(44.192.112.123) 您好!臺灣時間:2021/03/01 02:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:戴源甫
研究生(外文):Yuan-Fu Dai
論文名稱:拍撲平面傾斜角對豆娘前飛之空氣作用力影響
論文名稱(外文):The Influence of Stroke-Plane-Angle on Aerodynamic Force of a Damselfly During Forward Flight
指導教授:楊鏡堂楊鏡堂引用關係
口試委員:江茂雄楊瑞珍廖英志葉思沂
口試日期:2019-07-09
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:91
中文關鍵詞:拍撲平面傾斜角拍撲平面方位角飛行操控前後翅交互作用
DOI:10.6342/NTU201902071
相關次數:
  • 被引用被引用:0
  • 點閱點閱:22
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文探討豆娘在前飛時,改變拍撲平面傾斜角控制飛行斜率之機制,結果可應用於拍撲翼式微飛行器之飛行操控設計。本研究以高速攝影機正交攝影法量測真實豆娘在自由飛行情況下之翅膀拍撲動作,結果顯示,傾斜角與飛行斜率具有密切相關性,且可以歸納出兩種改變傾斜角方式,模式一為固定前翅傾斜角25°,僅改變後翅傾斜角(30°至50°);模式二為前、後翅以相同傾斜角同時改變(30°至48°),利用量測所得翅膀動作建立三維非穩態數值模擬,並透過改變前、後翅之拍撲平面傾斜角,探討傾斜角對於空氣作用力影響機制進而操控飛行。
模擬結果顯示高傾斜角時,推力增加,垂直力減少,單位週期之平均推力增大,垂直力減小;低傾斜角時,推力減小,垂直力增加,單位週期之平均推力減小,垂直力增大,自由飛行模擬之軌跡顯示高傾斜角時飛行斜率低,低傾斜角時飛行斜率高,飛行斜率與傾斜角呈高度相關,說明拍撲平面傾斜角是能夠有效控制空氣作用力的參數,另外,模擬流場亦顯示前翅脫離之渦漩會影響後翅而產生交互作用,後翅在下拍階段,翼面受到前翅脫離之渦漩影響,上下翼面壓差下降,由於下拍時主要產生阻力與垂直力,翼面壓差降低,雖能夠減弱阻力之產生,卻也造成垂直力減弱,交互作用對於單位週期之平均推力增加約20%,而單位週期之平均垂直力減少約15%,而前後翅交互作用與前翅傾斜角之大小有關,前翅傾斜角低時,脫離之渦漩較容易影響後翅,而前翅傾斜角高時,脫離之渦漩位置較遠,對於後翅產生之影響較小。
本研究提出傾斜角與飛行斜率之關係,並解釋傾斜角對於飛行操控之影響機制,亦探討不同傾斜角模式對於前後翅交互作用之影響,未來在微飛行器設計上,可以應用本研究所提出之傾斜角與飛行斜率之關係,作為飛行操控之設計。
In this study, we used high-speed cameras to measure the motions of flapping-wings of damselflies in the case of free flight (forward flight). The results showed that the stroke-plane-angle (β) was closely correlated with the flight slope, and two modes of β of wings could be concluded. In first mode, βforewing is fixed at 25°, while βhindwing is between 30° and 50°. In the second mode, βforewing and βhindwing is the same. Using the measured wing motions, a 3-D numerical simulation was established, and the influence of the stroke-plane-angle on aerodynamic force was investigated by changing β in simulation.
The simulation results showed that the wing at a higher β would generate larger horizontal force and lower vertical force. Lower β would generate lower horizontal force and larger vertical force. The trajectory of free flight simulation showed that the flight slope is highly correlated with β, which indicated that the adjustment of β is an effective way to control the aerodynamic force. In addition, the flow field also showed that the difference between different modes is the influence of wing-wing interaction. In first model, the surface of hindwing is affected by the vortex from the forewing during the downstroke, resulting in the pressure difference of the upper and lower surface dropping, so the vertical force and Negative horizontal force is weakened. Wing-wing interaction increased the average of horizontal force by 20% in a period and decreased vertical force by 15 % in a period. In second mode, since the forewing and hindwing flapped at the same stroke-plane-angle, the hindwings were less affected by the vortex from the forewings, and the influence of the wing-wing interaction on horizontal force and vertical force in a period was less than 10 %.
This study explained the influence of stroke-plane angle on aerodynamic force. The results can be applied to the design of flight control of MAVs.
第一章 前言 1
第二章 文獻回顧 4
2-1 名詞介紹 4
2-2 定翼機飛行理論 7
2-2.1 升力與阻力 7
2-2.2 渦度與環流量 8
2-2.4 華格納效應 9
2-2.5 失速 9
2-3 拍撲翼昆蟲暫態飛行機制 10
2-3.1 翼前緣渦漩貼附 10
2-3.2 翼尖渦漩 11
2-3.4 翅膀旋轉 12
2-3.5 尾流捕獲與附加質量效應 15
2-4 相關文獻回顧 17
2-4.1 豆娘與蜻蜓動態量測 17
2-4.2 拍撲平面與拍撲平面傾斜角 18
2-4.3前、後翅交互作用 20
2-4.4 翅膀運動參數對於飛行的影響 21
第三章 研究方法 24
3-1生物飛行動態量測 25
3-1.1研究物種 25
3-1.2 樣本採集 26
3-1.3樣本質量及長度量測 26
3-1.4實驗架設及過程 28
3-1.5影像後處理及動作分析 31
3-2因次分析 32
3-3數值模擬 36
3-3.1軟體介紹 36
3-3.2統御方程式 36
3-3.3模型建立與翅膀動作 37
3-3.5模擬環境設定 40
3-3.6數值模擬結果驗證 42
第四章 結果與討論 44
4-1動態量測實驗 44
4-1.1飛行動態 44
4-1.2拍撲平面傾斜角與方位角 46
4-1.3拍撲角 50
4-1.4偏離角與翼尖軌跡 51
4-1.5旋轉角 53
4-2 傾斜角對於豆娘前飛之影響 55
4-2.1自由飛行模擬之軌跡 55
4-2.2 豆娘前飛空氣作用力分析 58
4-2.3 傾斜角對於前翅空氣作用力影響 64
4-2.4 傾斜角對於後翅空氣作用力之影響 68
4-3前後翅交互作用 71
4-3.1 模式一之前後翅交互作用 71
4-3.2 模式二之前後翅交互作用 76
4-3.3 流場結構分析 81
第五章 結論與展望 85
5-1結論 85
5-2未來展望 87
5-3 甘特圖 88
第六章 參考文獻 89
Bode-Oke, A. T., Zeyghami, S., & Dong, H. (2017). Aerodynamics and flow features of a damselfly in takeoff flight. Bioinspir Biomim, 12(5), 056006. doi:10.1088/1748-3190/aa7f52
Chin, D. D., & Lentink, D. (2016). Flapping wing aerodynamics: from insects to vertebrates. The Journal of Experimental Biology, 219(7), 920. doi:10.1242/jeb.042317
Dickinson, M. H., Lehmann, F.-O., & Sane, S. P. (1999). Wing Rotation and the Aerodynamic Basis of Insect Flight. Science, 284(5422), 1954. doi:10.1126/science.284.5422.1954
Ellington, C. P., & Lighthill Michael, J. (1984). The aerodynamics of hovering insect flight. III. Kinematics. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 305(1122), 41-78. doi:10.1098/rstb.1984.0051
Jang, H. J., & Yang, G.-H. (2018). Design of Wing Root Rotation Mechanism for Dragonfly-Inspired Micro Air Vehicle. Applied Sciences, 8(10). doi:10.3390/app8101868
Miyoshi, T., Nishimura, T., & Shimizu, T. (2018). Handling parameters for rotational moment generation with four-wing flapping. Journal of Aero Aqua Bio-mechanisms, 7(1), 1-8. doi:10.5226/jabmech.7.1
Park, H., & Choi, H. (2012). Kinematic control of aerodynamic forces on an inclined flapping wing with asymmetric strokes. Bioinspir Biomim, 7(1), 016008. doi:10.1088/1748-3182/7/1/016008
RÜPpell, G. (1989). Kinematic Analysis of Symmetrical Flight Manoeuvres of Odonata. Journal of Experimental Biology, 144(1), 13.
Sane, S. P. (2003). The aerodynamics of insect flight. The Journal of Experimental Biology, 206(23), 4191. doi:10.1242/jeb.00663
Shumway, N., Gabryszuk, M., & Laurence, S. J. (2018). Flapping tandem-wing aerodynamics: dragonflies in steady forward flight 2018 AIAA Aerospace Sciences Meeting: American Institute of Aeronautics and Astronautics.
Shyy, W., Aono, H., Chimakurthi, S. K., Trizila, P., Kang, C. K., Cesnik, C. E. S., & Liu, H. (2010). Recent progress in flapping wing aerodynamics and aeroelasticity. Progress in Aerospace Sciences, 46(7), 284-327. doi:10.1016/j.paerosci.2010.01.001
Sun, X., Gong, X., & Huang, D. (2017). A review on studies of the aerodynamics of different types of maneuvers in dragonflies. Archive of Applied Mechanics, 87(3), 521-554. doi:10.1007/s00419-016-1208-7
Viswanath, K., & Tafti, D. K. (2012). Effect of Stroke Deviation on Forward Flapping Flight. AIAA Journal, 51(1), 145-160. doi:10.2514/1.J051675
Wakeling, J. M., & Ellington, C. P. (1997a). Dragonfly flight. I. Gliding flight and steady-state aerodynamic forces. Journal of Experimental Biology, 200(3), 543.
Wakeling, J. M., & Ellington, C. P. (1997b). Dragonfly flight. II. Velocities, accelerations and kinematics of flapping flight. Journal of Experimental Biology, 200(3), 557.
Wakeling, J. M., & Ellington, C. P. (1997c). Dragonfly flight. III. Lift and power requirements. Journal of Experimental Biology, 200(3), 583.
Wang, H., Zeng, L., Liu, H., & Yin, C. (2003). Measuring wing kinematics, flight trajectory and body attitude during forward flight and turning maneuvers in dragonflies. Journal of Experimental Biology, 206(4), 745. doi:10.1242/jeb.00183
Wang, J. K., & Sun, M. (2005). A computational study of the aerodynamics and forewing-hindwing interaction of a model dragonfly in forward flight. J Exp Biol, 208(Pt 19), 3785-3804. doi:10.1242/jeb.01852
Wang, Z. J., & Russell, D. (2007). Effect of forewing and hindwing interactions on aerodynamic forces and power in hovering dragonfly flight. Phys Rev Lett, 99(14), 148101. doi:10.1103/PhysRevLett.99.148101
Zeyghami, S., Bode-Oke, A. T., & Dong, H. (2016). Quantification of wing and body kinematics in connection to torque generation during damselfly yaw turn. Science China Physics, Mechanics & Astronomy, 60(1), 014711. doi:10.1007/s11433-016-0302-5
王相博 (2013) 蝴蝶撲翼姿態對飛行影響之研究. 臺灣大學機械工程學系碩士論文.
王彥傑 (2016) 腹部動態對蝴蝶仿生飛行器控制之研究. 臺灣大學機械工程學系碩士論文.
費約翰 (2017) 蝴蝶身體俯仰動態之飛行動力機制與飛行操控研究. 臺灣大學機械工程學系博士論文.
侯詞軒 (2017) 蝴蝶翼展尺寸對於飛行軌跡和姿態影響之研究. 臺灣大學機械工程學系碩士論文.
李哲安 (2017) 利用翅膀掃掠動態控制蝴蝶拍撲飛行之研究. 臺灣大學機械工程學系碩士論文.
張勝凱 (2018) 利用腹部動態控制蝴蝶飛行研究. 臺灣大學機械工程學系碩士論文
梁家銘 (2018) 豆娘不對稱拍翅動作與飛行操控研究. 臺灣大學機械工程學系碩士論文
鄒佩沂 (2018) 翅膀相位差對豆娘與蜻蜓懸停策略之影響. 臺灣大學工程科學與海洋工程學系碩士論文
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔