[1]Vishnevsky, V. S., Kavertsev, V. L., Kartashev, I. A., Lavrinenko, V. V., Nekrasov, M. M., & Prez, A. A. (1977). Piezoelectric motor structures. U.S. Patent No. 4,019,073. Washington, DC, U.S. Patent and Trademark Office.
[2]Barth, H. V. (1973). Ultrasonic driven motor. IBM Tech. Disclosure Bull., 16, 2263.
[3]Sashida, T., & Kenjo, T. (1993). Introduction to ultrasonic motors. Clarendon Press. England. 1st Ed., pp.6-8.
[4]Uchino, K. (1998). Piezoelectric ultrasonic motors: Overview. Smart materials and structures, 7(3), 273.
[5]Hagood, N. W., & McFarland, A. J. (1995). Modeling of a piezoelectric rotary ultrasonic motor. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 42(2), 210-224.
[6]Smith, G. L., Rudy, R. Q., Polcawich, R. G., & DeVoe, D. L. (2012). Integrated thin-film piezoelectric traveling wave ultrasonic motors. Sensors and Actuators A: Physical, 188, 305-311.
[7]Kuribayashi, M., Ueha, S., & Mori, E. (1985). Excitation conditions of flexural traveling waves for a reversible ultrasonic linear motor. The Journal of the Acoustical Society of America, 77(4), 1431-1435.
[8]Takano, T., & Tomikawa, Y. (1989). Linearly moving ultrasonic motor using a multi-mode vibrator. Japanese Journal of Applied Physics, 28(S1), 164.
[9]Hermann, M., Schinköthe, W., & Haug, J. (1998). Properties of a piezoelectric travelling wave motor generating direct linear motion. Actuator 98, 238-241.
[10]Roh, Y., Lee, S., & Han, W. (2001). Design and fabrication of a new traveling wave-type ultrasonic linear motor. Sensors and Actuators A: Physical, 94(3), 205-210.
[11]Hariri, H., Bernard, Y., & Razek, A. (2013). A traveling wave piezoelectric beam robot. Smart Materials and Structures, 23(2), 025013.
[12]吳昇勳(2017), ''單頻雙模態及雙頻雙模態行進波壓電聲波馬達之最佳化設計,''國立臺灣大學應用力學所碩士論文.[13]朱宗佑(2018), ''雙頻雙模態壓電馬達之最佳化設計,''國立臺灣大學應用力學所碩士論文.
[14]Kurosawa, M. K. (2000). State-of-the-art surface acoustic wave linear motor and its future applications. Ultrasonics, 38(1-8), 15-19.
[15]Musgrave, P. F., Malladi, V. S., & Tarazaga, P. A. (2016). Generation of traveling waves in a 2D plate for future drag reduction manipulation. In Special Topics in Structural Dynamics, Volume 6 (pp. 129-138). Springer, Cham.
[16]Hariri, H., Bernard, Y., & Razek, A. (2018). 2-D traveling wave driven piezoelectric plate robot for planar motion. IEEE/ASME Transactions on Mechatronics, 23(1), 242-251.
[17]Physik Instrumente (PI) Gmbh&Co. KG(2017). Positioning with Piezo Systems. www.PI.WS. Germany.
[18]Chassagne, L., Wakim, M., Xu, S., Topçu, S., Ruaux, P., Juncar, P., & Alayli, Y. (2007). A 2D nano-positioning system with sub-nanometric repeatability over the millimetre displacement range. Measurement Science and Technology, 18(11), 3267.
[19]Fact.MR. Piezoelectric Motor Market. (2018) www.factmr.com/inforgraphic/117/piezoelectric-motor-market.Ireland
[20]陳存勗(2016), ''TiOPc 光壓電致動器線性音波馬達之開發,''國立臺灣大學應用力學所碩士論文.
[21]Jaffe, B. (2012). Piezoelectric ceramics (Vol. 3). Elsevier. Amsterdam. 1st Ed. pp.1-16
[22]Ellis, G. W. (1962). Piezoelectric micromanipulators. Science, 138(3537), 84-91.
[23]Kimura, T., Goto, T., Shintani, H., Ishizaka, K., Arima, T. H., & Tokura, Y. (2003). Magnetic control of ferroelectric polarization. Nature, 426(6962), 55.
[24]Fukada, E., & Yasuda, I. (1957). On the piezoelectric effect of bone. Journal of the physical society of Japan, 12(10), 1158-1162.
[25]吳朗. (1994). 電子陶瓷:壓電陶瓷.全欣資訊圖書股份有限公司,台北市.
[26]溫志偉(2005), 以溶-凝膠法製備之層狀鋯鈦酸薄膜微結構分析及生物相容性評估, 國立高雄應用科技大學機械與精密工程研究所碩士論文.[27]Nelson, D. F. (1978). Theory of nonlinear electroacoustics of dielectric, piezoelectric, and pyroelectric crystals. The Journal of the Acoustical Society of America, 63(6), 1738-1748.
[28]Lee, C. K. (1990). Theory of laminated piezoelectric plates for the design of distributed sensors/actuators. Part I: Governing equations and reciprocal relationships. The Journal of the Acoustical Society of America, 87(3), 1144-1158.
[29]Standard, I. (1988). IEEE standard on piezoelectricity. ANSI/IEEE Standard, 176-1987.
[30]Graff, K. F. (2012). Wave motion in elastic solids. Courier Corporation.America, 1st Ed., pp.229-251
[31]許聿翔. (2002). 壓電系統其力電場互動之理論與實驗: 壓電變壓器, 柔性結構控制, 及自由落體感應子之創新突破基礎. 國立臺灣大學應用力學所碩士論文.[32]黃誠印.(2018). ''薄板式雙壓電氣閥之開發,''國立台灣大學工學院工程科學及海洋工程學研究所碩士論文.