(44.192.10.166) 您好!臺灣時間:2021/03/06 20:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:姚博松
研究生(外文):Bo-Song Yao
論文名稱:網版印刷壓電能量擷取器製程改良及轉印之研究
論文名稱(外文):The Research of Piezoelectric Energy Harvesters by Screen Printing Method and the Improvement of the Transferring Technique
指導教授:吳文中
指導教授(外文):Wen-Jong Wu
口試委員:李世光謝宗霖柯文清
口試委員(外文):Chih-Kung LeeZONG-LIN ShiehWEN-CHING Ko
口試日期:2019-07-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:93
中文關鍵詞:鋯鈦酸鉛網版印刷轉印技術壓電能量擷取器
DOI:10.6342/NTU201903719
相關次數:
  • 被引用被引用:0
  • 點閱點閱:29
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目前透過物聯網以及穿戴式裝置的結合,市場已經逐漸成熟且變得更多元化。穿戴式裝置已漸漸滲透至我們日常生活,當中包括了健康與運動監測、身分驗證與資安問題,這些使生活更加便利的裝置最吸引消費者的注意與期待。而目前隨著已開發國家已經進入了高齡化社會,在這眾多種類的穿戴型裝置當中以醫療技術市場居於龍頭,透過裝置可以達到個人自主健康管理或者追蹤病患生理資訊的目標,資訊網路化也使整體醫療成本的底降低。但目前的大問題在於測量準確度以及長期供電兩者,為了解決此問題,本論文透過網版印刷法沉積壓電PZT(鋯鈦酸鉛)層並製作出壓電能量擷取器裝置,期望透過自供電系統來達到不間斷地供電。此外研究轉印技術期待將結構轉移至可撓性基板上,希望能藉由提升基板的靈活、可彎曲的特性使量測精準度提高。
在能量擷取器的範疇,本論文透過製程改良使本實驗室之網版印刷技術提升,目標為增加元件功率輸出。當中包括了:漿料調配與黏滯度調整、燒結熱製程參數改良、元件結構中加入介電層的保護,使PZT層無論是在材料特性或者製成元件後的輸出與以往研究相比提升了許多。
在轉印技術的範疇,本論文在原基板以及壓電層之間加入二氧化矽以及金作為轉印犧牲層,並成功地調整燒結熱製程參數達到PZT層得以完美脫離的效果,可轉移到其他基板上。而論文當中以轉印至全新不鏽鋼上,目的是希望在使用相同基板上,可以比較轉印前及轉印後的輸出進而去做分析與討論。
本論文成功製作出未轉印以及轉印後之懸臂樑式壓電能量擷取器,在未轉印壓電能量擷取器中,壓電層厚度約為22 μm,在0.5 g之振動環境中,共振頻率以及最大輸出功率分別為73.8 Hz 及 4.51 μW,單位體積能量密度優於本團隊過去以網板印刷製程所製作出之元件;使用轉印技術製程之壓電能量擷取器,壓電層厚度為12 μm,在 0.5 g之振動環境中,共振頻率以及最大輸出功率分別為85.7 Hz及 0.57 μW。並將此兩者數據進行比較與討論。雖然本論文中轉印部分尚未成熟,但相信在不斷地研製之後,這將會是一個相當有發展性的研究。
With the emergence of smart wearable devices connected to the Internet as IoT applications, the commercial electronics market is booming in a great diversity. The most popular applied scenarios are including health monitoring, exercise training, personal identification, etc. Besides, with the coming of aging societies, the need for health monitoring has become an urgent issue in developing and developed countries. Therefore, wearable health monitoring devices or portable medical usage take the lead in the market. However, all the wearable devices are encountering the challenge of long-term monitoring and low accuracy of measurement.
To solve these two problems, screen printing method is used to fabricate the piezoelectric energy harvester (PEH) in this thesis. By doing so, PZT can be deposited thicker in batch process then transferred to any flexible substrates which means the output power and sensitivity could be supposedly improved. In this research, the PZT (Lead Zirconium Titanate) is being used as piezoelectric material. The screen-printing fabrication process has improved with proper modification including paste producing, viscosity controlling and temperature control in the sintering process. Furthermore, the dielectric layer deposition is applied to improve the stability of the poling process. The devices have been improved comparing the results previously.
In transferring process, the thin gold layer on silicon with thermal oxide on top is being the sacrificial layer of the process. PZT thick layer can be easily and successfully transferred after proper sintering process and then the piezoelectric layer can be bonded to any flexible substrates.
In this thesis, an improved cantilever beam piezoelectric energy harvester(PEH) and transferred PEH are successfully fabricated. In improving PEH, the thickness of the PZT layer is about 22 μm. The resonance frequency and the maximum output power are 73.8 Hz and 4.51 μW in a vibration environment of 0.5 g. In transferred PEH. The thickness of the PZT layer is 12 μm. The resonant frequency and maximum output power are 85.7 Hz and 0.57 μW in the same environment.
致謝 i
中文摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 ix
第一章 緒論 1
1.1 研究背景 1
1.2 研究目標 7
1.3 論文架構 9
第二章 壓電原理與網印技術 10
2.1 壓電材料 10
2.1.1 晶體對稱性 11
2.1.2 正壓電效應 12
2.1.3 逆壓電效應 12
2.1.4 壓電材料的種類 13
2.1.5 鋯鈦酸鉛(Lead Zirconate titanate,PZT) 15
2.2 壓電層成長方式 17
2.2.1 溶膠凝膠法(Sol-gel method)[13] 17
2.2.2 濺鍍法(Sputtering method) 19
2.2.3 水熱合成法(Hydrothermal method)[17] 20
2.2.4 網版/鋼版印刷法(Screen printing method)[18] 21
2.2.5 氣膠沉積法(Aerosol depostion method) 22
2.2.6 壓電層沉積技術之比較 23
2.3 轉印技術 25
2.3.1 濕蝕刻法(Wet Etching) 26
2.3.2 雷射脫離法(Laser Lift-Off) 27
2.3.3 外延剝離法(Epitaxial Lift-Off) 28
2.3.4 各種轉印方式的比較 30
第三章 網版印刷製程改良方法 32
3.1 製程改良設計與設備 32
3.1.1 網版印刷設備 34
3.1.2 網版印刷之控制條件 35
3.2 網版印刷製程流程 36
3.2.1 網版設計 37
3.2.2 漿料調配與黏滯度分析 38
3.2.3 基板選擇 41
3.2.4 印刷參數 42
3.2.5 熱處理製程 43
3.3 壓電層品質之改善及分析 48
3.3.1 燒結參數改良 48
3.3.2 X光繞射分析 49
3.3.3 介電層的添加 50
3.4 壓電能量擷取器製備 56
3.4.1 壓電能量擷取器元件製作流程 56
3.4.2 極化原理與過程 59
第四章 轉印技術之研究 62
4.1 文獻回顧 62
4.1.1 藉由金薄膜進行轉印至石墨烯[37] 62
4.1.2 剝離柔性透明薄膜研究[38] 63
4.1.3 薄膜環保式轉印研究 66
4.2 轉印技術研發 66
4.2.1 金屬轉印溫度測試 68
4.2.2 轉印製程 74
第五章 實驗量測與結果討論 75
5.1 元件輸出特性比較 75
5.1.1 開迴路電壓與共振頻率之關係 76
5.1.2 負載阻抗與輸出之關係 77
5.1.3 輸出結果比較與分析 79
5.1.4 轉印至不鏽鋼之輸出比較 85
第六章 結論及未來展望 87
6.1 結論 87
6.2 未來展望 88
參考文獻 89
[1]S. Patel, et al. “A review of wearable sensors and systems with application in rehabilitation,” Journal of neuroengineering and rehabilitation 9.1 : 21,(2012).
[2]A. Kaul and C. Wheelock, “Wearable Device Market Forecasts.” (2016).
[3]F. Schumacher, “ Wearable Technologies News Roundup.” (2014).
[4]R. A. Fuertes, “Researchers Make Electronic Skin Display That can Transmit.” (2018).
[5]R. Allan, “Energy Harvesting Efforts are Picking up Steam.” (2012).
[6]J. Curie and P. Curie. “Développement par compression de l''électricité polaire dans les cristaux hémièdres à faces inclinées.”Bulletin de minéralogie 3.4: 90-93, (1880).
[7]S. Beeby, et al., “Energy harvesting vibration sources for microsystems applications.” Measurement science and technology 17.12: R175, (2006).
[8]N. Ma, B. P. Zhang, W.G. Yang and D. Guo, “Phase structure and nano-domain in high performance of BaTiO3 piezoelectric ceramics,” Journal of the European Ceramic Society, vol. 32, pp. 1059-1066, (2012).
[9]M. Stewart, M. Cain and D. Hall, “Ferroelectric hysteresis measurement and Analysis,” National Physical Laboratory Teddington, (1999).
[10]吳朗.電子陶瓷:壓電陶瓷.全欣, (1994).
[11]Y. Yamashita, et al.“Effect of molecular mass of B-site ions on electromechanical coupling factors of lead-based perovskite piezoelectric materials,”Japanese Journal of Applied Physics 39.9S : 5593, (2000).
[12]B. Noheda and D. Cox, “Bridging phases at the morphotropic boundaries of lead oxide solid solutions,” Phase Transitions, vol. 79, pp. 5-20,(2006).
[13]C. Brinker and G. W. Scherer, “Sol-gel science: the physics and chemistry of sol-gel processing,” Academic press, (2013).
[14]G. Yi , et al. “Preparation of Pb (Zr, Ti) O3 thin films by sol gel processing: Electrical, optical, and electro‐optic properties.” Journal of Applied Physics 64.5 : 2717-2724, (1988).
[15]D. Barrow, et al. “Characterization of thick lead zirconate titanate films fabricated using a new sol gel based process," Journal of Applied Physics, vol. 81, pp. 876-881, (1997).
[16]P. Sigmund, “Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets,” Physical review, 184(2), 383, (1969).
[17]R. M. Barrer, “Hydrothermal chemistry of zeolites (Vol. 269)”London: Academic press. (1982).
[18]D. Nakahira, et al., “Hydrothermal deposition of the PZT film and applications of piezoelectric actuators,” in Mechatronics and Machine Vision in Practice (M2VIP), 2012 19th International Conference, pp. 501-506, (2012).
[19]Y. Jeon, et al., “Journal of electroceramics, vol. 4,” pp. 195-199, (2000).
[20]J. Akedo, et al., “Jet molding system for realization of three-dimensional micro-structures,” Sensors and Actuators A: Physical, vol. 69, pp. 106-112, (1998).
[21]X. M. Zhao, et al., “Fabrication of three‐dimensional micro‐structures: Microtransfer molding,” Advanced Materials, vol. 8, pp. 837-840, (1996).
[22]D. L. Corker, et al., “Liquid-phase sintering of PZT ceramics,” Journal of the European Ceramic Society 20.12 : 2039-2045, (2002).
[23]T. Dufay, et al., “New process for transferring PZT thin film onto polymer substrate." Applications of Ferroelectrics, European Conference on Application of Polar Dielectrics, and Piezoelectric Force Microscopy Workshop (ISAF/ECAPD/PFM), Joint IEEE International Symposium on the. IEEE, (2016).
[24]H. Hida, et al. “High-productive fabrication method of flexible piezoelectric substrate." Micro Electro Mechanical Systems (MEMS), 28th IEEE International Conference, (2015).
[25]K. Park, et al., “Highly‐Efficient, Flexible Piezoelectric PZT Thin Film Nanogenerator on Plastic Substrates.” Advanced materials 26.16: 2514-2520, (2014).
[26]C. W. Cheng, et al., “Epitaxial lift-off process for gallium arsenide substrate reuse and flexible electronics,” Nature communications, 4, 1577, (2013).
[27]H. D. Chen, et al., “Dielectric, ferroelectric, and piezoelectric properties of lead zirconate titanate thick films on silicon substrates,” Journal of Applied Physics, vol. 77, p. 3349, (1995).
[28]G. S. White, et al., “A model for the screen-printing of Newtonian fluids.” Journal of Engineering Mathematics 54.1: 49-70, (2006).
[29]V. Walter, et al., “A piezo-mechanical characterization of PZT thick films screen-printed on alumina substrate,” Sensors and Actuators A: Physical, vol. 96, pp. 157-166, (2002).
[30]N. M. White, et al., “A novel thick-film piezoelectric micro-generator,” Smart Materials and Structures, vol. 10, pp. 850-852, (2001).
[31]V. Tajan, et al., “Elaboration of PZT thick films by screen printing,” vol. 2779, pp. 564-569, (1996).
[32]M. Randall, “Sintering theory and practice.” Solar-Terrestrial Physics: 568, (1996).
[33]C. Kermit, et al., “Parylene deposition apparatus including a quartz crystal thickness/rate controller.” U.S. Patent No. 5,536,317. 16 Jul. (1996).
[34]S. L. Kok, “Energy Harvesting Technologies: Thick-Film Piezoelectric Microgenerator”: INTECH Open Access Publisher, (2011).
[35]F. Rubio‐Marcos, et al., “Effects of poling process on KNN‐modified piezoceramic properties,” Journal of the American Ceramic Society 93.2: 318-321, (2010).
[36]W. H. Tang, “Studies and Application of Piezoelectric Pulse-wave Energy Harvester Skin Patch of {3-1} , {3-3} Mode” , P.84 ,(2018).
[37]L. Song, et al., “Transfer printing of graphene using gold film,” ACS nano, 3(6), 1353-1356. P.66 ,(2009).
[38]C. H. Lee, et al., “Peel-and-stick: mechanism study for efficient fabrication of flexible/transparent thin-film electronics,” Scientific reports, 3, 2917. P.68,(2013).
[39]Y. Jeon, et al., “Fabrication of PZT thick films on silicon substrates for piezoelectric actuator,” Journal of electroceramics 4.1: 195-199,(2000).
[40]L. Stockman, et al., “Topographic study of thin gold films grown on SiO2,” Ultramicroscopy, 42, 1317-1320. P.70,(1992).
[41]K. Morimoto, et al., “High-efficiency piezoelectric energy harvesters of c-axis- oriented epitaxial PZT films transferred onto stainless steel cantilevers,” Sensors and Actuators A: Physical, 163(1): p. 428-432,(2010).
[42]E. E. Aktakka, et al., “Thinned-PZT on SOI process and design optimization for piezoelectric inertial energy harvesting,” in Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), IEEE,(2011).
[43]A. Lei, et al., “MEMS-based thick film PZT vibrational energy harvester,” in Micro electro mechanical systems (MEMS), IEEE,(2011).
[44]G. Tang , et al., “Fabrication and analysis of high-performance piezoelectric MEMS generators,”Journal of Micromechanics and Microengineering, 22(6): p. 065017,(2012).
[45]S. C. Lin, “High performance piezoelectric MEMS generators based on stainless steel substrate,” in Department of Engineering Science and Ocean Engineering, National Taiwan University: Taiwan , (2014).
[46]G. Tang , et al., “Development of high performance piezoelectric d33 mode MEMS vibration energy harvester based on PMN-PT single crystal thick film,” Sensors and Actuators A: Physical, 205: p. 150-155, (2014).
[47]H. Song, et al., “Energy harvesting utilizing single crystal PMN-PT material and application to a self-powered accelerometer,” Journal of Mechanical Design. 131(9): p. 091008, (2009).
[48]S. Moon, et al., “Characterization of a high-power piezoelectric energy-scavenging device based on PMN-PT piezoelectric single crystals,” Journal of the Korean Physical Society, 60(2): p. 230-234 , (2012).
[49]S. C. Lin , “Fabrication og thick film piezoelectric micro energy harvester based on PMN-PT and process optimization,” in Department of Engineering Science and Ocean Engineering, National Taiwan University: Taiwan , (2017).
[50]E. Fernandes, et al., “Modelling and fabrication of a compliant centrally supported meandering piezoelectric energy harvester using screenprinting technology,” In Journal of Physics Conference Series (Vol. 773, No. 1), (2016).
[51]R. Xu, et al., “Fabrication and characterization of MEMS-based PZT/PZT bimorph thick film vibration energy harvester,.” Journal of Micromechanics and Microengineering 22.9: 094007, (2012).
[52]D. Zhu, et al., “A bimorph multi-layer piezoelectric vibration energy harvester.” (2010).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔