跳到主要內容

臺灣博碩士論文加值系統

(44.192.115.114) 您好!臺灣時間:2023/09/27 03:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃世翹
研究生(外文):Sai-Kiu Wong
論文名稱:三維有限元素分析行星式三輥輥壓製程
論文名稱(外文):Three-Dimensional Finite Element Analysis of Hot Rolling Process in High Reduction Mill
指導教授:趙修武
指導教授(外文):Shiu-Wu Chau
口試委員:陳夏宗王世明莊東漢江茂雄
口試委員(外文):Shia-Chung ChenShih-Ming WangTung-Han ChuangMao-Hsiung Chiang
口試日期:2019-07-08
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:95
中文關鍵詞:行星式三輥輥壓熱壓延有限元素法S209不銹鋼剛黏塑性
DOI:10.6342/NTU201903992
相關次數:
  • 被引用被引用:0
  • 點閱點閱:113
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要以有限元素數值模型模擬探討行星式三輥輪高縮減壓延機的熱作過程。基於暫態過程及在剛黏塑性及等密度材料的假設下,進行對S209不銹鋼在熱加工的三維模型有限元素分析。本文利用有限元素套裝軟體 DEFORM 3D分析行星式三輥輪高縮減壓延機在不同條件的加工參數,如鋼胚起始溫度、鋼胚直徑、摩擦係數下,對製程產品的影響。透過觀察壓出成品的外觀特徵與有效應變率、有效應變、有效應力、溫度等物理量,進行分析和探討。從結果得知,鋼胚初始溫度對於壓延成品螺紋影響不顯著,兩端縮孔長度隨溫度降低而縮短;而鋼胚直徑縮短能夠縮短兩端縮孔長度,並讓螺紋間距變寬。從鋼胚物理量徑向分佈得知,有效應力及有效應變率則在壓延材料和輥輪的接觸面達到最高值,在中心處最低。有效應變隨著壓延而累積,在完結加工後達到最大值。溫度分佈方面,鋼胚咬入軋延後,在表皮下5 mm處產生高溫區域,超過S209的熔點溫度1350°C,推測是黑帶破壞處起始點,令材料表面與中心分離。
This research is to study the hot working process in a three rolls planetary high reduction mill (HRM) via a finite element method, where unsteady, three-dimensional model is adopted in the study under the assumption of a rigid-viscoplastic and constant-density workpiece. The commercial software, DEFORM 3D is employed for the numerical simulation of the plastic deformation of hot working process in HRM. Different process parameters, such as temperature, friction coefficient, diameter, are studied for S209 stainless steel in hot working process. Product characteristics and physical quantities, such as effective strain rate, effective strain, effective stress and temperature, are analyzed to identify the influence of processing parameter on the hot working process. The numerical result, indicates that the product characteristics are affected by processing parameters. A lower initial billet temperature results in products with shorter cavity at both ends. A billet with smaller initial diameter leads to products with less significant spiral marks along with shorter cavity at both ends. The effective stress and effective strain rate reach to peak values at the contact surface between the rolls and stay low in the middle part of workpiece. The effective strain grows through the rolling process and achieves the maximum at the end of the process. And a temperature peak is found at 5 mm below the surface of the workpiece, which the peak exceeds the melting point of working material. And it is deduced to be the outset of black zone as well as the material detachment inside the product.
Chapter 1 Introduction 1
1.1. Overview 1
1.2. Literature Reviews 4
Chapter 2 Mathematical Model 8
2.1 Hypothesis 8
2.2 Governing Equations 9
2.3 Material Properties 11
2.4 Friction Model 15
2.5 Numerical Method 16
Chapter 3 Geometry, Meshing and Boundary Condition 17
3.1 Geometry 17
3.2 Boundary and Operation Condition 19
3.3 Meshing 21
3.4 Mesh Quality 23
Chapter 4 Parallel Performance Analysis 28
4.1 Speedup and Efficiency 28
4.2 Serial Fraction of Parallel Computation 33
Chapter 5 Numerical Results 36
5.1 Case Description 36
5.2 Product Characteristics 37
5.3 Profile of Radial Physical Quantities 50
5.4 Verification and Validation 83
Chapter 6 Conclusion 89
Reference 91
[1]B.N. Matveev, “PSW Technology – A Revolution in Seamless Tube Production”, Metallurgist, Vol.39, No.3, pp.32-33, 1995.
[2]M. Horihata and M. Motomura, “Transition and Decreasing of the Material Surface Defects in 3-Roll Rolling”, Journal of the Japan Institute of Light Metals, Vol.38, No.5, pp.133-140, 1988.
[3]K. Komori, “Simulation of Deformation and Temperature in Multi-Pass Three-Roll Rolling”, Journal of Material Processing Technology, Vol.92, pp.450-457, 1999.
[4]H. Overstam, S. Lundberg and M. Jarl, “Finite Element Modelling and Laboratory Simulation of High Speed Wire Rod Rolling in 3-Roll Stands”, Steel Research, Vol.74, No.7, pp.431-443, 2003.
[5]Z. Pater and J. Tomczak, “Fem Modelling of a Helical Wedge Rolling Process for Axisymmetric Parts”, Advances in Science and Technology Research Journal, Vol.12, Issue 1, pp.115-126, 2018.
[6]K. Aoyagi and K. Ohta, “Material Deformation, Rolling Load and Torque in 3-roll Planetary Mill”, Journal of Japan Society for Technology of Plasticity, Vol.24, pp.1039-1047, 1983.
[7]T. Nishio, T. Noma, S. Karashige, H. Hino, T. Tsuta and K. Kadota, “Development of Three-Roll Planetary Mill PSW”, Kawasaki Steel Technology, Rep.84, pp.81-90, 1995.
[8]R. Lapovok, S. Smirnov and V. Solomein, “Modeling the Helical Rolling of Rods in a Three-High Mill”, Journal of Material Processing Technology, Vol.80, pp.365-369, 1998.
[9]Y.J. Li, Elastoplastic Analysis of High Reduction Machine of 3-Roll Planetary Mill by the Finite Element Method, Master Thesis, National Sun Yat-sen University, 1995.
[10]M.H. Chang, Three-Dimensional Finite Element Analysis of Three-Roll Planetary Mill Processes, PhD Thesis, National Sun Yat-sen University, 2001.
[11]Y.M. Hwang, H.H. Hsu and G.Y. Tzou, “A Study of PSW Rolling Process Using Stream Functions”, Journal of Material Processing Technology, Vol.80, pp.341-344, 1998.
[12]Y.M. Hwang, W.M. Tsai, F.H. Tsai and I. Her, “Analytical and Experimental Study on the Spiral Marks of the Rolled Product during Three-Roll Planetary Rolling Processes”, International Journal of Machine Tools and Manufacture, Vol.46, pp.1555-1562, 2006.
[13]C.K. Shih and C. Hung, “The Finite Element Analysis on Planetary Rolling Process”, 23rd National Conference of Theoretical and Applied Mechanics, Taiwan, 1999.
[14]C.K. Shih, C. Hung and R.Q. Hsu, “The Finite Element Analysis on Planetary Rolling Process”, Journal of Material Processing Technology, Vol.113, pp.115-123, 2001.
[15]C.K. Shih, R.Q. Hsu and C. Hung, “A Study on Seamless Tube in the Planetary Rolling Process”, Journal of Material Processing Technology, Vol.121, pp.273-284, 2002.
[16]C.K. Shih, A Study on Three-Roll Planetary Rolling Process, PhD Thesis, National Chiao Tung University, 2002.
[17]C.K. Shih and C. Hung, “Experimental and numerical analyses on three-roll planetary rolling process”, Journal of Material Processing Technology, Vol.142, pp.702-709, 2003.
[18]W. Yasuhiro, K. Yamada, S. Hamauzu and S. Uchida, “Three-Dimensional Analysis of Helical Rolling Using Rigid-Plastic Finite Element Method”, The 7th International Conference on Steel Rolling, Japan, 1998.
[19]T.Y. Chen, The Design and Production of the Planetary Three-Roll Experimental Machine, Master Thesis, National Sun Yat-sen University, 2000.
[20]S.H. Zhang, B.D. Wang, S.G. Zhu, B. Li, H.Q. Zhang and J.S. Liu, “Study on Designing of a New Type Three-roll Rotary Experimental Mill”, China Metal Forming Equipment and Manufacturing Technology, Vol.42, No.2, pp.40-42, 2007.
[21]F.H. Tsai, Finite Element Analysis on Planetary Three-Roll Rolling, Master Thesis, National Sun Yat-sen University, 2000.
[22]S.J. Wu, Y.M. Hwang and M.H. Chang, “A Three-Dimensional Finite Element Analysis of the Three-Roll Planetary Mill”, Journal of Material Processing Technology, Vol.123, pp.336-345, 2002.
[23]C.H. Wu, Simulation and Analysis of Process Parameters for High Reduction Mill, Master Thesis, National Cheng Kung University, 2002.
[24]J.K. Lee, K.B. Han, K.W. Kim, J.W. Choe, J.H. Kim and H.Y. Cho, “FEA of Copper Tube Rolling Process Using the Planetary Rolling Mill”, Journal of the Korean Society of Marine Engineering, Vol.34, No.2, pp.303-309, 2010.
[25]Z. Yang, S.H. Zhang, Y. Xu, W.Q. Zhang, H.F. Shi and J.L. Zhang, “Models of Finite Element Simulation on Three-Roll Planetary Rolling Process of Cast Copper Tubes”, Journal of Plasticity Engineering, Vol.10, pp.70-73, 2003.
[26]M. Diez, H.E. Kim, V. Serebryany, S. Dobatkin, Y. Estrin, “Improving the Mechanical Properties of Pure Magnesium by Three-Roll Planetary Milling”, Materials Science and Engineering A, Vol.612, pp.287-292, 2014.
[27]Y.L. Wang, A. Molotnikov, M. Diez, R. Lapovok, H.E. Kim, J.T. Wang and Y. Estrin, “Gradient Structure Produced by Three Roll Planetary Milling: Numerical Simulation and Microstructural Observations”, Materials Science and Engineering A, Vol.639, pp.165-172, 2015.
[28]Y.W. Zhou, Z.N. Mao, Y. Liu and J.T. Wang, “Microstructure Evolution of Copper by Three Roll Planetary Mill”, Solid State Phenomena, Vol.279, pp.44-48, 2018.
[29]D.H. Liu, Y.C. Su, Q.P. Hu and Z.Y. Pan, “Microstructure and Properties of ACR Copper Tube during Three-Roll Planetary Milling Process”, The Chinese Journal of Nonferrous Metals, Vol. 16, No.5, pp.881-886.
[30]S. Dobatkin, S. Galkin, Y. Estrin, V. Serebryany, M. Diez, N. Martynenko, E. Lukyanova and V. Perezhogin, “Grain Refinement, Texture, and Mechanical Properties of a Magnesium Alloy After Radial-Shear Rolling”, Journal of Alloys and Compounds, Vol. 774, pp. 969-979, 2019.
[31]B. Li., S.H. Li, G.L. Zhang and H.Q. Zhang, “Prediction of 3-D Temperature Field of TP2 Copper Tubes in Three-Roll Planetary Rolling Process”, Journal of Material Processing Technology, Vol. 205, pp. 370-375, 2008.
[32]Q.L. Zeng, Y. Zang and Q. Qin, “The Effect of Roll with Passive Segment on the Planetary Rolling Process”, Advance in Mechanical Engineering, Vol.7, pp.1-7, 2015.
[33]L.M. Li, Y. Zang and H.Z. Yao, “The Effect of Friction State on the Planetary Rolling Process of Copper Tube”, Journal of Plasticity Engineering, Vol.16, No.1, pp.115-119, 2009.
[34]Abdullatif Al-Salmi and P. Hartley, “The Influence of Roll Inclination Angle in Three-Roll Planetary Rolling of Bi-Metallic Rod”, Proceedings of 13th International Conference on Metal Forming, Japan, 2010
[35]C. Binotsch, A. Feuerhack, B. Awiszus and H. Potthof, “FEM Simulation of Planetary Cross Rolling Process for Production of Seamless tubes of Steel and Copper”, Proceedings of 13th International Conference on Metal Forming, Japan, 2010
[36]S. Kobayashi, S.I Oh and T. Altan, Metal Forming and Finite Method, Oxford University Press, pp.170-182, 1989.
[37]Michael J. Quinn, Parallel Programming in C with MPI and OpenMP, McGraw-Hill, pp.159-177, 2004.
[38]Walsin Lihwa Corporation Yenshui Plant, private communication, June 2018.
[39]T.H. Chuang and Walsin Lihwa Corporation Yenshui Plant, Metallography of Stainless Steel Sample and Precipitate Analysis Report, 2019.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top