|
[1]H. Akinaga and H. Ohno, “Semiconductor Spintronics,” IEEE Trans. Nanotechnol. 1, 19 (2002). [2]Žutić, J. Fabian, and S. D. Sarma, “Spintronics: Fundamentals and applications, ” Rev. Mod. Phys. 76, 323 (2004). [3]S. A. Wolf and D. D. Awschalom, “Spintronics: A spin-based electronics vision for the future,” Science. 294, 1488 (2001). [4]Leslie L. Foldy and Siegfried A. Wouthuysen, “Mesoscopic Stern-Gerlach spin filter by nonuniform spin-orbit interaction,” Phys. Rev. 78, 29 (1950). [5]J. Ohe and M. Yamamoto, “On the Dirac theory of spin 1/2 particles and its non-relativistic limit,” Phys. Rev. B. 72, 041308 (2005). [6]M. Oestreich, J. Hübner, and D. Hägele, “Spin injection into semiconductors,” Appl. Phys. Lett. 74, 1251 (1999). [7] S. P. Dash, S. Sharma, and R. S. Patel, “Electrical creation of spin polarization in silicon at room temperature,” Nature. 462, 491 (2009). [8] S. Sahoo, T. Kontos, and J. Furer, “Electric field control of spin transport,” Nature. Physics. 1, 99 (2005). [9] X. Lou, and C. Adelmann “Electrical detection of spin transport in lateral ferromagnet–semiconductor devices,” Nature. Physics. 3, 197 (2007). [10]Y. Aharonov and D. Bohm, “Significance of electromagnetic potentials in quantum theory,” Phys. Rev. 115, 485 (1959). [11] Y. Aharonov and A. Casher, “Topological quantum effects for neutral particles,” Phys. Rev. Lett. 53, 319 (1984). [12] J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki,“Gate control of spin-orbit interaction in an inverted heterostructure,” Phys. Rev. Lett. 78, 1335 (1997). [13] D. D. Awschalom, M. E. Flatté, and N. Samarth, “Spintronics-microelectronic devices that compute with the spin of the electron may lead to quantum microchips,” Sci. Am. 286,66 (2002). [14]M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information,Cambridge University Press, Cambridge (2000). [15] R. Ionicioiu and I. D’Amico, “Mesoscopic Stern-Gerlach device to polarize spin currents,” Phys. Rev. B 67, 041307 (2003). [16] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM J. Comput. 26, 1484 (1997). [17] D. Kielpinski, C. Monroe, and D. J. Wineland, “Architecture for a large-scale ion-trap quantum computer,” Nature. 417, 709 (2002). [18] M. Martinis, S. Nam, J. Aumentado, and C. Urbina, “Rabi oscillations in a large josephson-junction qubit,” Phys. Rev. Lett. 89, 117901 (2002). [19] M. K. Vandersypen, M. Steffen, and G. Breyta, “Experimental realization of Shor''s quantum factoring algorithm using nuclear magnetic resonance,” Nature. 414, 883 (2001). [20] P. Földi, B. Molnár, M. G. Benedict, and F. M. Peeters, “Spintronic single-qubit gate based on a quantum ring with spin-orbit interaction,” Phys. Rev. B 71, 033309 (2005). [21] S.J. Gong and Z.Q. Yang, “Flying spin-qubit gates implemented through Dresselhaus and Rashba spin–orbit couplings,” Phys. Lett. A 367, 369 (2007). [22] P. Földi, O. Kálmán, M.G. Benedict, and F.M. Peeters, “Quantum rings as electron spin beam splitters,” Phys. Rev. B 73 155325 (2006). [23] O. Kálmán, T. Kiss, and P. Földi, “Quantum walk on the line with quantum rings,” Phys. Rev. B 80 035327 (2009). [24] J. Nitta, F. E. Meijer, and H. Takayanagi, “Spin-interference device,” Appl. Phys. Lett. 75, 695 (1999). [25]Y. Sato, T. Kita, S. Gozu, and S. Yamada, “Large spontaneous spin splitting in gate-controlled two-dimensional electron gases at normal heterojunctions,” J. Appl. Phys. 89, 8017 (2001). [26] A. A. Kiselev and K. W. Kim, “T-shaped ballistic spin filter,” Appl. Phys. Lett. 78, 755 (2001). [27] D. Frustaglia, M. Hentschel, and K. Richter, “Quantum transport in nonuniform magnetic fields: Aharonov-Bohm ring as a spin switch,” Phys. Rev. Lett. 87, 256602 (2001). [28] M. Governale, D. Boese, U. Zu¨licke, and C. Schroll, “Filtering spin with tunnel-coupled electron wave guides,” Phys. Rev. B 65, 1440403 (2002). [29]J. Levy, “Universal quantum computation with spin-1/2 pairs and heisenberg ex-change,” Phys. Rev. Lett. 89, 147902 (2002). [30] R. Ionicioiu and I. D’Amico, “Mesoscopic Stern-Gerlach device to polarize spin currents,” Phys. Rev. B 67, 041307 (2003). [31] B. Molnár, F. M. Peeters, and P. Vasilopoulos, “Spin-dependent magnetotransport through a ring due to spin-orbit interaction,” Phys. Rev. B 69,155335 (2004). [32] D. Frustaglia and K. Richter, “Spin interference effects in ring conductors subject to Rashba coupling,” Phys. Rev. B 69, 235310 (2004). [33] P. Földi, B. Molnár, M. G. Benedict, and F. M. Peeters, “Spintronic single-qubit gate based on a quantum ring with spin-orbit interaction,” Phys. Rev. B 71, 033309 (2005). [34] O. Kálmán, P. Földi, and M.G. Benedicta, “Spatial interference induced spin polarization in a three-terminal quantum ring,” Physica E, 40, 567 (2008). [35] O. Kalman, P. Foldi, M. G. Benedict, and F. M. Peeters, “Magnetoconductance of rectangular arrays of quantum rings,” Phys. Rev. B 78, 125306 (2008). [36] P. Foldi, O. Kalman, F.M. Peeters, “Stability of spintronic devices based on quantum ring networks,” Phys. Rev. B 80, 125324(2009). [37] L. G. Wang, Kai Chang, and K. S. Chan, “Charge and spin currents in a three-terminal mesoscopic ring,” J. Appl. Phys. 105, 013710 (2009). [38] V. Moldoveanu and B. Tanatar, “Spin splitter regime of a mesoscopic Rashba ring,” Phys. Lett. A 375, 187 (2010). [39] F. A. Chegeni and E. Faizabadi, “Quantum conductance of three-terminal Nanoring in the Presence of Rashba Interaction and an Impurity,” Int. J. Appl. Phys. Math. 1, 155 (2011). [40] F. Fallah and M. Esmaeilzadeh, “Spin transport in a quantum ring in the presence of Rashba spin–orbit interaction using the S-matrix method,” J. Appl. Phys. 111, 043717 (2012). [41] D. C Leo and F. Mireles, “Quantum-ring spin interference device tuned by quantum point contacts,” J. Appl. Phys. 114, 193706 (2013). [42] A. S. Naeimi, L. Eslami, M. Esmaeilzadeh, and M. R. Abolhassani, “Spin transport properties in a double quantum ring with Rashba spin-orbit interaction,” J. Appl. Phys. 113, 014303 (2013). [43] L. X. Zhai, Y. Wang, and J. J. Liu, “Zero-conductance resonances and spin polarizations in three-terminal rings in the presence of spin-orbit coupling,” J. Appl. Phys. 116, 203703 (2014). [44] Y. Wang, L. Z. Duan, and L. X. Zhai, “Spin conductances and spin polarization components in a three-terminal ring subject to Rashba coupling,” AIP. Advance 5, 077169 (2015). [45] E. Faizabadi, M. Molavi, “Radius effect on the spintronic properties of a triangular network of quantum nanorings in the presence of Rashba spin-orbit interaction, ” Curr. Appl. Phys. 17, 207 (2017). [46] Li. X. Zhai, Y. Wang, and Z. An, “Effects of Zeeman splitting on spin transportation in a three-terminal Rashba ring under a weak magnetic field,” AIP. Advance 8, 055120 (2018). [47] F. E. Meijer, A. F. Morpurgo, and T. M. Klapwijk, “One-dimensional ring in the presence of Rashba spin-orbit interaction: Derivation of the correct Hamiltonian,” Phys. Rev. B 66, 033107 (2002). [48] T. Ihn, Semiconductor Nanostructures, Oxford, Zurich (2010). [49] A. Manchon, H. C. Koo, and J. Nitta, “New perspectives for Rashba spin–orbit coupling,” Nat. Mater. 14, 871 (2015). [50] J. Kempe ,“Quantum random walks - an introductory overview” Contemp. Phys. 44, 307 (2003).
|