(54.236.58.220) 您好!臺灣時間:2021/02/27 17:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃彥翔
研究生(外文):Yen-Hsiang Huang
論文名稱:被動水下聲學監測與智慧型水面無人載具整合之研究
論文名稱(外文):Study of The Passive Acoustic Monitoring System on Autonomous Surface Vehicle
指導教授:陳琪芳陳琪芳引用關係
指導教授(外文):Chi-Fang Chen
口試委員:蔡進發王學誠王崇武
口試日期:2019-03-08
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:96
中文關鍵詞:被動水下聲學量測水面無人載具水下聲源定位法即時哨聲偵測器即時聲學量測系統載具自主控制聲源追蹤演算法MOOS-IvPMaritime robotX
DOI:10.6342/NTU201901296
相關次數:
  • 被引用被引用:0
  • 點閱點閱:67
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
台灣海峽地理環境優渥,擁有世界上數一數二優良之風場,因此具備極大的潛能做離岸風電之開發。然而現階段之單樁施工,需要透過施工船進行打樁的動作,而在打樁過程中,研究顯示其施工所輻射之水下噪音會影響中華白海豚(Sousa chinensis)生態。因此,施工期間偵測是否有白海豚出沒於施工區為施工單位與環保單位關注之訊息。故本文以此為出發點,建立了一套利用水面無人載具之被動水下聲學量測系統,,透過即時水下音訊分析與即時時頻譜回傳,來得知水下之聲學環境,並且透過海豚之哨叫聲(Whistle)來判定量測區域中是否有海豚之存在,若目標訊號明確,載具將自主性移動至特定區域做進一步之量測。全系統透過C++實踐並且可應用於嵌入式系統。本文之系統可分為四大部分,分別為即時哨聲偵測、聲源方位計算、載具自主控制系統與即時監控系統。本文將詳細說明各部分並透過2018 Maritime robotX Challenge中之聲源定位任務之量測資料分析本文之聲源方位計算演算法之可行性;並於台灣基隆河大直橋下水域,驗證本文所開發之系統之可行性,並且分析本系統之誤差來源與未來可精進項目。
Due to the potential of the offshore wind energy in the Taiwan Strait, the development of the offshore wind farm is cost-effective. As the green energy concept growing, Taiwan are actively promoting the project “Thousand Wind Turbines” from 2012. Up to now, there are two mono-pile foundation wind turbines completed in 2016. The objective is to build up to 800 offshore wind turbines, and 450 onshore wind turbines before 2030. However, the expected develop area for potential offshore wind farms has overlapped with the habitat of the Sousa chinensis (also called Indo-Pacific Humpback Dolphin or Chinese White Dolphin). The impact noise from the pile driving process have shown to cause Temporary Threshold Shift (TTS) even Permanent Threshold Shift (PTS) to marine mammals at specific range from pile driving spot. Furthermore, out of the PTS and TTS range, noises from the construction are still high enough to disturb and even change the behavior of marine mammals. As a result, to know if there are dolphins in the construction area is the most important. This paper provides a process for checking if there are dolphin in the specific area and using unmanned surface vehicle to track the source and find the area they are. This process has 4 main parts, including real-time dolphin whistle detection, real-time shore side monitoring system, underwater acoustic source localization and source tracking behavior of the surface vehicle. This thesis will go into the details of those parts.
誌謝 I
摘要 II
ABSTRACT III
目錄 IV
圖目錄 VI
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 1
1.2.1 被動水下聲學監測 1
1.2.2 聲源定位 4
1.2.3 水面無人載具應用領域 6
1.3 論文架構 9
第二章 被動水下聲學量測系統 10
2.1 即時哨聲偵測系統 10
2.1.1 短時距傅立葉轉換(Short Time Fourier Transform, STFT ) 11
2.1.2 簡單移動平均(Simple Moving Average) 13
2.1.3 邊緣偵測濾波器 13
2.1.4 哨聲高時間延續特徵過濾 15
2.2 遠端監控系統 17
2.2.1 音訊資料即時回傳系統 17
2.2.2 即時監控系統 18
2.3 聲源方位計算 20
2.3.1 交互相關函數法(Cross correlation, CC) 20
2.3.2 可變閥值之峰值擷取法 21
第三章 系統整合與無人載具自動控制 23
3.1 硬體架構 23
3.2 系統軟硬體整合 24
3.3 載具自動控制系統 25
3.3.1 行為模式決策引擎原理 25
3.3.2 IvP Function與IvP Solver原理 26
3.3.3 載具聲源追蹤行為開發 28
第四章 聲源方位計算:2018 Maritime RobotX Challenge水下聲源定位任務 30
4.1 竹湖測試 31
4.2 Maritime RobotX Challenge實測 35
4.3 結果與討論 39
第五章 智慧型無人聲學載台量測系統驗證 42
5.1 實驗配置 42
5.1.1 實驗環境配置 42
5.1.2 載具與量測系統整合 43
5.1.3 任務設定 45
5.2 系統功能驗證 46
5.2.1 即時哨聲偵測器與監測介面驗證 46
5.2.2 聲源方位計算與載具自主控制系統驗證 49
5.2.3 偵測效能分析 54
5.2.4 結果與討論 59
第六章 結論與未來發展建議 60
6.1 結論 60
6.2 未來發展建議 60
參考文獻 62
附錄A 原始程式碼 64
[1]4C offshore. Available: https://www.4coffshore.com/windfarms/windspeeds.aspx
[2]周蓮香 and 李政諦, "中華白海豚棲地熱點評估及整體保育方案規劃," 2010. 行政院農業委員會林務局
[3]S. Mahmud, N. Sidorovskaia, K. Li, C. Pierpoint, C. Tiemann, and D. Mellinger, "Comparing performance of bottom-moored, glider, and unmanned surface vehicle towed PAM platforms for marine mammal detection."
[4]李威倫, "海豚哨叫聲偵測之研究," 臺灣大學工程科學及海洋工程研究所學位論文 pp. 1-74, 2018.
[5]T.-H. Lin, L.-S. Chou, T. Akamatsu, H.-C. Chan, and C.-F. Chen, "An automatic detection algorithm for extracting the representative frequency of cetacean tonal sounds," The Journal of the Acoustical Society of America, vol. 134, no. 3, pp. 2477-2485, 2013.
[6]M. Brunoldi et al., "A permanent automated real-time passive acoustic monitoring system for bottlenose dolphin conservation in the Mediterranean sea," PloS one, vol. 11, no. 1, p. e0145362, 2016.
[7]C. Knapp and G. Carter, "The generalized correlation method for estimation of time delay," IEEE transactions on acoustics, speech, and signal processing, vol. 24, no. 4, pp. 320-327, 1976.
[8]H. Choi, J. Woo, and N. Kim, "Localization of an underwater acoustic source for acoustic pinger-based transit task in 2016 Maritime RobotX Challenge," in Underwater Technology (UT), 2017 IEEE, 2017, pp. 1-7: IEEE.
[9]A. T. Ziegwied, V. Dobbin, S. Dyer, C. Pierpoint, and N. Sidorovskaia, "Using Autonomous Surface Vehicles for Passive Acoustic Monitoring (PAM)," in OCEANS 2016 MTS/IEEE Monterey, 2016, pp. 1-5: IEEE.
[10]P. Johnston and C. Pierpoint, "Deployment of a passive acoustic monitoring (PAM) array from the AutoNaut wave-propelled unmanned surface vessel (USV)," in OCEANS 2017-Aberdeen, 2017, pp. 1-4: IEEE.
[11]A.M.S. Key West Trials of Three Boats. Available: http://www.automarinesys.com/
[12]M. R. Benjamin, J. J. Leonard, H. Schmidt, and P. M. Newman, "An overview of moos-ivp and a brief users guide to the ivp helm autonomy software," 2009.
[13]M. Frigo and S. G. Johnson, "The design and implementation of FFTW3," Proceedings of the IEEE, vol. 93, no. 2, pp. 216-231, 2005.
[14]T.-H. Lin, "應用被動式聲學監測台灣西海岸中華白海豚行為生態與棲地利用," 臺灣大學生態學與演化生物學研究所學位論文, pp. 1-150, 2013.
[15]J. Tranter, "Introduction to sound programming with alsa," Linux Journal, vol. 2004, no. 126, p. 4, 2004.
[16]Robonation. Owner’s Operation and Service Manual
Maritime RobotX Challenge WAM-V® USVx. Available: https://robotx.org/files/WAM-V-USVx-for-RobotX-Service-and-Operation-Manual-rev_1.pdf
[17]Robonation. (2018). 2018 Maritime RobotX Challenge Task Descriptions and Specifications. Available: https://robotx.org/images/RobotX_2018_Tasks-FINAL_v4.0.pdf
[18]C. Robotics. Heron Unmanned Surface Vehicle DataSheet. Available: https://www.clearpathrobotics.com/heron-unmanned-surface-vessel/
[19]李政恩, "海洋環境對聲納偵測效能及反潛搜索戰術之影響," 碩士論文, 工程科學及海洋工程學研究所, 國立臺灣大學, 2006.
[20]陳琪芳;郭茂坤;林穎聰, "高頻主動聲納效能分析研究(II)," 國科會國防科技推展小組計畫成果報告 NSC87-2623-D-002-003, 1999.
[21]C. Harrison and J. Harrison, "A simple relationship between frequency and range averages for broadband sonar," The Journal of the Acoustical Society of America, vol. 97, no. 2, pp. 1314-1317, 1995.
[22]Z.-T. Wang et al., "Apparent source levels and active communication space of whistles of free-ranging Indo-Pacific humpback dolphins (Sousa chinensis) in the Pearl River Estuary and Beibu Gulf, China," PeerJ, vol. 4, p. e1695, 2016.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔