跳到主要內容

臺灣博碩士論文加值系統

(44.212.96.86) 您好!臺灣時間:2023/12/07 01:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳奕宏
研究生(外文):Yi-Hung Chen
論文名稱:溪頭孟宗竹林之不同竹桿年齡水分利用特性
論文名稱(外文):Effects of culm ages on water use characteristics in a Taiwanese Moso bamboo forest
指導教授:梁偉立久米朋宣
指導教授(外文):Wei-Li LiangTomonori Kume
口試委員:鹿兒陽
口試委員(外文):Erh-Yang Lu
口試日期:2018-12-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:森林環境暨資源學研究所
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:60
中文關鍵詞:孟宗竹竹桿年齡水分利用特性葉片水分潛勢竹桿水分導度
DOI:10.6342/NTU201804389
相關次數:
  • 被引用被引用:0
  • 點閱點閱:128
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
孟宗竹 (Phyllostachys pubescens) 在台灣為一廣泛分布竹類, 其林分擴張可能影響當地生態系的水分循環與利用,其蒸散、水分潛勢、樹液流與水分導度會是當地森林生態系水分利用循環的重要因子。為了往後竹林經營,孟宗竹的水分利用特性值得探討研究。在前人研究中,已發現孟宗竹林分相比鄰近常見針葉造林地,有較高的樹液流流速和年蒸散量。然而竹桿年齡對孟宗竹水分利用特性卻尚未有進一步探討,這對生長壽命相對較短的孟宗竹來說相當重要。因此本實驗目的在於探討孟宗竹年齡對 (1) 葉片水分潛勢及 (2) 竹桿水分導度之影響 (3) 將前述兩點結果與前人研究之孟宗竹樹液流特性整合,並大致闡述竹桿年齡對各水分利用特性相互作用之影響。本研究以一、二、三、四、五、大於五年生孟宗竹為研究對象。葉片水分潛勢於2017年四月至 2018 四月以植物水分潛勢計量測。竹桿染色試驗將竹桿內維管束染色,以計算染色維管束面積與數量分別占整體維管束面積與數量之比例,並用於探討竹桿水分導度。
研究結果顯示五年生與大於五年生的孟宗竹在正午時其葉片水分潛勢顯著較小,但在黎明時,葉片水分潛勢於各年齡間並無顯著差異。竹桿染試驗中,四、五和大於五年生的孟宗竹相比於其他年生孟宗竹,有較小的染色面積比例和染色個數比例。根據上述觀察和前人研究推論,五年生和大於五年生的孟宗竹有著過低的葉片水分潛勢,此現象可能是源於五年生和大於五年生的孟宗竹中較低的竹桿水分導度,而此推測也在染色試驗中得證。造成染色比例較低的原因可能為孟宗竹維管束中的栓塞和木質素物質的填充。綜上所述,此研究推測孟宗竹在年齡大於四年後有較高可能性發生水分利用衰退。而在水分利用特性的相互關係中,此研究證實了老齡竹桿中較低的水分導度可能造成過低的葉片水分潛勢,而此水分利用特性可能抑制氣孔導度,進而降低樹液流流速以避免維管束氣穴現象和其他水分逆境。
Moso Bamboo (Phyllostachys pubescens) is a widely spread bamboo in Taiwan. The expansion of Moso bamboo in Taiwan may alter the water cycle in local ecosystem. Water use characteristics, such as transpiration, sap flux, plant water status and culm conductivity in Moso bamboo forest, can determine the water cycle in a forest ecosystem. Thus, in order to deal with bamboo stand management, it is necessary to study the water use characteristics of Moso bamboo. Previous studies revealed that Moso bamboo had a higher sap flux density; hence, higher annual transpiration than coniferous forests in the surrounding around Taiwan. However, the relationship between the aging of culm and water use characteristics is rarely investigated for Moso bamboo, which has a relatively shorter life span. This study aimed to clarify the age effects on (1) leaf water potential and (2) culm conductivity. Moreover, data on (3) sap flux density investigated in a previous study were integrated with the results of leaf water potential and culm conductivity in this study to comprehensively elaborate the age effects on water use characteristics of Moso bamboo. The 1, 2, 3, 4, 5 and >5-year-old bamboos were selected for observation. Leaf water potential from July 2017 to April 2018 was measure by a pressure chamber. Culm stain experiment was carried out on bamboo culms to estimate the culm conductivity using the ratio of the stained vascular area or number to the total vascular area or number, respectively.
The results showed that 5 and >5-year-old groups had significantly lower midday leaf water potential than the other four age groups. However, no distinctive difference was found in predawn leaf water potential among six age groups. The 4, 5 and >5-year-old groups had less ratio of stained area or number to the total vascular area or number than the other groups. Based on the observation in the present study and the findings in previous studies, excessively low midday leaf water potential for 5 and >5-year-old-groups might result from poor culm hydraulic conductivity. The less stained area ratios of 4, 5 and >5-year-old groups might be the evidence of poor culm hydraulic conductivity. The less stained area ratio was probably due to embolism and tyloses blockage in vascular bundles in older culms. Therefore, Moso bamboo probably starts to show senescence in water use after 4years in age. In terms of relationship to water use, this study confirmed that low culm hydraulic conductivity in the older culms might result in excessively low midday water potential. Such water use characteristics in the older culms may inhibit the stomatal conductance and lead to low sap flux density to avoid cavitation and water stress.
目錄 Table of contents
摘要 ii
Abstract iii
Chapter 1 Introduction 1
Chapter 2 Literature Review 5
2.1 Sap flux density characteristics of Moso bamboo 5
2.2 Transpiration characteristics of Moso bamboo stand 6
2.3 Age effects on plant water use characteristics 8
2.4 Leaf water potential in water use characteristics 10
2.5 Age effects on leaf water potential of Moso bamboo 12
Chapter 3 Method and Materials 14
3.1 Study site and stand structure 14
3.2 Determination of culm age 15
3.3 Leaf water potential measurement 17
3.3.1 Instrument to measure leaf water potential 17
3.3.2 Sampling design 17
3.3.3 Measuring time and period 19
3.4 Culm staining experiment 20
3.4.1 Drilling, Staining and Sampling stained section 20
3.4.2 Sample size 24
3.4.3 Photographing on culm cross sections 25
3.4.4 Calculating the stained area 26
3.5 Methods of Analysis 27
Chapter 4 Results and Discussion 30
4.1 Seasonal variations of leaf water potential in six age groups 30
4.2 Men leaf water potential in six age groups 30
4.3 Culm staining experiment 37
4.3.1 Numbers and area of stained vascular bundles 37
4.3.2 Aspect variation 37
4.3.3 Rarea and Rnumber in six age groups 39
4.4 Relationship among leaf water potential, culm hydraulic conductivity, and sap flux in different age Moso bamboos 42
4.4.1 Relations between midday leaf water potential and sap flux density 42
4.4.2 Relation between stained area ratio and sap flux density 43
4.4.3 Relations between midday leaf water potential and stained area ratio 45
4.4.4 Limitation on the application of the sap flux data and other factors in water use characteristics relations 46
4.5 Age effects on leaf water potential and culm hydraulic conductivity 49
Chapter 5 Conclusions 52
Reference 54
Boyer, J. S. (1967). Leaf Water Potentials Measured with a Pressure Chamber. Plant Physiology, 42(1), 133-137.
Chiou, C. R., Chen, T. H.,Lin, Y. J.,Yang, Y. J.,Lin, S. D. (2009). Distribution and Change Analysis of Bamboo Forest in Northern Taiwan. Quarterly Journal of Chinese forest,42(1): 89-105. (in Chinese)
Delzon, S. and Loustau, D. (2005). Age-related decline in stand water use: Sap flow and transpiration in a pine forest chronosequence. Agricultural and Forest Meteorology, 129(3-4), 105-119.
Hubbard, R. M., Ryan, M. G., Stiller, V., Sperry, J. S. (2001). Stomatal conductance and photosynthesis vary linearly with plant hydraulic conductance in ponderosa pine. Plant, Cell & Environment, 24(1), 113-121.
Komatsu, H., Onozawa, Y., Kume, T., Tsuruta, K., Kumagai, T., Shinohara, Y., Otsuki, K. (2010). Stand-scale transpiration estimates in a Moso bamboo forest: II. Comparison with coniferous forests. Forest Ecology and Management, 260(8), 1295-1302
Kramer, P. J. (1983) Water relations of plants. New York: Academic Press.
Kume, T., Tsuruta, K., Komatsu, H., Kumagai, T., Higashi, N., Shinohara, Y., Otsuki, K. (2009). Effects of sample size on sap flux-based stand-scale transpiration estimates. Tree Physiology, 30(1), 129-138.
Kume, T., Onozawa, Y., Komatsu, H., Tsuruta, K., Shinohara, Y., Umebayashi, T., Otsuki, K. (2010). Stand-scale transpiration estimates in a Moso bamboo forest: (I) Applicability of sap flux measurements. Forest Ecology and Management, 260(8), 1287-1294.
Laplace, S. (2013) Study on transpiration in a Taiwanese Moso bamboo forest using sap flow measurement. School of Forestry and Resource Conservation College of Bioresources and Agriculture National Taiwan University Master Thesis, 1-87
Liese, W. and Weiner, G. (1996) Ageing of bamboo culms. A review. Wood Science and Technology, 30(2), 77-89.
Lin, S. J. (2016) Effect of culm age on transpiration in a Taiwan Moso bamboo forest School of Forestry and Resource Conservation College of Bioresources and Agriculture National Taiwan University Master Thesis, 1-49
Lin, W. C., Kang, Z. Y., Huang, S. G., Jiang, T. (1962). Investigation on resources of important bamboos in Taiwan. Co-operative bulletin of Taiwan forestry research institute, 4.
Lobovikov, M., Ball, L., Guardia, M., Russo, L. (2007) World bamboo resources: a thematic study prepared in the framework of the global forest resources assessment. Food and Agriculture Organization of the United Nations., 1-55.
Naor, A. (2000). Midday stem water potential as a plant water stress indicator for irrigation scheduling in fruit trees. Acta Horticulturae, 537, 447-454.
Pataki, D. E., Oren, R., Katul, G., Sigmon, J. (1998). Canopy conductance of Pinus taeda, Liquidambar styraciflua and Quercus phellos under varying atmospheric and soil water conditions. Tree Physiology, 18(5), 307-315.
Roberts, S., Vertessy, R., Grayson, R. (2001). Transpiration from Eucalyptus sieberi (L. Johnson) forests of different age. Forest Ecology and Management, 143(1-3), 153-161.
Röll, A., Niu, F., Meijide, A., Hardanto, A., Knohl, A., Hölscher, D. (2015). Transpiration in an oil palm landscape: Effects of palm age. Biogeosciences, 12(19), 5619-5633.
Ripullone, F., Guerrieri, M. R., Nole’, A., Magnani, F., Borghetti, M. (2007). Stomatal conductance and leaf water potential responses to hydraulic conductance variation in Pinus pinaster seedlings. Trees, 21(3), 371-378.
Ryan, M. G., Phillips, N., Bond, B. J. (2006). The hydraulic limitation hypothesis revisited. Plant, Cell and Environment, 29(3), 367-381.
Vertessy, R. A., Watson, F. G., O′sullivan, S. K. (2001). Factors determining relations between stand age and catchment water balance in mountain ash forests. Forest Ecology and Management, 143(1-3), 13-26.
Saliendra, N., Sperry, J., Comstock, J. (1995). Influence of leaf water status on stomatal response to humidity, hydraulic conductance, and soil drought in Betula occidentalis. Planta, 196(2).
Secchi, F. and Zwieniecki, M. A. (2012). Analysis of Xylem Sap from Functional (Nonembolized) and Nonfunctional (Embolized) Vessels of Populus nigra: Chemistry of Refilling. Plant Physiology, 160(2), 955-964.
Sperry, J. S., Hacke, U. G., Oren, R., Comstock, J. P. (2002). Water deficits and hydraulic limits to leaf water supply. Plant, Cell and Environment, 25(2), 251-263.
Tyree, M. T. and Zimmermann, M. H. (2002). Xylem structure and the ascent of sap. Berlin: Springer.
Sano, Y., Okamura, Y., Utsumi, Y. (2005). Visualizing water-conduction pathways of living trees: Selection of dyes and tissue preparation methods. Tree Physiology, 25(3), 269-275.
Su, M. P. (2017) Long-term stand transpiration estimates in a Japanese cedar forest, central Taiwan: Calibration of thermal dissipation sap flow measurements and its application to field data. School of Forestry and Resource Conservation College of Bioresources and Agriculture National Taiwan University Master Thesis, 1-100
Wang, D. W. (2011) The cultivation and management of bamboo forests. Forest Newsletter, 18(1), 3-7 (in chinese)
Wang, J., Chen, T. H., Chung, H. Y., Li, T. I., Liu, C. P. (2009). The structures, aboveground biomass carbon storage of Phyllostachys pubescens stands in Huisun Experimental Forest Station and Shi-Zhuo. Quarterly Journal of Forest Research, 34, 17-26. (in Chinese)
Whitehead, D., Livingston, N. J., Kelliher, P., Hogan, K. P., Pepin, S., Mcseveny, T., Byers, J. (1996). Response of transpiration and photosynthesis to a transient change in illuminated foliage area for a Pinus radiata D. Don tree. Plant, Cell and Environment, 19(8), 949-957.
Yang, S., Zhang, Y., Sun, M., Goldstein, G., Cao, K. (2012). Recovery of diurnal depression of leaf hydraulic conductance in a subtropical woody bamboo species: Embolism refilling by nocturnal root pressure. Tree Physiology, 32(4), 414-422.
Zhao, X. H., Zhao, P., Zhang, Z. Z., Zhu, L.W., Niu, J. F., Ni, G.Y., Hu, Y.T., Ouyang L. (2017) Sap flow-based transpiration in Phyllostachys pubescens: applicability of the TDP methodology, age effect and rhizome role. Trees, 31, 765-779
Zimmermann, M. H. and Tomlinson, P. B. (1972). The Vascular System of Monocotyledonous Stems. Botanical Gazette, 133(2), 141-155.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top