1.Jae-Byung, J., et al. Broadband Active Sonar Swimmer Detection and Identification. in Neural Networks, 2006. IJCNN ''06. International Joint Conference on. 2006.
2.Merchant, N.D., et al., Measuring acoustic habitats. Methods in Ecology and Evolution, 2015. 6(3): p. 257-265.
3.Merchant, N.D., et al., Averaging underwater noise levels for environmental assessment of shipping. The Journal of the Acoustical Society of America, 2012. 132(4): p. EL343-EL349.
4.Hagerty, M., et al., Analysis of seismic and acoustic observations at Arenal Volcano, Costa Rica, 1995–1997. Journal of Volcanology and Geothermal Research, 2000. 101(1): p. 27-65.
5.Iyama, J. and H. Kuwamura, Application of wavelets to analysis and simulation of earthquake motions. Earthquake engineering & structural dynamics, 1999. 28(3): p. 255-272.
6.Ibs-von Seht, M., Detection and identification of seismic signals recorded at Krakatau volcano (Indonesia) using artificial neural networks. Journal of Volcanology and Geothermal Research, 2008. 176(4): p. 448-456.
7.Hsu, S.K., et al. Marine cable hosted observatory (MACHO) project in Taiwan. in Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies, 2007. Symposium on. 2007. IEEE.
8.許樹坤等人., 台灣東部海域海底電纜觀測系統建置規劃. 中央氣象局2007年地震技術報告, 2007: p. p361-382.
9.許樹坤等人., 台灣東部海域電纜觀測系統建置諮詢研究. 中央氣象局2008年地震技術報告, 2008: p. pp.1-10.
10.Chen, C.F., et al. Data demonstrations on physical oceanography and underwater acoustics from the MArine Cable Hosted Observatory (MACHO). in OCEANS, 2012-Yeosu. 2012. IEEE.
11.Fang, Y.Y., K.C. Wu, and C. Chen, Underwater acoustic detection and classification for cetaceans'' vocalizations of Marine Observatory in the Northeastern Taiwan (MONET). The Journal of the Acoustical Society of America, 2012. 131(4): p. 3494-3494.
12.Yashaswini, S.S.P., et al., A literature survey on ambient noise analysis for underwater acoustic signals. Internation Journal of Computer Engineering and Science, 2015. 1(7): p. 1-9.
13.Chiu, L.Y. and H.-R. Chen. Estimation and reduction of effects of sea surface reflection on underwater vertical channel. in Underwater Technology Symposium (UT), 2013 IEEE International. 2013. IEEE.
14.Chang, A., et al. Modeling of shallow water ambient noise based on adiabatic mode theory. in Underwater Technology Symposium (UT), 2013 IEEE International. 2013. IEEE.
15.Wenz, G.M., Acoustic ambient noise in the ocean: spectra and sources, in The Journal of the Acoustical Society of America. 1962. p. 1936-1956.
16.Ross, D., Mechanics of Underwater Noise Pergamon Press. New York, USA, 1976.
17.Ross, D. and W. Kuperman, Mechanics of underwater noise. 1989, The Journal of the Acoustical Society of America.
18.Ross, D., Mechanics of underwater noise. 2013: Elsevier.
19.魏宏源, 船體振動與其水下輻射噪音 Ship Hull Vibration And Its Underwater Radiated Noise, in 造船工程學系. 1993, 國立臺灣大學: 國立臺灣大學.
20.Urick, R.J., Principles of underwater sound. Vol. 3. 1983: McGraw-Hill New York.
21.劉倬騰, 陳琪芳, 船舶振動雨水中訊號之現場實驗. 1995, 國科會國防科技學術合作協調小組委託計畫成果報告: 臺灣大學應用力學研究所.
22.Wright, A.J., Internatioanl Workshop on Shipping Noise and Marine Mammals. 2008. Hamburg, Germany.
23.Au, W.W., Characteristics of dolphin sonar signals, in The Sonar of Dolphins. 1993, Springer. p. 115-139.
24.Clark, C.W., Acoustic behavior of mysticete whales, in Sensory abilities of cetaceans. 1990, Springer. p. 571-583.
25.Edds-Walton, P.L., Acoustic communication signals of mysticete whales. Bioacoustics, 1997. 8(1-2): p. 47-60.
26.Evans, G.W. and K. English, The environment of poverty: Multiple stressor exposure, psychophysiological stress, and socioemotional adjustment. Child development, 2002. 73(4): p. 1238-1248.
27.White, P.R. Underwater noise limits and measurement of underwater radiated noise from merchant vessels. in 24th International Congress on Sound and Vibration. 2017. London.
28.IMO MEPC.1/Circ.833: Guidelines for the Reduction of Underwater Noise from Commercial Shipping to Address Adverse Impacts on Marine Life, I.M.O. (IMO), Editor. 2014.
29.Williams, R., et al., Marine mammals and ocean noise: Future directions and information needs with respect to science, policy and law in Canada. Marine pollution bulletin, 2014. 86(1-2): p. 29-38.
30.Tavener, S. and T. Cooper, Automatic Identification System: AIS-A Reception of AIS-B, 2008 Study. 2008.
31.Bittencourt, L., et al., Underwater noise pollution in a coastal tropical environment. Marine pollution bulletin, 2014. 83(1): p. 331-336.
32.Codarin, A. and M. Picciulin, Underwater noise assessment in the Gulf of Trieste (Northern Adriatic Sea, Italy) using an MSFD approach. Marine pollution bulletin, 2015. 101(2): p. 694-700.
33.Merchant, N.D., et al., Assessing sound exposure from shipping in coastal waters using a single hydrophone and Automatic Identification System (AIS) data. Marine pollution bulletin, 2012. 64(7): p. 1320-1329.
34.Kaplan, M.B. and T.A. Mooney, Ambient noise and temporal patterns of boat activity in the US Virgin Islands National Park. Marine pollution bulletin, 2015. 98(1): p. 221-228.
35.陳俊廷, 船舶輻射聲紋量測. 第27 屆海洋工程研討會論文集.國立中興大. 2005: p. p2-4.
36.黃明志, 水下聲響感測器實作應用整合型研究-子計畫四:船舶幅射聲紋量測與分析 (I). 行政院國家科學委員會專題研究計畫期中進度報告. 2004.
37.黃明志, 水下聲響感測器實作應用整合型研究─子計畫四:船舶幅射聲紋量測與分析 (2/2). 行政院國家科學委員會專題研究計畫期中進度報告.2005.
38.陳琪芳, 海洋研究船五號船舶噪音量測研究. 2012, 國立臺灣大學工程科學及海洋工程學系.
39.Hung, J.-w., Several New Approaches for Robust Speech Recognition under Noisy Environment. Ph.D. Dissertation Graduate Institute of Communication Engineering National Taiwan University, 2001.
40.Gonzalez-Sanchez, J., et al., Affect measurement: A roadmap through approaches, technologies, and data analysis, in Emotions and Affect in Human Factors and Human-Computer Interaction. 2017, Elsevier. p. 255-288.
41.Kayaalp, F. and M.S. Başarslan, Open source data mining programs: a case study on R. 2018.
42.Harding, J., M. Shahbaz, and A. Kusiak, Data mining in manufacturing: a review. Journal of Manufacturing Science and Engineering, 2006. 128(4): p. 969-976.
43.Cabric, D., A. Tkachenko, and R.W. Brodersen, Experimental Study of Spectrum Sensing based on Energy Detection and Network Cooperation. The 2nd Annual International Wireless Internet Conference (WICON), 2006(TAPAS Workshop).
44.Kongrattanaprasert, W., et al. Application of neural network analysis to automatic detection of road surface conditions utilizing tire noise from vehicles. in ICCAS-SICE2009. 2009.
45.方銀營等人. 針對MACHO計畫水下麥克風之聲學事件偵測研究, 第15屆水下技術研討會國科會成果發表會. 2013. 國立臺灣海洋大學.
46.陳松琳, 以類神經網路為架構之語音辨識系統The Speech Recognition System using Neural Networks. 國立中山大學電機工程學系碩士論文, 2002.47.周嘉文, 船艦結構應力與應變狀況診斷用之多層光纖感測器設計研究. 國防大學中正理工學院造船工程研究所碩士論文, 2008.48.羅華強, 類神經網路-Matlab的應用. 2005, 臺北:高立圖書有限公司.
49.焦李成, 神經網路系統理論. 1991, 臺北:儒林圖書出版有線公司.
50.Fang, Y.-Y., et al., Event Detection of Underwater Acoustic Data from MACHO hydrophone. 2011.
51.Wang, S. and X. Zeng, Robust underwater noise targets classification using auditory inspired time–frequency analysis. Applied acoustics, 2014. 78: p. 68-76.
52.Weiss, L. and T. Dixon, Wavelet-based denoising of underwater acoustic signals. The Journal of the Acoustical Society of America, 1997. 101(1): p. 377-383.
53.Bodisco, T.A., et al., Characterising an ECG signal using statistical modelling: a feasibility study. ANZIAM Journal, 2014. 55: p. 32-46.
54.Ribeiro-Fonseca, J. and L. Correia. Identification of underwater acoustic noise. in OCEANS''94.''Oceans Engineering for Today''s Technology and Tomorrow''s Preservation.''Proceedings. 1994. IEEE.
55.Li, C.-T., S.-J. Wu, and W.-L. Yu, Parameter design on the multi-objectives of PEM fuel cell stack using an adaptive neuro-fuzzy inference system and genetic algorithms. International Journal of Hydrogen Energy, 2014. 39(9): p. 4502-4515.
56.Jang, J.-S. Input selection for ANFIS learning. in Proceedings of IEEE 5th International Fuzzy Systems. 1996. IEEE.
57.王文俊, 認識 Fuzzy. 2005, 全華科技圖書股份有限公司.
58.Gaffney, J., C. Pearce, and D. Green, Binary versus real coding for genetic algorithms: A false dichotomy? Anziam journal, 2010. 51: p. 347-359.
59.Drummond, C. and R.C. Holte. Exploiting the cost (in) sensitivity of decision tree splitting criteria. in ICML. 2000.
60.Elkan, C. The foundations of cost-sensitive learning. in International joint conference on artificial intelligence. 2001. Lawrence Erlbaum Associates Ltd.
61.Gillard, C., et al., Automatic classification of active sonar echoes for improved target identification. Maritime Operations Division, Defence Science and Technology Organisation. 2011.
62.Montgomery, D.C., Design and analysis of experiments. 2017: John wiley & sons.
63.Akteke Ozturk, B., G. Koksal, and G.W. Weber. Optimization of desirability functions as a DNLP model by GAMS/BARON. in AIP Conference Proceedings. 2010. AIP.
64.Wu, S.-J., S.-W. Shiah, and W.-L. Yu, Parametric analysis of proton exchange membrane fuel cell performance by using the Taguchi method and a neural network. Renewable Energy, 2009. 34(1): p. 135-144.
65.Taguchi, G., Taguchi on robust technology development methods, 1993. ASME Press, New York). Google Scholar.
66.Karna, S.K. and R. Sahai, An overview on Taguchi method. International Journal of Engineering and Mathematical Sciences, 2012. 1(1): p. 1-7.
67.Taguchi, G. Off-line and on-line quality control systems. in Proceedings of International Conference on Quality Control. 1978.
68.Taguchi, G., Introduction to quality engineering: designing quality into products and processes. Asian Productivity Organization. 1986.
69.Horvath, R., G. Matyasi, and A. Dregelyi-Kiss, Optimization of machining parameters for fine turning operations based on the response surface method. ANZIAM Journal, 2014. 55: p. 250-265.
70.Guisan, A., T.C. Edwards Jr, and T. Hastie, Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecological modelling, 2002. 157(2-3): p. 89-100.
71.Mitson, R., ICES Cooperative Research Report 209: Five Years On. ICES Fisheries Acoustic Science & Technology Working Group, Haarlem, Netherlands, 2000. 7.
72.USA, ANSI/ASA S12.64-2009 part1: Quantities and Procedures for Description and Measurement of Underwater Sound from Ships –Part 1 General Requirements. 2009.
73.VERITAS, D.N., DNV rules for classification of ships new buildings- special equipment and systems additional class- Part 6 Chapter 24: Silent class notation. 2010.
74.Veritas, B., Underwater Radiated Noise (URN), Rule Note NR 614 DT R00 E, in Bureau Veritas. 2014.
75.China, GJB 4057-2000: Measurement method for noise of ship. 2000.
76.国家海洋局第三海洋研究所, 一種船舶輻射噪音的測量方法. 2017, 国家海洋局第三海洋研究所.
77.ISO 60565, I., Underwater Acoustics—Hydrophones—Calibration in the Frequency Range From 0.01 Hz to 1 MHz. 2006, International Electrotechnical Commission Geneva, Switzerland.
78.ISO 61260, I., Electroacoustics–Octave‐Band and Fractional‐Octave‐Band Filters. International Electrotechnical Commission,(January 1996), 1995.
79.ISO 17208-1:2012(E), I.P., ISO/PAS 17208-1:2012(E) Acoustics — Quantities and procedures for description and measurement of underwater sound from ships. Part 1: General requirements for measurements in deep water. 2012, ISO: ISO.
80.方銀營等人. 海洋研究船之船舶水下輻射噪音實海域量測分析研究, 第二十九屆中國造船暨輪機工程研討會暨科技部成果發表會 2017. 國立成功大學系統及船舶機電工程學系.
81.Fang, Y.-Y., C.-F. Chen, and S.-J. Wu. Feature identification using acoustic signature of Ocean Reasearcher III (ORIII) in The 13th Engineering Mathmetics and Applications Conference 2017. Auckland, New Zealand: University of Auckland.
82.Fang, Y.-Y., C.-F. Chen, and S.-J. Wu. Automatic Identification System for Vehicles using Acoustic Signature. in 2nd Oceanoise Asia. 2018. Hakodate, Hokkaido, Japan.
83.Fang, Y.-Y., C.-F. Chen, and S.-J. Wu. Analysis of vibration and underwater radiated noise of Ocean Researcher III (OR III). in The 30th Taiwan Society of Naval Architects and Marine Engineers Conference. 2018. National Taiwan Ocean University.
84.Fang, Y.-Y., C.-F. Chen, and S.-J. Wu. Optimization of acoustic signature identification system for Ocean Researcher III (OR3) in The 6th Pacific Rim Underwater Acoustic Conference 2018. Taipei/ Hualien, Taiwan
85.Burgstahler, L. and M. Neubauer. New modifications of the exponential moving average algorithm for bandwidth estimation. in Proc. of the 15th ITC Specialist Seminar. 2002.
86.Lamichhane, B.P., Removing a mixture of Gaussian and impulsive noise using the total variation functional and split Bregman iterative method. ANZIAM Journal, 2015. 56: p. 52-67.
87.Feng, C.-X.J., Z.-G. Yu, and A. Kusiak, Selection and validation of predictive regression and neural network models based on designed experiments. IIE Transactions, 2006. 38(1): p. 13-23.
88.Su, C.-T., Quality engineering: off-line methods and applications. 2016.
89.Antony, J. and M. Kaye, Experimental quality: a strategic approach to achieve and improve quality. 2012: Springer Science & Business Media.
90.Fawcett, T., An introduction to ROC analysis. Pattern recognition letters, 2006. 27(8): p. 861-874.
91.Jang, J.-S., ANFIS: adaptive-network-based fuzzy inference system. IEEE transactions on systems, man, and cybernetics, 1993. 23(3): p. 665-685.
92.Takagi, T. and M. Sugeno, Fuzzy identification of systems and its applications to modeling and control, in Readings in Fuzzy Sets for Intelligent Systems. 1993, Elsevier. p. 387-403.
93.Sugeno, M. and G. Kang, Structure identification of fuzzy model. Fuzzy sets and systems, 1988. 28(1): p. 15-33.
94.Cawley, G.C. and N.L. Talbot, Efficient leave-one-out cross-validation of kernel fisher discriminant classifiers. Pattern Recognition, 2003. 36(11): p. 2585-2592.
95.Chang, H.-H., A data mining approach to dynamic multiple responses in Taguchi experimental design. Expert Systems with Applications, 2008. 35(3): p. 1095-1103.
96.Demuth, H. and M. Beale, Neural Network Toolbox For Use with Matlab--User''S Guide Version 4.0. 1993.