跳到主要內容

臺灣博碩士論文加值系統

(44.221.70.232) 您好!臺灣時間:2024/05/21 05:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張嘉仁
研究生(外文):Jia-Ren Chang
論文名稱:行動裝置電聲系統之分析與最佳化
論文名稱(外文):Analysis and Optimization of Electro-Acoustical System for Mobile Device
指導教授:王昭男王昭男引用關係
口試委員:周元昉陳義男謝傳璋劉興華宋家驥
口試日期:2018-12-14
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:英文
論文頁數:145
中文關鍵詞:電機聲微型揚聲器聲腔設計參數分佈模型一個適當低頻延伸的微型揚聲器系統手持行動裝置低頻延伸最佳化
DOI:10.6342/NTU201804369
相關次數:
  • 被引用被引用:0
  • 點閱點閱:246
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年行動裝置的快速成長,多媒體的使用經驗扮演著重要的角色,其中微型揚聲器的系統響應,受限於外觀設計的影響不易於評估與優化。本研究的主要目標是研究三個主題: (1) 手持微型揚聲器系統的聲學性能分析 (2) 手持微型揚聲器系統在行動裝置上的低音延伸方法 (3) 手持微型揚聲器系統低音延伸的優化。
第一主題為利用兩種模型研究手持微型揚聲器在行動裝置不同外殼參數中的聲學性能。 第一模型是微型揚聲器的電機聲模型以及聲腔效應的分佈模型; 第二模型為計算微型揚聲器系統的分佈模型時並且考慮了膜片的參數,並且應用於行動裝置的微型揚聲器聲學性能分析,兩種模型均顯示模擬與實驗的結果一致,其中分佈模型的模擬結果比類比集中參數模型的高頻響應更為精確。
第二主題有關微型揚聲器系統的低音延伸一直是行動裝置音訊設計的挑戰, 這裡是主要關注的焦點。 本研究為行動裝置的微型揚聲器系統中低音延伸提供一個解決方案,其中涉及使用前腔和矩形長管形埠的共振組合。 微型揚聲器系統與該結構的聲學負載有效共振耦合,使微型揚聲器在適度的振膜位移下,達到較高聲壓水準 (SPL) 和低音擴展,讓系統的低頻響應能低於揚聲器在自由空氣中的共振並且達到最小化的結構總尺寸。 採用電機聲與有限元素結合的方法, 確定行動裝置的聲壓位準(Sound Pressure Level, dBSPL) 和低音延伸水準,模擬結果顯示與實驗結果吻合。 本結果實現在10吋平板電腦上,應用了一個合適的低頻擴展的揚聲器系統,第一共振的音訊頻率響應可以從630Hz降低到 300 Hz, 以達到最大的音量擴展。 最後針對五個案例進行聲學性能研究分別為(1)前腔容積 (2)後腔容積 (3)矩形管形口長度 (4)橫截面積 (5)出音孔等參數設置進行了研究,研究結果可用於優化合適的低頻擴展範圍之微型揚聲器系統。
第三主題利用微型揚聲器單體集中參數結合分佈參數模型分析揚聲器的前腔容積、聲孔的大小、波導聲管長度及其橫截面積,對微型揚聲器上低音擴展的聲學設計參數進行了模擬與最佳化,利用田口法中的直交表L_9 計算最佳參數三位準與四個因子 (3^4),因此藉由此方法來設計一個微型揚聲器系統低頻延伸的優化參數。
最後實驗驗證可以對三個主題的結果進行設計,藉由這些參數設計讓 3C 行業的音頻工程師可以在執行設計前優化其揚聲器系統設計概念的 SPL 性能與頻率頻寬。 這些結果可以在執行工業設計和機構放置過程前直接預測微揚聲器系統的聲學性能。
Microspeakers are key components of mobile devices in current consumer products. Furthermore, the user experience of multimedia products has gained much importance. In this light, the present study investigated three topics: (1) acoustical performance analysis of a microspeaker system; (2) bass extension of a microspeaker system on a mobile device and (3) optimization for bass extension of a microspeaker system.
In the first topic, the acoustic performances of microspeakers with different enclosure parameters are studied for mobile devices. Two methodologies were used for this purpose: (1) an electro-mechano-acoustical model (EMA) of microspeaker along with distribution model of enclosure effect, and (2) the details of diaphragms were considered when calculating the distribution models of microspeaker with enclosure parameters. These methodologies were combined and applied to determine microspeaker performance levels for mobile devices. They showed acceptable agreement with the experimental results. Furthermore, the distribution model could simulate the high frequency response well compared with the lumped model of microspeaker system.
In the second topic, because the bass extension of microspeaker system remains a challenge in audio design for mobile devices, we provided a solution for the bass by using a resonant combination of a front chamber and a rectangular long pipe-shaped port. The efficient resonant coupling of the microspeaker system to the acoustic load in this structure enables a microspeaker with modest cone displacement to achieve a high sound pressure level (SPL) and bass extension below the resonance of the microspeaker in free air, while the total dimensions of the structure are minimized. A combination of electro-mechanic-acoustic and finite element methods was applied to determine the SPL and bass extension levels for mobile devices. The simulation results showed acceptable agreement with the experimental results. A suitable extended-range microspeaker system was applied in a 10" tablet. The audio frequency response could be extended from 630 to 300 Hz with the maximum loudness. Finally, five cases of parameter settings for the front chamber volume, rear chamber volume, rectangular pipe-shaped port, cross-sectional area, and opening area were studied. The results can be applied to optimizing a suitable extended-range microspeaker system.
Finally, the acoustical design parameters of bass extension for a microspeaker were simualted by using distribution model and change the enclosure volume of the front speaker chamber, size of the sound hole, length of the sound pipe tube, and the cross-sectional area of the sound pipe to determine the optimal parameter design through an orthogonal array of table L_9 (3^4) using the “Taguchi Method”. Based on the result, optimization of bass extension of microspeaker system can be achieved.
The obtained results validated the accuracy of the simulation. By investigating each of these parameters, engineers in the computer, communication, and consumer (3C) industry can optimize the SPL performance and frequency bandwidth of their basic microspeaker design concepts before executing designs. Those results can predict micro-speaker system performance before industrial design and mechanism placement processes are executed.
CONTENTS
摘要 i
ABSTRACT iii
CONTENTS……………………………………………………………………..vi
LIST OF FIGURES vii
LIST OF TABLES x
Chapter 1 Introduction 13
Chapter 2 Modeling of the Electro-Acoustical System 19
2.1 Electro-Acoustical Transducer 19
2.2 Parameter Identification 24
2.3 Modeling of Microspeakers System and its Bass Extension Methodology 33
2.3.1 EMA Analogyous Circuit of Microspeaker with Finite-Element Analysis of Enclosure Design Parameters 34
2.3.2 Finite-Element Analysis of Microspeaker with Enclosure Design Parameters 48
2.3.3 Method of Solution for Bass Extension on Microspeaker System 50
Chapter 3 Optimal Design of the Electro-Acoustical System 58
3.1 Introduction of Taguchi Method 58
3.2 Design of Experiment 59
3.2.1 Full Factorial Design 59
3.2.2 Taguchi Method 59
3.2.3 Parameter Identification 65
Chapter 4 Simulation and Experiment 68
4.1 Enclosure Design Parameters for Microspekaer System 68
4.1.1 EMA Anlogous Circuit of Microspeaker with Finite-Element Analysis of Enclosure Design Parameters 68
4.1.2 Finite-Element Analysis of Microspeaker with Enclosure Design Parameters 70
4.1.3 Result of Enclosure Effect 73
4.2 Design Parameters for Bass Extension of a Microspeaker System 89
4.2.1 Result of Bass Extension System on Microspeaker System 110
4.3 Optimization for Bass Extension of a Microspeaker System 110
4.4 Summary 130
Chapter 5 Conclusions and Suggestions for Further Work 135
Reference 137
Publication and Patent Record 145
Reference
1.Siemens, E. W., “Improvement in Magneto-Electric Apparatus,” U.S. Patent No. 149,797 (14 April 1874).
2.Siemens, E. W., “Electromechanical ‘Dynamic’ or Moving-Coil Transducer,” German Patent No. 2355 (14 December 1877).
3.Rice, C. W. and Kellogg, E. W., “Notes on the Development of a New Type of Hornless Loudspeaker,” Journal of the Audio Engineering Society, 30, pp. 512–521 (1982).
4.Villchur, E. M., “Problems of Bass Reproduction in Loudspeakers,” Journal of the Audio Engineering Society, 5, pp. 122–126 (1957).
5.Villchur, E. M., “A Method of Testing Loudspeakers with Random Noise Input,” Journal of the Audio Engineering Society, 10, pp. 306–309 (1962).
6.Thiele, A. N., “Loudspeakers in Vented Boxes: Part 1,” Journal of the Audio Engineering Society, 19, pp. 382–392 (1971).
7.Thiele, A. N., “Loudspeakers in Vented Boxes: Part 2,” Journal of the Audio Engineering Society, 19, pp. 471–483 (1971).
8.Small, R., “Direct Radiator Loudspeaker System Analysis,” Journal of the Audio Engineering Society, 20, pp. 383–395 (1972).
9.Small, R., “Closed-Box Loudspeaker Systems-Part 1: Analysis,” Journal of the Audio Engineering Society, 20, pp. 798–808 (1972).
10.Small, R., “Closed-Box Loudspeaker Systems-Part 2: Synthesis,” Journal of the Audio Engineering Society, 21, pp. 11–18 (1973).
11.Small, R., “Vented-Box Loudspeaker Systems--Part 1: Small-Signal Analysis,” Journal of the Audio Engineering Society, 21, pp. 363–372 (1973).
12.Small, R., “Vented-Box Loudspeaker Systems--Part 2: Large-Signal Analysis,” Journal of the Audio Engineering Society, 21, pp. 438–444 (1973).
13.Small, R., “Vented-Box Loudspeaker Systems--Part 3: Synthesis,” Journal of the Audio Engineering Society, 21, pp. 549–554 (1973).
14.Small, R., “Vented-Box Loudspeaker Systems--Part 4: Appendices,” Journal of the Audio Engineering Society, 21, pp. 635–639 (1973).
15.Bai, M. R. and Liao, J., “Acoustic Analysis and Design of Miniature Loudspeakers for Mobile Phones,” Journal of the Audio Engineering Society, 53, pp. 1061–1076 (2005).
16.Bai, M. R. and Chen, R. L., “Optimal Design of Loudspeaker Systems Based on Sequential Quadratic Program-ming (SQP),” Journal of the Audio Engineering Society, 55, pp. 44–54 (2007).
17.Bai, M. R., Liu, C. Y. and Chen, R. L., “Optimization of Microspeaker Diaphragm Pattern using Combined Finite Element–Lumped Parameter Models,” IEEE Transactions on Magnetics, 44, pp. 2049–2057 (2008). doi: http://dx.doi.org/10.1109/TMAG.2008.923316
18.Shiah, Y. C., Her, H. C., Huang, J. H. and Huang, B., “Parametric Analysis for a Miniature Loudspeaker used in Cellular Phones,” Journal of Applied Physics, 104, 104905 (2008). doi: http://dx.doi.org/10.1063/1.3021098
19.Thuras, A. L., “Sound Translating Device,” U.S. patent 1,869,178 (filed 1930; awarded 1932).
20.de Boer, E., “Synthesis of Bass-Reflex Loudspeaker Enclosures,” The Journal of the Acoustical Society of America, 31, pp. 246 (1959).
21.Thiele, A., “Loudspeakers in Vented Boxes,” Journal of the Audio Engineering Society, 19, pp. 382–392 (1971).
22.Benson, J. E., “Theory and Design of Loudspeaker Enclosures, Part 1: Electroacoustical Relations and Generalised Analysis,” Amalgamated Wireless Australasia Technical Review, 14, pp. 1–58 (1968).
23.Benson, J. E., “Theory and Design of Loudspeaker Enclosures, Part 2: Response Relationships for Infinite Baffle and Closed Box Systems,” Amalgamated Wireless Australasia Technical Review, 14, pp. 225–293 (1971).
24.Benson, J. E., “Theory and Design of Loudspeaker Enclosures, Part 3: Introduction to Synthesis of Vented Systems,” Amalgamated Wireless Australasia Technical Review, 14, pp. 369–484 (1972).
25.Small, R. H., “Direct-Radiator Loudspeaker Systems Analysis,” IEEE Transactions on Audio and Electroacoustics, 19, pp. 269–281 (1971).
26.Small, R. H., “Closed-Box Loudspeaker Systems, Part 1: Analysis,” Journal of the Audio Engineering Society. 20, pp. 798–808 (1972).
27.Small, R. H., “Closed-Box Loudspeaker Systems, Part 2: Synthesis,” Journal of the Audio Engineering Society, 21, pp. 11–18 (1973).
28.Small, R. H., “Vented-Box Loudspeaker Systems, Part 1: Small-Signal Analysis,” Journal of the Audio Engineering Society, 21, pp. 363–372 (1973).
29.Small, R. H., “Vented-Box Loudspeaker Systems, Part 2: Large-Signal Analysis,” Journal of the Audio Engineering Society, 21, pp. 438–444 (1973).
30.Small, R. H., “Vented-Box Loudspeaker Systems, Part 3: Synthesis,” Journal of the Audio Engineering Society, 21, pp. 549–554 (1973).
31.Small, R. H., “Vented-Box Loudspeaker Systems, Part 4: Appendices,” Journal of the Audio Engineering Society, 21, pp. 635–639 (1973).
32.Small, R. H., “Passive-Radiator Loudspeaker Systems, Part 1: Analysis,” Journal of the Audio Engineering Society, 22, pp. 592–601 (1974).
33.Small, R. H., “Passive-Radiator Loudspeaker Systems, Part 2: Synthesis,” Journal of the Audio Engineering Society, 22, pp. 683–689 (1974).
34.D’Alton, A., “Acoustic Device,” U.S. patent 1,969,704 (filed 1933; awarded 1934).
35.Lang, H. C., “Sound Reproducing System,” U.S. patent 2,689,016 (filed 1953; awarded 1954).
36.Fincham, L. R., “A Bandpass Loudspeaker Enclosure,” presented at the 63rd Convention of the Audio Engineering Society, Journal of the Audio Engineering Society, 27, p. 600 (1979).
37.Geddes, E. R., “An Introduction to Band-Pass Loudspeaker Systems,” Journal of the Audio Engineering Society, 37, pp. 308–342 (1989).
38.J. Backman, “A Computational Model of Transmission Line Loudspeakers,” presented at the 92nd Convention of the Audio Engineering Society, Journal of the Audio Engineering Society, 40, p. 438 (1992).
39.Berkhoff, A. P., “Impedance Analysis of Subwoofer Systems,” Journal of the Audio Engineering Society, 42, pp. 4–14 (1994).
40. Taguchi G, Konishi S., “Taguchi Methods, orthogonal arrays and linear graphs, tools for quality” American supplier institute, American Supplier Institute; 1987 [p. 8-35]
41. Rao, Ravella Sreenivas; C. Ganesh Kumar, R. Shetty Prakasham, Phil J. Hobbs, “The Taguchi Methodology as a statistical tool for biotechnological applications: A critical appraisal”, Biotechnology Journal 3 (4):510–523.
42. Lee, C.R, Moon, H.J and Jeong, H.Y, “An optimal design of a micro speaker module using finite element simulations and tests”, Journal of Mechanical Science and Technology 31 (10) (2017) 4569~4578.
43. Hwang, G.Y, Hwang, S.M, Lee, H.J, Kim, J.H, Hong, K.S and Lee, W.Y, “Application of Taguchi Method to Robust Design of Acoustic Performance in IMT-2000 Mobile Phones”, IEEE TRANSACTIONS ON MAGNETICS, VOL. 41, NO. 5, MAY 2005
44.Fahy, F., “Foundations of Engineering Acoustic”, Academic Press (2001).
45.Beranek, L. L., “Acoustics”, Acoustical Society of America, Woodybury, NY (1996).
46.Colloms, M., “High Performance Loudspeakers”, 5th Edition, John Wiley & Sons, NY (1997).
47. W. Klippel, “Diagnosis and Remedy of Nonlinearities in Electrodynamical Transducers,” presented at the 109th Convention of the Audio Engineering Society, Los Angeles, September 22-25, 2000, preprint 5261.
48. M.H. Knudsen and J.G. Jensen, “Low-Frequency Loudspeaker Models that Include Suspension Creep,” J. Audio Eng. Soc., vol. 41, pp. 3-18, (Jan./Feb. 1993).
49.Chang, J. R. and Wang, C. N., “Acoustical Analysis of Enclosure Design Parameters for Microspeaker System,” Journal of Mechanics, https://doi.org/10.1017/jmech.2017.64, Published online: 04 September 2017.
50.Chang, J. R. and Wang, C. N., “Bass Extension of Microspeaker System on Mobile Device,” Journal of Mechanics, https://doi.org/10.1017/jmech.2018.28 Published online: 02 August 2018.
51.Kinsler, L. E., Frey, A. R., Coppens, A. B. and Sanders, J. V., “Fundamentals of Acoustics”, 4th Edition, John Wiley & Sons, NY (2000).
52. Phadke, M.S., "Quality Engineering Using Robust Design". Englewood Cliffs, NJ: Prentice-Hall, (1989).
53. Ross., P.J., "Taguchi Techniques for Quality Engineering: Loss Function, Orthogonal Experiments, Parameter and Tolerance Design - 2nd ed.", New York, NY: McGraw-Hill, (1996).
54. W.T. Foster, “Basic Taguchi design of experiments”, National Association of Industrial Technology Conference, Pittsburgh, PA, 2000
55. Taguchi, G., "Off-line and On-line Quality Control Systems," Proceeding of International Conference on Quality, Tokyo, Japan, (1978).
56. Taguchi, G. and Y. Wu, “Introduction to Off-Line Quality Control”, Central Japan Quality Control Association, Nagoya, Japan, (1979).
57. Taguchi, G., "Quality Engineering in Japan", Bulletin of the Japan Society of Precision Engineering, Vol 19 No (4), pp. 237-242, (1985).
58. Taguchi, G., “Introduction to Quality Engineering - Designing Quality into Products and Processes”, Asian Productivity Organization, Tokyo, (1986).
59 Taguchi, G., “System of Experimental Design”, Unipub/Kraus, International Publication, (1987).
60. Taguchi, G., “Taguchi on Robust technology development methods”. ASME Press, New York, 1-40, (1993).
61. Ealey Lance A., “Quality by design Taguchi methods and US industry”. 2nd ed. Sidney: Irwin professional publishing and ASI Press;. p. 189–207, (1994).
62. Phadke, M.S., "Quality Engineering Using Robust Design", Englewood Cliffs, NJ: Prentice-Hall, (1989).
63. W. Marshall Leach, Jr., “Introduction to Electroacoustics and Audio Amplifier Design”, Georgia Institute of Technology School of Electrical and Computer Engineering , Atlanta, Georgia 30332-0250 USA, (1999)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top