跳到主要內容

臺灣博碩士論文加值系統

(44.223.39.67) 您好!臺灣時間:2024/05/26 13:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭宇修
研究生(外文):Yu-Hsiu Kuo
論文名稱:應用SPME-GC/MS與薄膜送樣質譜法探討實木板材之生物源揮發成分
論文名稱(外文):BVOC emitted from solid wood panels by SPME-GC/MS and membrane-inlet mass spectrometer
指導教授:蔡明哲蔡明哲引用關係
口試委員:王松永曹崇銘林蘭東楊德新
口試日期:2017-07-04
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:森林環境暨資源學研究所
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:中文
論文頁數:73
中文關鍵詞:生物源揮發性有機物揮發性有機物木質材料
DOI:10.6342/NTU201804082
相關次數:
  • 被引用被引用:0
  • 點閱點閱:211
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
揮發性有機化合物(Volatile organic compounds, VOC)通常係指人為排放的VOC,近年來由於全球對於環保議題的關注,環境中的VOC逐漸受到重視。生物源揮發性有機化合物(Biogenic volatile organic compound, BVOC)則係指生物代謝所排放的VOC,屬於植物的二次代謝物,而木材屬於一種生物性材料,具有揮散出此類代謝物之能力,不同於一般建材釋出的VOC,這些芳香氣息係儲存於木材內部,因成分的低沸點、高揮發性的性質而由材面自然揮散,因此隨著木材加工程度的不同,在室內使用的木質地板、壁板、家具及木器等木質材料之加工產品都將具有類似之揮發性。本研究利用便攜式質譜儀(Portable Mass Spectrometer)Kore MS200以及SPME-GC/MS方法,對於紅檜(Chamaecyparis formosensis Matsum.)、台灣杉(Taiwania cryptomerioides Hayata.)、杉木(Cunninghamia lanceolata(Lamb.)Hook.)、柳杉(Cryptomeria japonica D.Don)、台灣櫸(Zelkova serrata Makino.)以及相思樹(Acacia confuse Merr.)等材種的實木板材揮發成分之組成進行鑑別,並探討不同溫度、相對濕度及裝修負荷率等條件對於其揮發性之影響。
各實木板材揮發成分之鑑定,在25 ℃、50 % RH、裝修負荷率13.08 m2/m3的條件下密閉一小時,測得柳杉板材的揮發成分以δ-cadinene(25.85 %)、α-muurolene(18.52 %)、α-cubebene(7.33 %)及β-caryophyllene(4.67 %)為主;杉木板材的揮發成分以cedrene(34.75 %)、β-caryophyllene(12.6 %)、δ-cadinene(10.57 %)及cedrol(6.08 %)為主;台灣杉板材的揮發成分以δ-cadinene(25.43 %)、γ-cadinene(16.97 %)及α-muurolene(11.16 %)為主;紅檜板材的釋出成分以δ-cadinene(30.87 %)、γ-cadinene(12.24 %)及myrtenal(9.36 %)為主;在闊葉樹材的部分僅測得微量的烷烴類、倍半萜類以及SPME熱裂解之化學產物,且整體的訊號量遠低於四種針葉樹板材之數值,可推論台灣櫸與相思樹兩種闊葉板材無顯著的揮發性。
在溫度、濕度以及木材裝修負荷率條件對於揮發性的影響方面,針對柳杉板材β-caryophyllene的揮發量進行探討,得知在柳杉板材在3.34、6.49、9.84、13.08、17.14及20.69 m2/m3的裝修負荷率條件下,隨著裝修負荷率的上升β-caryophyllene的濃度也會隨之提高,濃度在224±115 ppb至1517±215 ppb之間;在50 % RH、柳杉四面壁裝(13.08 m2/m3)條件下,設定15、20、25及30℃等條件進行試驗,β-Caryophyllene的揮發濃度分別為242±65、359±106、1148±230及1764±675 ppb,可得知溫度的高低將顯著影響柳杉板材之揮發性;而相對濕度的變動則對柳杉板材揮發性之影響則較小。
The emission issue of volatile organic compounds (VOC) has been taken attention by the public in recent years, because it may change the indoor air quality and affect human health. Biogenic VOC (BVOC) is one kind of VOC mostly emitted from plant synthesis, which is classified as secondary metabolites. It is called phytoncide when human engage activities in forest. Wood is a biological materials, and has the propensity to emit the volatile content. BVOC is different from the VOC which emit from solvent or coating. Usage of wooden ware, flooring, siding, furniture and decorations indoor have the ability to emit the fragrant smell, to sublimate as BVOC. In this study, the composition of volatile components emitted from different kinds of solid wood panels including Chamaecyparis formosensis Matsum., Taiwania cryptomerioides Hayata., Cunninghamia lanceolata (Lamb.) Hook., Cryptomeria japonica D.Don, Zelkova serrata Makino. and Acacia confuse Merr. was identified by portable mass spectrometer (Kore MS200) and SPME-GC/MS methods, and would be discussed the effect on volatility of temperature, humidity and loading factor of the panels.
Under the condition of 25 ℃, 50 % RH insealed container withloading factor 13.08 m2/m3 for 1 hr, the volatile components of C. japonica mainly composed of δ-Cadinene (25.85 %), α-Muurolene (18.52 %), α-Cubebene (7.33 %) and β-Caryophyllene (4.67 %); volatile components of C. lanceolata mainly composed of Cedrene (34.75 %), β-Caryophyllene (12.6 %), δ-Cadinene (10.57 %) and Cedrol (6.08 %); volatile components of T. cryptomerioides mainly composed of δ-Cadinene (25.43 %), γ-Cadinene (16.97 %) and α-Muurolene (11.16 %); and the volatile components of C. formosensis mainly composed of δ-Cadinene (30.87 %), γ-Cadinene(12.24 %) and Myrtenal (9.36 %). Only small amount of alkanes, sesquiterpenoids and the thermal cracking products of SPME were detected from Z. serrata and A. confusa solid wood panels, with measured singal much lower than the results of the four softwood panels. The temperature, humidity and loading factor as variable factors, the volatiles of β-caryophyllene emitted from C. japonica were discussed. It is found that concentration of β-Caryophyllene increases with loading factor. When the loading factor were 3.34, 6.49, 9.84, 13.08, 17.14 and 20.69 m2/m3, concentration of β-Caryophyllene increase from 224 ppb to 1517 ppb. When loading factor 13.08 m2/m3, 50 % RH and temperature were 15, 20, 25 and 30℃, concentration of β-Caryophyllene were 242±65、359±106、1148±230 and 1764±675 ppb respectively, indicating that temperature also significantly affected the volatiles of wood panels. However, the effect of humidity on the volatility was not significant.
謝 誌 I
摘 要 II
Abstract IV
目 錄 VI
圖 目 錄 VIII
表 目 錄 XII
第一章 前言 1
第二章 文獻回顧 4
2.1 揮發性有機化合物 4
2.1.1 揮發性有機化合物之定義 4
2.1.2 生物源揮發性有機化合物 5
2.1.3 揮發性有機物之空氣品質規範 6
2.2 揮發性有機物之分析方法 9
2.2.1 固相微萃取技術 10
2.2.2 薄膜送樣質譜技術 13
2.2.2.1. 薄膜進樣之反應時間 17
2.2.2.2. 便攜式飛行時間質譜儀(Kore MS200)之分析應用 20
2.3 木質材料之揮發性 21
2.3.1 木材BVOC之揮發組成 22
2.3.2 人造板材VOC之揮發組成 26
第三章 材料與方法 28
3.1 試驗材料 28
3.2 試驗方法 32
3.2.1 恆溫恆濕試驗艙之配置 32
3.2.2 實木板材揮發成分之鑑定 34
3.2.3 氣體標準品之配置與定量分析 35
3.2.3.1 氣體標準品之配置 35
3.2.3.2 SPME-GC/MS之定量分析 37
3.2.3.3 Kore MS200之定量分析 37
3.2.4 以Kore MS200探討實木板材之揮發性 39
3.2.4.1 實木板材裝修負荷率與其揮發性之關係 39
3.2.4.2 溫度對於實木板材揮發性之影響 40
3.2.4.3 相對濕度對於實木板材揮發性之影響 40
第四章 結果與討論 41
4.1 實木板材揮發成分之鑑定 41
4.1.1 柳杉板材揮發成分之鑑定 41
4.1.2 杉木板材揮發成分之鑑定 44
4.1.3 台灣杉板材揮發成分之鑑定 46
4.1.4 紅檜板材揮發成分之鑑定 49
4.1.5 台灣櫸與相思樹板材揮發成分之鑑定 52
4.2 SPME-GC/MS與Kore MS200定量分析之比較 55
4.2.1 SPME-GC/MS檢量線之配置 56
4.2.2 Kore MS200檢量線之配置 57
4.2.3 柳杉板材密閉16小時β-caryophyllene之揮發情形 61
4.3 溫度、相對濕度及裝修負荷率對於實木板材揮發性之影響 62
4.3.1 實木板材裝修負荷率與其揮發性之關係 62
4.3.2 溫度對於實木板材揮發性之影響 63
4.3.3 相對濕度對於實木板材揮發性之影響 64
第五章 結論 66
參 考 文 獻 68
附 錄 73
丁佐蕙,2002。固相微萃取結合氣相層析/火焰光度偵測法應用於金屬鉻的分析。東海大學化學研究所碩士論文。
王升陽、張上鎮,2008。臺灣本土林木揮發性代謝產物生物活性之探討。林業研究專訊 15: 6–9。
王炳南、詹凱帆、吳孟禹,2016。MIP-TOFMS進行含氯有機物汙染高解析度場址調查案例。土壤及地下水汙染整治 3 (2): 89–99。
有田佳彥、平野恭司、藤原雅彥、関秀世、松田耕一郎、中尾基,2002。ポータブル飛行時間型質量分析計による匂いの多成分連続計測。電気学会論文誌 122 (7): 380–381。
江哲銘,2015。綠建材解說與評估手冊。內政部建築研究所。
李茂榮、陳崇宇、李祖光,2005。固相微萃取於微量分析之應用。化學 63 (3): 329–342。
林建宗、賴婉綺、蕭文鳳、王升陽,2007。柳杉心材精油對衣魚之忌避與致死活性之研究,中華林學季刊 40 (2): 251–260。
室內空氣品質管理法,2012年11月23日。
張上鎮、尹華文,1991。巒大杉木材表面針狀結晶之成分鑑定,林業試驗所研究報告季刊 6 (1): 57–63。
張上鎮、王升陽、吳季玲,2005。臺灣杉Cadinane類倍半萜之生物活性,台灣林業 31 (4): 29–34。
張正欽,2000。薄膜送樣/快速氣相層析技術之發展與其在環境分析之應用,國立臺灣大學化學系博士論文。
陳元曼,2003。大體積固相微萃取水中揮發性有機汙染物。國立中央大學化學研究所碩士論文。
鄭森松、張惠婷、古惠菁、古喬云、張上鎮,2006。黑心柳杉造林木精油及其成分之抗真菌活性,中華林學季刊 39: 557–574。
鄭森松、莊閔傑、林雅群、張上鎮、王亞男,2010。台灣杉不同部位精油及抽出物抗褐根病菌之評估,台大實驗林研究報告 24 (2): 85–95。
鄭森松、莊閔傑、林群雅、張上鎮、王亞男,2014。台灣櫸各部位精油及乙醇抽出物抗木材腐朽菌之活性,中華林產事業協會學術論文暨研究成果研討會摘要集:47–48。
羅時麒、姚志廷,2007。室內裝修材料對辦公室建築空氣品質相關性之研究–以甲醛及 TVOC為例,內政部建築研究所自行研究報告。
Andersson, K., J. V. Bakke, O. Björseth, C.-G. Bornehag, G. Clausen, J. K. Hongslo, M. Kjellman, S. Kjaergaaard, F. Levy, L. Mölhave, S. Skerfving and J. Sundell (1997) TVOC and health in non-industrial indoor environments. Indoor Air 7: 78–91.
Atkinson, R. and J. Arey (2003) Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review. Atmospheric Environment 37(2): 197–219.
Brown, S. K. (1999) Chamber Assessment of Formaldehyde and VOC Emissions from Wood-Based Panels. Indoor Air 9: 209–215.
Ceballos, D., B. Zielinska, E. Fujita and J. Sagebiel. (2007) Characterization of Solid-Phase Microextraction and Gas Chromatography for the analysis of Gasoline Tracers in Different Microenvironments. Journal of the Air & Waste Management Association 57 (3): 355–365.
Chang, S. T., S. Y. Wang, C. L. Wu, P. F. Chen and Y. H. Kuo (2000) Comparison of the Antifungal Activity of Cadinane Skeletal Sesquiterpenoids from Taiwania (Taiwania cryptomerioides Hayata) Heartwood. Holzforschung 54 (3): 241–245.
Cheng, Y. S., Y. H. Kuo and Y. T. Lin. (1967) Extractive components from the wood of Taiwania cryptomerioides Hayata: The structures of T-cadinol and T-murrolol. Journal of Chemical Society Chemical Communications, 565–666.
Davey, N. G., E. T. Krogh and C. G. Gill. (2011) Membrane-introduction mass spectrometry (MIMS). Trends in Analytical Chemistry 30 (9): 1477–1485.
European Standard EN 13986 (2015) Wood-based panels for use in construction - Characteristics, evaluation of conformity and marking.
Fuentes, J. D., M. Lerdau, R. Atkinson, D. Baldocchi, J. W. Bottenheim, P. Ciccioli, B. Lamb, C. Geron, L. Gu, A. Guenther, T. D. Sharkey and W. Stockwell (2000) Biogenic hydrocarbons in the atmospheric boundary layer: a review. Bulletin of the American Meteorological Society 81 (7): 1537–1575.
Górecki, T., X. Yu and J. Pawliszyn (1999) Theory of analyte extraction by selected porous polymer SPME fibres. Analyst 124: 643–649.
Guenther, A., C. Geron, T. Pierce, B. Lamb, P. Harley and R. Fall (2000) Natural emissions of non-methane volatile organic compounds, carbon monoxide, and oxides of nitrogen from North America. Atmospheric Environment 34: 2205–2230.
He, Z., Y. Zhang, W. J. Wei. (2012) Formaldehyde and VOC emissions at different manufacturing stages of wood-based panels. Building and Environment 47: 197-204.
Hillis, W. E. (1987) Heartwood and tree exudates. Springer-Verlag, Berlin Heidelberg New York, 100–101.
Huang, L. H., T. F. Qin and T. Ohira (2004) Studies on preparations and analysis of essential oil from china fir. Journal of Forestry Research 15: 80-82.
Ishikawa, A., T. Ohira, K. Miyamoto and A. Inoue (2012) Emission of volatile organic compounds during drying of veneer: Hinoki (Chamaecyparis obtuse Endl.). Bulletin of FFPRI 11: 13-20.
Ishikawa, A., T. Ohira, K. Miyamoto, A. Inoue and M. Ohkoshi (2009) Emission of volatile organic compounds during drying of veneer: Red meranti (Shorea sect. Rubroshorea), larch (Lariz sp.), and sugi (Cryptomeria japonica D. Don). Bulletin of FFPRI. 8: 115-125.
Jang, Y. M., J. S. Oh, C. J. Park, S. S. Yang and K. W. Jung. (2010) Characterization of a Membrane Interface for Analysis of Air Samples Using Time-of-flight Mass Spectrometry. Bulletin of the Korean Chemical Society 31(10): 2791-2796.
Kesselmeier, J. and M. Staudt (1999) Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. Journal of Atmospheric Chemistry 33: 23-88.
Kostiainen, R. (1995) Volatile organic compounds in the indoor air of normal and sick houses. Atmospheric Environment 29 (6): 693–702.
Kristensen, G. H., M. M. Klausen, V. A. Hansen and F. R. Lauritsen (2010) On-line monitoring of the dynamics of trihalomethane concentrations in a warm public swimming pool using an unsupervised membrane inlet mass spectrometry system with off-site real-time surveillance. Rapid Communications in Mass Spectrometry 24 (1): 30–34.
Krogh, E. T. and C. G. Gill (2014) Membrane introduction mass spectrometry (MIMS): a versatile tool for direct, real-time chemical measurements. Mass Spectrom 49 (12): 1205–1213.
Kuo, P. M., F. H. Chu, S. T. Chang, W. F. Hsiao and S. Y. Wang (2007) Insecticidal activity of essential oil from Chamaecyparis formosensis Matsum. Holzforschung 61 (5): 595–599.
Lin, C. C., K. P. Yu, P. Zhao, G. W. M. Lee (2009) Evaluation of impact factors on VOC emissions and concentrations from wooden flooring based on chamber tests. Building and Environment. 44 (3): 525–522.
Manninen, A., P. Pasanen and J. K. Holopainen (2002) Comparing the VOC emissions between air-dried and heat-treated scots pine wood. Atmospheric Environment 36 (11): 1763–1768.
Maroni, M., B. Seifert and T. Lindvall (1995) Indoor Air Quality – a Comprehensive Reference Book. Amsetrdam, The Netherlands: Elsevier.
Nuber F (2003) Development and application of a portable volatile organic compound analyser. Ph.D. dissertation, University of Hertfordshire.
Ohira, T., B. J. Park, Y. Kurosumi and Y. Miyazaki (2009) Evaluation of dried-wood odors: comparison between analytical and sensory data on odors from dried sugi (Cryptomeria japonica) wood. Journal of Wood Science 55 (2): 144–148.
Ouyang, G. and J. Pawliszyn (2006) SPME in environment analysis. Analytical and Bioanalytical Chemistry 386 (4): 1059–1073.
Paczkowski, S., R. Kraft and A. Kharazipour (2013) Storage-induced emissions from different wood species. Holzforschung 67 (8): 907–912.
Pichersky, E., J. Gershenzon (2002) The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Current Opinion in Plant Biology 5 (3): 237–243.
Plocoste T., S. Jacoby-Koaly, M. L. Bernard, J. Molinié and A. Roussas (2016) Impact of a new legislation on volatile organic compounds emissions in an open landfill in tropical insular climate. International Journal of Waste Resources 6 (3): 1–7.
Rasmann, S., T. G. Kollner, J. Degenhardt, I. Hiltpold, S. Toepfer, U. Kuhlmann, J. Gershenzon and T. C. J. Turlings (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize. Nature 434 (7034): 732–737.
Risholm-Sundman, M., M. Lundgren, E. Vestin and P. Herder (1998) Emission of acetic acid and other volatile organic compounds from different species of solid wood. Holz Als Roh-Und Werkstoff 56 (2): 125–129.
Sakamoto, R., K. Minoura, A. Usui, Y. Ishizuka and S. Kanba (2005) Effectiveness of aroma on work efficiency: lavender aroma during recesses prevents deterioration of work performance. Chemical Senses Journal 30 (8): 683–691.
Samuelsson, R., C. Nilsson, J. Burvall. (2006) Sampling and GC-MS as a method for analysis of volatile organic compounds (VOC) emitted during oven drying of biomass materials. Biomass and Bioenergy 30 (11): 923–928.
Shafi, P. M., M. K. Rosamma, K. Jamil, P. S. Reddy (2002) Antibacterial activity of the essential oil from Aristolochia indica. Fitoterapia 73 (5): 439–441.
Su, H. J., C. J. Chao, H. Y. Chang and P. C. Wu. (2007) The effects of evaporating essential oils on indoor air quality. Atmospheric Environment 41 (6): 1230–1236.
Tsai, M. J., S. Y. Wang, M. F. Yan, L. D. Lin. (2008) Assessment of Temperature and Relative Humidity Conditioning Behavior
of Interior Decorative Materials in Container Under Ventilation Condition. Indoor and Built Environment 17 (2): 146–154.
Vas, G. and K. Vékey (2004) Solid-phase microextraction: a powerful sample preparation tool prior to mass spectrometric analysis. Journal Mass Spectrometry 39 (3): 233–254.
Wang, J., J. Li, S. Li, C. Freitag and J. J. Morrell (2011) Antifungal activities of Cunninghamia lanceolata heartwood extractives. BioResource 6 (1): 606–614.
Wang, S. Y., C. L. Wu, F. H. Chu, S. C. Chien, Y. H. Kuo, L. F. Shyur and S. T. Chang (2005) Chemical composition and antifungal activity of essential oil isolated from Chamaecyparis formosensis Matsum. wood. Holzforschung 59: 295–299.
Yaman, B., Y.M. Aydin, H. Koca, O. Dasdemir, M. Kara, H. Altiok, Y. Dumanoglu, A. Bayram, D. Tolunay, M. Odabasi and T. Elbir (2015). Biogenic volatile organic compound (BVOC) emissions from various endemic tree species in Turkey. Aerosol and Air Quality Research 15 (1): 341–356.
Yrieix, C., A. Dulaurent, C. Laffargue, F. Maupetit, T. Pacary and E. Uhde (2010) Characterization of VOC and formaldehyde emissions from the wood based panel. Chemosphere 79 (4): 414–419.
Zhang, Z. and J. Pawliszyn (1993) Headspace solid-phase microextraction. Analytical Chemistry 65 (14): 1843–1852.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊