Hansen KS, Barthelmie RJ, Jensen LE, Sommer A. The impact of turbulence intensity and atmospheric stability on power deficits due to wind turbine wakes at Horns Rev wind farm. Wind Energy, 2012. 15(1): p. 183-196.
[13]Hara Y, Hara K, Hayashi T. Moment of Inertia Dependence of Vertical Axis Wind Turbines in Pulsating Winds. International Journal of Rotating Machinery 2012; 2012: p. 1-12.
[14]黃勝銘 等, 小型風力發電機環境流場分析. 2013.
[15]Barthelmie RJ, Frandsen ST, Nielsen MN, Pryor SC, Rethore PE, Jorgensen HE. Modelling and measurements of power losses and turbulence intensity in wind turbine wakes at Middelgrunden offshore wind farm. Wind Energy 2007; 10(6): p. 517-528.
[16]Li Q, Murata J, Endo M, Maeda T, Kamada Y. Experimental and numerical investigation of the effect of turbulent inflow on a Horizontal Axis Wind Turbine (Part I: Power performance). Energy, 2016. 113: p. 713-722.
[17]Li Q, Maeda T, Kamada Y, Murata J, Nishida Y. Effect of turbulence on power performance of a horizontal axis wind turbine in yawed and no-yawed flow conditions. Energy 2016;109:703-11.
[18]Sheinman Y, Rosen A. A dynamic model of the influence of turbulence on the power output of a wind turbine. J Wind Eng Ind Aerodyn 1992;39(1):329-41.
[19]Sicot C, Devinant P, Laverne T, Loyer S, Hureau J. Experimental study of the effect of turbulence on horizontal axis wind turbine aerodynamics. Wind Energy 2006; 9(4): p. 361-370.
[20]Li Q, Maeda T, Kamada Y, Murata J et al. Wind tunnel and numerical study of a straight-bladed vertical axis wind turbine in three-dimensional analysis (Part I: For predicting aerodynamic loads and performance). Energy 2016;106:443–52.
[21]Ismail MF, Vijayaraghavan K. The effects of aerofoil profile modification on a vertical axis wind turbine performance. Energy 2015;80:20-31.
[22]Pagnini LC, Burlando M, Repetto MP. Experimental power curve of small-size wind turbines in turbulent urban environment. Appl Energy 2015;154:112-121.
[23]Elkhoury M, Kiwata T, Aoun E. Experimental and numerical investigation of a three-dimensional vertical-axis wind turbine with variable-pitch. J Wind Eng Industrial Aerodynamics 2015;139:111-23.
[24]Alaimo A, Esposito A, Messineo A, Orlando C, Tumino D. 3D CFD analysis of a vertical axis wind turbine. Energies 2015;8(4):3013e33.
[25]Nobile R, Vahdati M, Barlow JF, Mewburn-Crook A. Unsteady flow simulation of a vertical axis augmented wind turbine: a two-dimensional study. J Wind Eng Industrial Aerodynamics 2014;125:168-79.
[26]Mohamed MH. Impacts of solidity and hybrid system in small wind turbines performance. Energy 2013;57:495-504.
[27]Li Q, Maeda T, Kamada Y, Murata J, Kawabata T, Shimizu K, et al. Wind tunnel and numerical study of a straight-bladed Vertical Axis Wind Turbine in three dimensional analysis (Part II: for predicting flow field and performance). Energy 2016;104:295-307.
[28]Howell R, Qin N, Edwards J, Durrani N. Wind tunnel and numerical study of a small vertical axis wind turbine. Renew Energy 2010;35(2):412-22.
[29]Marsh P, Ranmuthugala D, Penesis I, Thomas G. Three-dimensional numerical simulations of straight-bladed vertical axis tidal turbines investigating power output, torque ripple and mounting forces. Renew Energy 2015;83:67-77.
[30]Li Q, Maeda T, Kamada Y, Murata J, Kawabata T, Shimizu K, et al. Effect of number of blades on aerodynamic forces on a straight-bladed Vertical Axis Wind Turbine. Energy 2015;90(Part 1):784–95.
[31]Tjiu W, Marnoto T, Mat S, Ruslan MH, Sopian K. Darrieus vertical axis wind turbine for power generation II: challenges in HAWT and the opportunity of multi-megawatt Darrieus VAWT development. Renew Energy 2015;75: 560-71.
[32]Simão Ferreira C, Bijl H, van Bussel G, van Kuik G. Simulating dynamic stall in a 2D VAWT: modeling strategy, verification and validation with particle image velocimetry data. J Phys: Conf Ser 2007;75(1):12-23.
[33]Simão Ferreira C, Bijl H, van Bussel G, van Kuik G. Simulating dynamic stall in a 2D VAWT: modeling strategy, verification and validation with particle image velocimetry data. J Phys: Conf Ser 2007;75(1):12-23.
[34]Danao LA, Edwards J, Eboibi O, Howell R. A numerical investigation into the influence of unsteady wind on the performance and aerodynamics of a vertical axis wind turbine. Appl Energy 2014;116:111-24.
[35]Rezaeiha A, Kalkman I, Blocken B. Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine. Appl Energy 2017;197:132-150.
[36]Balduzzi F, Bianchini A, Carnevale EA, Ferrari L, Magnani S. Feasibility analysis of a Darrieus vertical-axis wind turbine installation in the rooftop of a building. Appl Energy 2012; 97:921-929.
[37]Li Q, Maeda T, Kamada Y, Murata J, Furukawa K, Yamamoto M, et al. Study on power performance for straight-bladed vertical axis wind turbine by field and wind tunnel test. Renew Energy 2016;90:291-300.
[38]Bravo R, Tullis S, Ziada S. Performance testing of a small vertical-axis wind turbine. In: Proceedings of the 21st Canadian congress of applied mechanics (CANCAM07), Toronto, Canada; June. 2007. p. 3-7.
[39]Möllerström E, Ottermo F, Goude A, Eriksson S, Hylander J, Bernhoff H. Turbulence influence on wind energy extraction for a medium size vertical axis wind turbine. Wind Energy 2016; 19(11): p. 1963-1973.
[40]Ottermo F, Bernhoff H. An upper size of vertical axis wind turbines. Wind Energy 2014; 17(10): p. 1623-1629.
[41]Snel H. Review of Aerodynamics for Wind Turbines. Wind Energy 2003; 6(3): p. 203-211.
[42]Wind Turbines - Part 2: Design requirements for small wind turbines CNS 15176-2 Standard, 2011.
[43]李哲緯, 兩岸範例小型垂直軸風力機實證測試技術研究. 臺灣大學工程科學及海洋工程學研究所學位論文, 2012.
[44]International Standard IEC 61400 series. 2010.
[45]曾玠文, 小型垂直軸風力機實證暨高紊流量測分析. 臺灣大學工程科學及海洋工程學研究所學位論文. 2014.
[46]Lubitz WD. Impact of ambient turbulence on performance of a small wind turbine. Renewable Energy 2014; 61: p. 69-73.
[47]http://www.cfd-online.com/Wiki/Turbulence_intensity. Turbulence intensity.
[48]Tong ZM, Chen YJ, Malkawi A. Defining the Influence Region in neighborhood-scale CFD simulations for natural ventilation design. Applied Energy 2016; 182:p.625-633.
[49]Siddiqui MS, Rasheed A, Kvamsdal T, Tabib M. Effect of Turbulence Intensity on the Performance of an Offshore Vertical Axis Wind Turbine. Energy Procedia 2015; 80;p.312-320
[50]Sicot, C, Devinant, P, Loyer, S, Hureau, J. Rotational and turbulence effects on a wind turbine blade. Investigation of the stall mechanisms. Journal of Wind Engineering and Industrial Aerodynamics 2008; 96(8-9): p. 1320-1331.
[51]Li Q, Maeda T, Kamada Y, Murata J, Kawabata T, Kogaki T. Study on flow around straight-bladed vertical axis wind turbine under low tip speed ratio. Journal of Fluid Science and Technology, 2014. 9(3): p. JFST0051-JFST0051.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top