(3.239.33.139) 您好!臺灣時間:2021/03/05 18:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃鵬丞
研究生(外文):Peng-Cheng Huang
論文名稱:以濺鍍硒化/硫化法沉積銅銦鎵硒薄膜太陽能電池
論文名稱(外文):Optimization of Cu(In, Ga)(S, Se)2 thin film solar cell using sequential sputtering-selenization and sulfurization
指導教授:宋家驥宋家驥引用關係
指導教授(外文):Chia-Chi Sung
口試委員:李岳聯張合許春耀蔡孟霖
口試委員(外文):Yueh-Lien LiHo ChangChun-Yao HsuMeng-Lin Tsai
口試日期:2019-07-22
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:113
中文關鍵詞:硫化銅銦鎵硒太陽能電池前驅層堆疊濺鍍硒化/硫化
DOI:10.6342/NTU201903368
相關次數:
  • 被引用被引用:0
  • 點閱點閱:24
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討製程變因對CIGSSe薄膜太陽能電池的研究,並優化各層薄膜改善元件光電轉換效率。Mo背電極的研究顯示,雙層Mo薄膜提供低電阻、以及良好的結晶性以及附著性。另一方面,Mo頂層(top layer)的形貌改變能夠控制Na元素的含量,Na含量的添加能改善CIGSe太陽能元件效率從6.21到8.54%。CIGSe的元素比例Cu/(In+Ga)為0.95時,因為符合期待的化學計量比導致有著較佳的光電轉換效率。硒化製備CIGSe吸收層後,SIMS分析顯示CIGSe表面的Ga元素缺乏,這將導致在CIGSe與CdS的介面處載子複合增加。為了解決表面Ga元素缺乏問題,本研究提出CuGa/In/CuGa堆疊方式以硒化製備CIGSe吸收層,結果顯示元件轉換效率由8.54%提升至10.37%。硫化製程中,硫擴散至CIGSe表面將會提高短路電流密度(Jsc),這是因為表面載子複合減少並且鈍化缺陷所致。此外,硫化後因材料能隙改變使元件開路電壓提升,轉換效率由10.37%提升至12.71%。對CdS緩衝層而言,CdS的厚度相對於製程反應溫度對元件轉換效率影響較大。本研究以濺鍍硒化與硫化法沉積反應CIGSSe太陽能電池並優化各層,結果顯示最佳的元件轉換效率為12.71%。
This thesis presents a comprehensive study on the CIGSSe solar cell via optimized experimental setup and parameters. The Mo bilayer had a lower sheet resistance, a better crystalline quality, and an exceptional adhesion property. Amount of Na can be controlled by varying Mo top layer structure to improve the CIGSe cell efficiency from 6.21 to 8.54 %. The CIGSe composition (Cu/(In+Ga)) at 0.95 revealed an excellent cell efficiency than the ratio of 0.75, 0.85, 1.05. The results indicated that Ga depletion at the CIGSe surface during the selenization process. To reduce the recombination at the CIGSe/CdS interface owing to Ga depletion, the CIGSe was performed by a double-graded bandgap using CuGa/In/CuGa stacked. The cell efficiency improved from 8.54 to 10.37% due to bandgap alignment. The S incorporated into the CIGSe surface contributes to a higher JSC due to the formation of hole-recombination barrier and passivation of defects after sulfurization. After sulfurization process, the VOC, JSC, FF, and efficiency increased from 0.524 to 0.564 V, 31.65 to 33.05 mA/cm2, 62.50 to 68.13, and 10.37 to 12.71%, respectively. The experimental results of CdS confirmed that the efficiency of the CIGSSe solar cell was mainly dependent on the thickness of CdS than reaction temperature during chemical bath deposition. In this thesis, the growth of CIGSSe thin films by sequential sputtering-selenization and sulfurization has been optimized with a maximum coversion efficiency of 12.71%.
Contents
Acknowledgement i
中文摘要 ii
Abstract iii
Contents iv
List of Figures viii
List of Tables xiv
Chapter 1 Introduction 1
1.1 Present status and prospects of photovoltaics energy 1
1.2 Commercial PV technologies 4
1.3 Description of the CIGSe solar cells 6
1.3.1 Introduction 6
1.3.2 The structure of a standard CIGSe solar cell 9
1.3.3 Substrate 10
1.3.4 Mo back contact 10
1.3.5 CIGSSe absorber 11
1.3.6 CdS buffer layer 12
1.3.7 ZnO/ZnO: Al front contact 13
Chapter 2 Theory 15
2.1 Photovoltaic effect 15
2.2 P-N junction and basic equations 16
2.3 Energy band diagram 19
2.4 Equivalent circuit of a solar cell 20
2.5 Phase of CIGSe material systems 21
Chapter 3 Experimental procedure 23
3.1 Fabrication instruments 23
3.1.1 Magnetron sputtering deposition system 23
3.1.2 Thermal evaporation system 25
3.1.3 Rapid thermal annealing equipment 26
3.2 Fabrication process 28
3.2.1 Sample preparation 28
3.2.2 Mo back contact deposition 28
3.2.3 CuInGa precursors deposition 30
3.2.4 Selenization process 32
3.2.5 Sulfurization process 34
3.2.6 CdS buffer layer deposition 35
3.2.7 ZnO/ZnO: Al and Al front contact deposition 36
3.3 Sample characterization 39
3.3.1 Surface profilometer 39
3.3.2 Field-emission scanning electron microscope 39
3.3.3 X-ray diffraction 40
3.3.4 X-ray fluorescence 42
3.3.5 Raman scattering analysis 43
3.3.6 Secondary ion mass spectrometry 44
3.3.7 X-ray photoelectron spectroscopy 46
3.3.8 Ultraviolet-visible Spectrophotometry 48
3.3.9 Hall effect measurement 49
3.3.10 Current density-voltage characteristics 50
3.3.11 External quantum efficiency 51
Chapter 4 Results and Discussion 53
4.1 Optimization of Mo back contact 53
4.1.1 Effect of sputtering parameters on Mo bilayer 53
4.1.2 Effects of Na content on CIGSe by varying Mo condition 61
4.2 Optimization of CIGSe absorber layer 66
4.2.1 Compositional and optoelectronic properties of CIGSe thin films 66
4.2.2 Selenization of CIGSe 71
4.2.3 Stacking type in CuInGa precursors 73
4.2.4 Effect of sulfur passivation on CIGSe performance 78
4.3 Optimization of the CdS buffer layer 84
4.3.1 The effect of the CdS thickness on cell performance 85
4.3.2 The effect of the CdS reaction temperature on cell performance 91
4.4 Optimization of ZnO Al-doped ZnO and Al front contact 99
Chapter 5 Conclusion 103
Reference 105
[1]BP, Statistical Review of World Energy, 68th edition, 2019.
[2]Janet L. Sawin, Jay Rutovitz, and Freyr Sverrisson, Renewables 2018 global status report, 2018.
[3]Frankfurt School-UNEP Centre for Climate & Sustainable Energy Finance and Bloomberg New Energy Finance, Global Trends in Renewable Energy Investment, p. 12, 2018.
[4]Frank Haugwitz, Asia Europe Clean Energy Advisory Co, personal communication with REN21, 2018.
[5]Priya Sanjay, India reaches 20 GW in cumulative installed solar capacity, Mercom India, 2018.
[6]Arti Mishra Saran, 5 charts to capture 2017, Bridge to India, 2018.
[7]Gaëtan Masson, personal communication with REN21, 2018.
[8]US Energy Information Administration, Electric Power Monthly with Data for December 2017, 2018.
[9]International Energy Agency and Photovoltaic Power, Snapshot of Global Photovoltaic Markets 2018, p. 4, 2018.
[10]Fraunhofer ISE, Photovoltaics Report, Technical representative, 2016.
[11]J. Palm, Schneider, K. Kushiya, L. Stolt, A. N. Tiwari, E. Niemi, K. M. Beck, c. Eberspacher, P. Wohlfart, A. Bayman, U. Schoop, K. Ramanathan, B. Wieting, B. Dimmler, C. Kuhn, S. Whitelegg, U. Rühle, D. Lincot, N. Naghavi, T. Walter, M. C. Lux Steiner, R. Schatmann, A. Kuypers, B. Szyszka, S. Siebentritt, P. Lechner, M. Powalla, R. Noufi, and H. W. Schock, “White paper for CIGS thin film solar cell technology”, WWW.CIGS-PV.NET, 2016.
[12]K. P. Bhandari, J. M. Collier, R. J. Ellingson, and D. S. Apul, “Energy payback time (EPBT) and energy return on energy invested (EROI) of solar photovoltaic systems: A systematic review and meta-analysis”, Renewable and Sustainable Energy Reviews, Vol. 47, pp. 133-141, 2015.
[13]Climate Change 2014: Mitigation of Climate Change, Intergovernmental Panel on Climate Change, 2014.
[14]Levelized cost of electricity renewable energy technology, Fraunhofer ISE, 2013.
[15]K. A. Horowitz and M. Woodhouse, “Cost and potential of monolithic CIGS photovoltaic modules, in Photovoltaic Specialist Conference (PVSC) 2015 IEEE 42nd”, IEEE, pp. 1-6, 2015.
[16]F. Kessler, D. Herrmann, and M. Powalla, “Approaches to flexible CIGS thin-film solar cells”, Thin Solid Films, Vol. 480-481, pp. 491-498, 2005.
[17]National Renewable Energy Laboratory (NREL), Best Research-Cell Efficiency Chart, 2019.
[18]A. Chirilă, P. Reinhard, F. Pianezzi, P. Bloesch, A. R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler, and A. N. Tiwari, “Potassium-induced surface modification of Cu(In, Ga)Se2 thin films for high-efficiency solar cells”, Nature Materials, Vol. 12, pp. 1107-1111, 2013.
[19]F. Kessler and D. Rudmann, “Technological aspects of flexible CIGS solar cells and modules”, Solar Energy, Vol. 77, pp. 685-695, 2004.
[20]MiaSolé, http://miasole.com/, 2019.
[21]A. Gerthoffer, F. Roux, F. Emieux, P. Faucherand, H. Fournier, L. Grenet, and S. Perraud, “CIGS solar cells on flexible ultra-thin glass substrates: Characterization and bending test”, Thin Solid Films, Vol. 592, pp. 99-104, 2015.
[22]N. Kohara, S. Nishiwaki, Y. Hashimoto, T. Negami, and T. Wada, “Electrical properties of the Cu(In, Ga)Se2/ MoSe2/ Mo structure”, Solar Energy Materials and Solar Cells, Vol. 67, pp. 209-215, 2001.
[23]D. Abou-Ras, G. Kostorz, D. Bremaud, M. Kälin, F. Kurdesau, A. Tiwari, and M. Döbeli, “Formation and characterisation of MoSe2 for Cu(In, Ga)Se2 based solar cells”, Thin Solid Films, Vol. 480-481, pp. 433-438, 2005.
[24]M. Tomassini, Synthèse de couches minces de molybdène et application au sein des cellules solaires à base de Cu(In,Ga)Se2 co-évaporé, PhD thesis, Université de Nantes, 2013.
[25]J. H. Yoon, J. H. Kim, W. M. Kim, J. K. Park, Y. J. Baik, T. Y. Seong, and J. h. Jeong, “Electrical properties of CIGS/Mo junctions as a function of MoSe2 orientation and Na doping: Electrical properties of CIGS/Mo junctions”, Progress in Photovoltaics: Research and Applications, Vol. 22, pp. 90-96, 2014.
[26]R. Caballero, M. Nichterwitz, A. Steigert, A. Eicke, I. Lauermann, H. Schock, and C. Kaufmann, “Impact of Na on MoSe2 formation at the CIGSe/Mo interface in thin-film solar cells on polyimide foil at low process temperatures”, Acta Materialia, Vol. 63, pp. 54-62, 2014.
[27]VESTA, http://jp-minerals.org/vesta/en/, 2019.
[28]T. Klinkert, M. Jubault, F. Donsanti, D. Lincot, and J. F. Guillemoles, “Differential in-depth characterization of co-evaporated Cu(In, Ga)Se2 thin films for solar cell applications”, Thin Solid Films, Vol. 558, pp. 47-53, 2014.
[29]P. D. Paulson, R. W. Birkmire, and W. N. Shafarman, “Optical characterization of CuIn1-xGaxSe2 alloy thin films by spectroscopic ellipsometry”, Journal of Applied Physics, Vol. 94, p. 879, 2003.
[30]J. Y. Yang, D. Lee, K. S. Huh, S. J. Jung, J. W. Lee, H. C. Lee, D. H. Baek, B. J. Kim, D. Kim, J. Nam, G. Y. Kimb, and W. Jo, “Influence of surface properties on the performance of Cu(In,Ga)(Se,S)2 thin-film solar cells using Kelvin probe force microscopy”, Royal Society of Chemistry, Vol. 5, pp. 40719-40725, 2015.
[31]P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, and M. Powalla, “Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%”, physica status solidi (RRL) - Rapid Research Letters, Vol. 10, pp. 583-586, 2016.
[32]R. Kamada, T. Yagoika, S. Adachi, A. Handa, K. Fai Tai, T. Kato, and H. Sugimoto, “New World Record Cu(In,Ga)(Se,S)2 Thin Film Solar Cell Efficiency Beyond 22%”, Proceedings of the 43th IEEE Photovoltaic Specialist Conference, pp. 1287-1291, 2016.
[33]R. Scheer and H. W. Schock, “Chalcogenide Photovoltaics: Physics, Technologies, and Thin Film Devices”, Wiley-VCH, 2011.
[34]D. Schmid, M. Ruckh, F. Grunwald, and H. W. Schock, “Chalcopyrite/defect chalcopyrite heterojunctions on the basis of CuInSe2”, Journal of Applied Physics, Vol. 73, p. 2902, 1993.
[35]S. Siebentritt, L. Gütay, D. Regesch, Y. Aida, and V. Deprédurand, “Why do we make Cu(In,Ga)Se2 solar cells non-stoichiometric?”, Solar Energy Materials and Solar Cells, Vol. 119, pp. 18-25, 2013.
[36]R. Scheer, L. Messmann-Vera, R. Klenk, and H. W. Schock, “On the role of non-doped ZnO in CIGSe solar cells: Non-doped ZnO in CIGSe solar cells”, Progress in Photovoltaics: Research and Applications, Vol. 20, pp. 619-624, 2012.
[37]R. Scheer and H. W. Schock, “Thin film heterostructures, in Chalcogenide Photovoltaics”, Wiley-VHC, pp. 9-127, 2011.
[38]C. H. Chang, A. Davydov, B. J. Stanbery, and T. J. Anderson, The Conference Record of the 25th IEEE Photovoltaic Specialists Conference, p. 849, 1996.
[39]D. A. Skoog, F. J. Holler, S. R. Crouch, “Principles of Instrumental Analysis (6th ed.)”, Thomson Brooks/Cole, pp. 169173, 2007.
[40]A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?”, Physical Review Journals, Vol. 47, pp. 777-780, 1935.
[41]S. S. Wang, C. Y. Hsu, F. J. Shiou, P. C. Huang, and D. C. Wen, “Properties of the Mo back contact for the formation of a thin-film photovoltaic absorber”, Journal of Electronic Materials, Vol. 42, pp. 71-77, 2013.
[42]N. Kohara, S. Nishiwaki, Y. Hashimoto, T. Negami, and T. Wada, “Electrical properties of the Cu(In,Ga)Se2/MoSe2/Mo structure”, Solar Energy Materials and Solar Cells, Vol. 67, pp. 209-215, 2001.
[43]P. T. Erslev, J. W. Lee, W. N. Shafarman, and J. D. Cohenon, “The influence of Na on metastable defect kinetics in CIGS materials”, Thin Solid Films, Vol. 517, pp. 2277-2281, 2009.
[44]D. Rudmann, A. F. da Cunha, M. Kaelin, F. Kurdesau, H. Zogg, A. N. Tiwari, and G. Bilger, “Efficiency enhancement of Cu (In,Ga)Se2 solar cells due to post-deposition Na incorporation”, Applied Physics Letter, Vol. 84, pp. 1129-1131, 2004.
[45]S. H. Wei, S. B. Zhang, and A. Zunger, “Effects of Na on the electrical and structural properties of CuInSe2”, Journal of Applied Physics, Vol. 85, pp. 7214-7218, 1999.
[46]K. Leeor, D. Cahen, and H. W. Schock, “Effects of sodium on polycrystalline Cu(In,Ga)Se2 and its solar cell performance”, Advanced Materials, Vol. 10, pp. 31-35, 1998.
[47]T. Wada, N. Kohara, T. Negami, and M. Nishitani, “Chemical and structural characterization of Cu(In, Ga)Se2/Mo interface in Cu(In,Ga)Se2 solar cells”, Japanese Journal of Applied Physics, Vol. 35, L1253-L1256, 1996.
[48]J. H. Yoon, J. H Kim, W. M. Kim, J. K. Park, Y. J. Baik, T. Y. Seong, and J. H. Jeong, “Electrical properties of CIGS/Mo junctions as a function of MoSe2 orientation and Na doping”, Progress in Photovoltaics: Research and Applications, Vol. 22, pp. 90-96, 2014.
[49]J. Liu, D. M. Zhuang, M. J. Cao, X. L. Li, M. Xie, and D. W. Xu, “Cu(In,Ga)Se2-based solar cells prepared from Se-containing precursors”, Vacuum, Vol. 102, pp. 26-30, 2014.
[50]M. Ishii, K. Shibata, and H. Nozaki, “Anion Distributions and Phase Transitions in CuS1-xSex(x=0-1) Studied by Raman Spectroscopy”, Journal of Solid State Chemistry, Vol. 105, pp. 504-511, 1993.
[51]B. Minceva-Sukarova, M. Najdoski, I. Grozdanov, and C. J. Chunnilall, “Raman spectra of thin solid films of some metal sulfides”, Journal of Molecular Structure, Vol. 410-411, pp. 267-270, 1997.
[52]V. Depredurand, Y. Aida, J. Larsen, T. Eisenbarth, A. Majerus, and S. Siebentritt, “Surface treatment of CIS solar cells grown under Cu-excess”, 37th IEEE Photovoltaic Specialists Conference, Vol. 37, pp. 337-342, 2011.
[53]J. Ramanujam and U. P. Singh, “Copper indium gallium selenide based solar cells - a review”, Energy and Environmental Sciences, Vol. 10, pp. 1306-1319, 2017.
[54]J. Koo, S. Jeon, M. Oh, H. Cho, C. Son, and W. K. Kim, “Optimization of Se layer thickness in Mo/CuGa/In/Se precursor for the formation of Cu(InGa)Se2 by rapid thermal annealing”, Thin Solid Films, Vol. 535, pp. 148-153, 2013.
[55]M. Turcu, I. M. Kötschau, and U. Rau, “Composition dependence of defect energies and band alignments in the Cu(In1-xGax)(Se1-ySy)2 alloy system”, Journal of Applied Physics, Vol. 91, pp. 1391-1399, 2002.
[56]L. Wenyi, C. Xun, C. Qiulong, Z. Zhibin, “Influence of growth process on the structural, optical and electrical properties of CBD-CdS films”, Materials Letters, Vol. 59, pp. 1-5, 2005.
[57]K. Kihwan, P. Hyeonwook, M. H. Gregory, K. W. Kyoung and N. S. William, “Composition and bandgap control in Cu(In,Ga)Se2-based absorbers formed by reaction of metal precursors”, Progress in Photovoltaics: Research and Applications, Vol. 23, pp. 765-772, 2015.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔