(3.232.129.123) 您好!臺灣時間:2021/03/04 18:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:柯岱妤
研究生(外文):Tai-Yu Ke
論文名稱:探討疫病菌質外體效應蛋白OPEL對於菸草轉錄體的影響
論文名稱(外文):Transcriptome analysis to investigate the effect of OPEL, an apoplastic effector from Phytophthora parasitica, on Nicotiana tabacum
指導教授:劉瑞芬劉瑞芬引用關係
口試委員:林乃君鍾嘉綾
口試日期:2019-07-31
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:植物病理與微生物學研究所
學門:農業科學學門
學類:植物保護學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:129
中文關鍵詞:OPELpattern-triggered immunity (PTI)疫病菌菸草轉錄體分析
DOI:10.6342/NTU201903584
相關次數:
  • 被引用被引用:1
  • 點閱點閱:62
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
疫病菌外泌蛋白OPEL為質外體效應蛋白,處理菸草葉片後會引發活性氧分子產生、癒傷葡聚醣沉積及細胞死亡。此外,OPEL會誘導系統葉PTI指標基因及水楊酸相關防禦基因的表現,並引發植物對於多種病原的系統性抗性。OPEL引發植物免疫反應的關鍵構造為其glycoside hydrolase 16 (GH16) domain;該GH16 domain含有beta-1,3-glucanase保守性胺基酸序列,將預測的酵素活性位點分別進行單點突變皆會大幅降低OPEL激發植物防禦反應的能力,推測OPEL可能藉由其水解產物引發植物防禦反應(Chang et al. 2015)。本研究利用RNA-seq分析菸草以OPEL (wt)重組蛋白處理6小時後的轉錄體,發現相對於處理MES 緩衝液的對照組,總計有8,102個差異表現基因(DEGs)。GO富集分析顯示這些DEGs主要涉及逆境反應或多醣的辨識,其產物包含膜蛋白及類囊體蛋白,分子功能以激酶活性、氧化還原活性,或碳水化合物的結合為主。KEGG路徑富集分析發現,OPEL引發的反應涉及植物-病原交互作用、MAPK訊號傳遞、次級代謝物的生合成、胺基酸代謝、脂質代謝及光合作用相關路徑等,但光合作用相關基因主要為負調控,顯示OPEL可能抑制光合作用。這些DEGs所編碼的轉錄因子以WRKY、AP2-EREBP (APETALA2/ethylene-responsive element binding protein)及MYB為大宗,可能與誘導植物防禦基因的表現有關。此外,OPEL也會擾動生長素、水楊酸、茉莉酸及乙烯等植物荷爾蒙的調控。另一方面,為釐清預測的酵素活性位點在OPEL引發植物防禦反應的角色,本研究另表現將預測酵素活性位雙點突變之OPEL重組蛋白(dm);該蛋白幾乎無法引發植物產生活性氧分子及沉積癒傷葡聚醣,但在處理菸草後4或6小時都能誘導處理葉表現PTI指標基因Pti5及Gras2。以dm處理菸草再進行轉錄體分析,發現相對於處理MES 緩衝液的對照組,總計有1,565個DEGs,其中1,538個基因也是wt處理後具有表現差異的基因;GO及KEGG路徑富集分析發現dm處理引發的植物反應與wt相當類似,顯示dm很可能也會引發植物PTI。但值得注意的是,dm二次重複的基因表現情形非常不同,一組與 wt相近,另一組與MES對照組較為相近。本研究的轉錄體分析結果除了為OPEL引發的PTI提供強力支持,還揭示其引發的PTI反應可能涉及RLCKs及MAPK cascade訊號傳遞路徑,並透過WRKYs、AP2-EREBP及MYBs調控植物防禦反應相關基因的表現。至於OPEL酵素活性位點在引發植物防禦反應的重要性,仍待進一步探究。
OPEL, an apoplastic effector of Phytophthora parasitica, is known to induce reactive oxygen species (ROS) accumulation, callose deposition, and cell death in Nicotiana tabacum cv. Samsun NN. In addition, it induces the expression of PTI marker genes and SA-responsive genes on the systemic leaves of tobacco, and confers systemic acquired resistance against variable pathogens. The glycoside hydrolase 16 (GH16) domain of OPEL containing conserved amino acid sequence signature of beta-1,3-glucanase is indispensable for the elicitor activity of OPEL. Interestingly, single point mutation on the putative enzymatic active site reduced the elicitor activity, which suggests the possibility that degradation products of OPEL may serve as damage-associated molecular pattern (DAMP) to trigger plant immunity (Chang et al. 2015). In this study, RNA-seq was conducted to analyze the transcriptomes of tobacco at 6 hours post infiltration with OPEL (wt) recombinant protein, resulting in the identification of in total 8,102 differentially expressed genes (DEGs) when compared with RNA-seq data obtained from the MES buffer control. Gene ontology (GO) enrichment analysis revealed that these DEGs, mostly involved in stress responses or recognition of polysaccharides, encode membrane proteins and thylakoid proteins among others, which show molecular functions encompassing mainly kinase activity, oxidoreductase activity, and carbohydrate binding. KEGG pathway enrichment analysis indicated that OPEL-triggered responses involved in plant-pathogen interaction, MAPK signaling, biosynthesis of secondary metabolites, amino acid metabolism, lipid metabolism, photosynthesis-related pathways, and so on. Notably, DEGs involved in photosynthesis were mostly down-regulated, suggesting that OPEL might inhibit photosynthesis. The top three transcription factor families encoded by DEGs were WRKY, AP2-EREBP (APETALA2/ethylene-responsive element binding protein) and MYB, which may be involved in transcriptional reprogramming of plant defense genes. As well, OPEL regulates the signaling of plant hormones such as auxin, salicylic acid, jasmonic acid, and ethylene. On the other hand, to clarify the role of the putative enzymatic active site in OPEL-triggered immunity, recombinant protein harboring double mutation in the putative active site (dm) were expressed, which barely induced ROS production or callose deposition on tobacco, but induced the expression of Pti5 and Gras2, both PTI marker genes. Comparison of RNA-seq data from dm-treated tobacco leaves with those from the MES control identified in total 1,565 DEGs, of which 1,538 genes were also differentially expressed in the OPEL (wt)-treated plants. GO and KEGG pathway enrichment analysis showed that the responses induced by dm was quite similar to those elicited by wt, suggesting that dm may also trigger PTI. It is worth of noting, however, that RNA-seq data obtained from two biological repeats of dm deviate from each other, with one close to wt while the other to the MES control. These results not only provide strong support for OPEL to elicit PTI, but also reveal molecular mechanisms underlying OPEL-induced plant immunity, which involves signal transduction through RLCKs and MAPK cascade, as well as transcriptional reprogramming of plant defense genes through the interplay of various transcriptional factors such as WRKYs, AP2-EREBPs, and MYBs. The role of the putative enzymatic active site of OPEL in OPEL-triggered immunity, however, awaits further investigation.
致謝………………………………………………………………………………………i
中文摘要………………………………………………………………………………...ii
英文摘要………………………………………………………………………………..iv
壹、前言………………………………………………………………………………...1
1. 植物防禦反應……………………………………………………………..……1
2. 疫病菌簡介……………………………………………………………………10
3. 植物對疫病菌之基礎防禦反應………………………………………………11
4. 疫病菌外泌蛋白OPEL在植物防禦反應扮演的角色………………………14
5. 研究動機………………………………………………………………………15
貳、材料與方法…………………………………………………………………….…16
1. 供試植物的生長………………………………………………………………16
2. 建構OPEL及其雙點突變重組蛋白表現載體………………………………16
3. 將質體轉形至大腸桿菌………………………………………………………17
4. 重組蛋白的表現與純化………………………………………………………17
5. 3,3ʹ-diaminobenzidine (DAB)染色……………………………………………18
6. 癒傷葡聚醣沉積試驗…………………………………………………………18
7. 防禦反應相關基因表現分析…………………………………………………19
8. 轉錄體分析……………………………………………………………………20
參、結果………………………………………………………………….……………25
1. 以大腸桿菌表現OPEL正常型及雙點突變蛋白……………………………25
2. OPEL雙點突變重組蛋白失去在菸草引發活性氧分子累積及癒傷葡聚醣沉積的活性………………………………………………………………………26
3. OPEL及其雙點突變重組蛋白可以誘導PTI指標基因的表現………….…26
4. 轉錄體分析……………………………………………………………………27
4.1. 轉錄體定序數據結果總結……………………………….…………..…27
4.2. 主成分分析(Principal Component Analysis;PCA) ………..…………27
4.3. 階層式分群分析(Hierarchical clustering analysis) ……………………28
4.4. 表現差異基因(differentially expression genes,簡稱DEGs)的檢測…………………………………………………………………….….28
4.5. 表現差異基因的Gene Ontology (GO)分類與富集分析(enrichment analysis)……………………………………………………...………….29
4.6. 表現差異基因的KEGG路徑分類與富集分析(enrichment analysis)…………………………………………………………………31
4.7. 表現差異基因中的轉錄因子……………………………..……………32
4.8. OPEL引發的PTI相關基因的表現……………………………………33
4.9. 植物訊號傳遞相關基因探討…………………………………...………34
4.10. OPEL會影響多種植物荷爾蒙的訊號傳遞路徑………………………37
肆、討論…………………………………………………………………….…………39
1. 轉錄體分析揭示OPEL重組蛋白引發PTI的機制………………….………39
2. OPEL預測的酵素活性位突變蛋白對植物轉錄體的影響…………………..41
3. OPEL如何引發植物防禦反應?…………………………………..…………41
4. OPEL誘導RLK、RLP及訊號傳遞分子的表現…………….………………42
5. OPEL會改變植物對荷爾蒙的調控…………………………..………………43
6. 結語…………………………………………………………….………………44
伍、引用文獻…………………………………………………………………….……45
陸、表…………………………………………………………………………….……71
柒、圖………………………………………………………………………….………90
捌、附錄…………………………………………………………………...…………121
Adachi, H., Nakano, T., Miyagawa, N., Ishihama, N., Yoshioka, M., Katou, Y., Yaeno, T., Shirasu, K. and Yoshioka, H. 2015. WRKY transcription factors phosphorylated by MAPK regulate a plant immune NADPH oxidase in Nicotiana benthamiana. Plant Cell 27:2645-2663.
Aist, J. R. 1976. Papillae and related wound plugs of plant cells. Annu. Rev. Phytopathol. 14:145-163.
Ambawat, S., Sharma, P., Yadav, N. R., and Yadav, R. C. 2013. MYB transcription factor genes as regulators for plant responses: an overview. Physiol. Mol. Biol. Plants 19:307-321.
Albersheim, P., and Anderson, A. J. 1971. Proteins from plant cell walls inhibit polygalacturonases secreted by plant pathogens. Proc. Natl. Acad. Sci. 68:1815-1819.
Albert, I., Böhm, H., Albert, M., Feiler, C. E., Imkampe, J., Wallmeroth, N., Brancato, C., Raaymakers, T. M., Oome, S., Zhang, H., Krol, E., Grefen, C., Gust, A. A., Chai, J., Hedrich, R., Van den Ackerveken, G., and Nürnberger, T. 2015. An RLP23-SOBIR1-BAK1 complex mediates NLP-triggered immunity. Nat. Plants 1:15140.
Aronson, J. M., Cooper, B. A., and Fuller, M. S. 1967. Glucans of oomycete cell walls. Science 155:332-335.
Attard, A., Gourgues, M., Callemeyn‐Torre, N., and Keller, H. 2010. The immediate activation of defense responses in Arabidopsis roots is not sufficient to prevent Phytophthora parasitica infection. New Phytol. 187:449-460.
Ayers, A. R., Ebel, J., Finelli, F., Berger, N., and Albersheim, P. 1976a. Host-pathogen interactions: IX. Quantitative assays of elicitor activity and characterization of the elicitor present in the extracellular medium of cultures of Phytophthora megasperma var. sojae. Plant Physiol. 57:751-759.
Ayers, A. R., Ebel, J., Valent, B., and Albersheim, P. 1976b. Host-pathogen interactions: X. Fractionation and biological activity of an elicitor isolated from the mycelial walls of Phytophthora megasperma var. sojae. Plant Physiol. 57:760-765.
Ayers, A. R., Valent, B., Ebel, J., and Albersheim, P. 1976c. Host-pathogen interactions: XI. Composition and structure of wall-released elicitor fractions. Plant Physiol. 57:766-774.
Aziz, A., Gauthier, A., Bézier, A., Poinssot, B., Joubert, J. M., Pugin, A., Heyraud, A., and Baillieul, F. 2007. Elicitor and resistance-inducing activities of β-1, 4 cellodextrins in grapevine, comparison with β-1, 3 glucans and α-1, 4 oligogalacturonides. J. Exp. Bot. 58:1463-1472.
Aziz, A., Poinssot, B., Daire, X., Adrian, M., Bézier, A., Lambert, B., Joubert, J. M. and Pugin, A. 2003. Laminarin elicits defense responses in grapevine and induces protection against Botrytis cinerea and Plasmopara viticola. Mol. Plant-Microbe Interact. 16:1118-1128.
Bacete, L., Mélida, H., Miedes, E., & Molina, A. 2018. Plant cell wall‐mediated immunity: cell wall changes trigger disease resistance responses. Plant J. 93:614-636.
Bailey, B. A., Dean, J. F., and Anderson, J. D. 1990. An ethylene biosynthesis-inducing endoxylanase elicits electrolyte leakage and necrosis in Nicotiana tabacum cv. Xanthi leaves. Plant physiol. 94:1849-1854.
Barber, M. S., Bertram, R. E., and Ride, J. P. 1989. Chitin oligosaccharides elicit lignification in wounded wheat leaves. Physiol. Mol. Plant Path. 34:3-12.
Bardoel, B. W., Van Der Ent, S., Pel, M. J., Tommassen, J., Pieterse, C. M., Van Kessel, K. P., and Van Strijp, J. A. 2011. Pseudomonas evades immune recognition of flagellin in both mammals and plants. PLoS Pathog. 7:e1002206.
Bartnicki-Garcia, S. 1968. Cell wall chemistry, morphogenesis, and taxonomy of fungi. Annu. Rev. Microbiol. 22:87-108.
Bellande, K., Bono, J. J., Savelli, B., Jamet, E., and Canut, H. 2017. Plant lectins and lectin receptor-like kinases: how do they sense the outside?. Int. J. Mol. Sci. 18:1164-1188.
Bergmann, C. W., Ito, Y., Singer, D., Albersheim, P., Darvill, A. G., Benhamou, N., Nuss, L., Salvi, G., Cervone, F. and De Lorenzo, G. 1994. Polygalacturonase‐inhibiting protein accumulates in Phaseolus vulgaris L. in response to wounding, elicitors and fungal infection. Plant J. 5:625-634.
Bi, G., Zhou, Z., Wang, W., Li, L., Rao, S., Wu, Y., Zhang, X., Menke, F. L. H., Chen, S. and Zhou, J. M. 2018. Receptor-like cytoplasmic kinases directly link diverse pattern recognition receptors to the activation of mitogen-activated protein kinase cascades in Arabidopsis. Plant Cell 30:1543-1561.
Billard, V., Bruneteau, M., Bonnet, P., Ricci, Ph., Pernollet, J. C., Huet, J. C., Vergne, A., Richard, G. and Michel, G. 1988. Chromatographic purification and characterization of elicitors of necrosis on tobacco produced by incompatible Phytophthora species. J. Chromatogr. A 440:87-94.
Blackman, L. M., Cullerne, D. P., and Hardham, A. R. 2014. Bioinformatic characterisation of genes encoding cell wall degrading enzymes in the Phytophthora parasitica genome. BMC Genomics 15:785.
Blackman, L. M., Cullerne, D. P., Torreña, P., Taylor, J., and Hardham, A. R. 2015. RNA-Seq analysis of the expression of genes encoding cell wall degrading enzymes during infection of lupin (Lupinus angustifolius) by Phytophthora parasitica. PLoS One 10:e0136899.
Blein, J. P., Milat, M. L., & Ricci, P. 1991. Responses of cultured tobacco cells to cryptogein, a proteinaceous elicitor from Phytophthora cryptogea: possible plasmalemma involvement. Plant Physiol. 95:486-491.
Blume, B., Nürnberger, T., Nass, N., and Scheel, D. 2000. Receptor-mediated increase in cytoplasmic free calcium required for activation of pathogen defense in parsley. Plant Cell 12:1425-1440.
Bostock, R. M., Kuc, J. A., and Laine, R. A. 1981. Eicosapentaenoic and arachidonic acids from Phytophthora infestans elicit fungitoxic sesquiterpenes in the potato. Science 212:67-69.
Bostock, R. M., Laine, R. A., and Kuć, J. A. 1982. Factors affecting the elicitation of sesquiterpenoid phytoalexin accumulation by eicosapentaenoic and arachidonic acids in potato. Plant Physiol. 70:1417-1424.
Bostock, R. M., Savchenko, T., Lazarus, C., and Dehesh, K. 2011. Eicosapolyenoic acids: novel MAMPs with reciprocal effect on oomycete-plant defense signaling networks. Plant Signal. Behav. 6:31-533.
Bostock, R. M., Yamamoto, H., Choi, D., Ricker, K. E., and Ward, B. L. 1992. Rapid stimulation of 5-lipoxygenase activity in potato by the fungal elicitor arachidonic acid. Plant Physiol. 100:1448-1456.
Boudart, G., Charpentier, M., Lafitte, C., Martinez, Y., Jauneau, A., Gaulin, E., Esquerré-Tugayé, M. T. and Dumas, B. 2003. Elicitor activity of a fungal endopolygalacturonase in tobacco requires a functional catalytic site and cell wall localization. Plant Physiol. 131:93-101.
Boudsocq, M., Willmann, M. R., McCormack, M., Lee, H., Shan, L., He, P., Bush, J., Cheng, S. and Sheen, J. 2010. Differential innate immune signalling via Ca2+ sensor protein kinases. Nature 464:418.
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254.
Bruce, R. J., and West, C. A. 1982. Elicitation of casbene synthetase activity in castor bean: The role of pectic fragments of the plant cell wall in elicitation by a fungal endopolygalacturonase. Plant Physiol. 69:1181-1188.
Brunner, F., Rosahl, S., Lee, J., Rudd, J. J., Geiler, C., Kauppinen, S., Rasmussen, G., Scheel, D., and Nürnberger, T. 2002. Pep‐13, a plant defense‐inducing pathogen‐associated pattern from Phytophthora transglutaminases. EMBO J. 21:6681-6688.
Cao, Y., Tanaka, K., Nguyen, C. T., and Stacey, G. 2014. Extracellular ATP is a central signaling molecule in plant stress responses. Curr. Opin. Plant Biol. 20:82-87.
Cavalier-Smith, T. 1981. Eukaryote kingdoms: seven or nine? Biosystems 14:461-481.
Cervone, F., Hahn, M. G., De Lorenzo, G., Darvill, A., and Albersheim, P. 1989. Host-pathogen interactions: XXXIII. A plant protein converts a fungal pathogenesis factor into an elicitor of plant defense responses. Plant Physiol. 90:542-548.
Chaparro-Garcia, A., Wilkinson, R. C., Gimenez-Ibanez, S., Findlay, K., Coffey, M. D., Zipfel, C., Rathjen, J. P., Kamoun, S., and Schornack, S. 2011. The receptor-like kinase SERK3/BAK1 is required for basal resistance against the late blight pathogen Phytophthora infestans in Nicotiana benthamiana. PloS One 6:e16608.
Chen, X., Shang, J., Chen, D., Lei, C., Zou, Y., Zhai, W., Liu, G., Xu, J., Ling, Z., Cao, G., Ma, B,. Wang, Y., Zhao, X., Li, S., and Zhu, L. 2006. AB‐lectin receptor kinase gene conferring rice blast resistance. Plant J. 46:794-804.
Chen, X. Y., and Kim, J. Y. 2009. Callose synthesis in higher plants. Plant signal. Behave. 4:489-492.
Chen, Y., Chen, Y., Shi, C., Huang, Z., Zhang, Y., Li, S., Li, Y., Ye, J., Yu, C., Li, Z., Zhang, X., Wang, J., Yang, H., Fang, L., and Chen, Q. 2018. SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. Gigascience 7: gix120.
Cheong, J. J., Birberg, W., Fügedi, P., Pilotti, A., Garegg, P. J., Hong, N., Ogawa, T., and Hahn, M. G. 1991. Structure-activity relationships of oligo-beta-glucoside elicitors of phytoalexin accumulation in soybean. Plant Cell 3:127-136.
Chinchilla, D., Zipfel, C., Robatzek, S., Kemmerling, B., Nürnberger, T., Jones, J. D., Felix, G., and Boller, T. 2007. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448:497-500.
Choi, H. W., Manohar, M., Manosalva, P., Tian, M., Moreau, M., and Klessig, D. F. 2016. Activation of plant innate immunity by extracellular high mobility group box 3 and its inhibition by salicylic acid. PLoS Pathog. 12:e1005518.
Choi, J., Tanaka, K., Cao, Y., Qi, Y., Qiu, J., Liang, Y., Lee, S. Y. and Stacey, G. 2014. Identification of a plant receptor for extracellular ATP. Science 343:290-294.
Conrath, U., Beckers, G. J., Langenbach, C. J., and Jaskiewicz, M. R. 2015. Priming for enhanced defense. Annu. Rev. phytopathol. 53:97-119.
Couto, D., and Zipfel, C. 2016. Regulation of pattern recognition receptor signalling in plants. Nat. Rev. Immunol. 16:537-552.
Davis, K. R., Darvill, A. G., Albersheim, P., and Dell, A. 1986. Host-pathogen interactions: XXIX. Oligogalacturonides released from sodium polypectate by endopolygalacturonic acid lyase are elicitors of phytoalexins in soybean. Plant Physiol. 80:568-577.
de Azevedo Souza, C., Li, S., Lin, A. Z., Boutrot, F., Grossmann, G., Zipfel, C., and Somerville, S. C. 2017. Cellulose-derived oligomers act as damage-associated molecular patterns and trigger defense-like responses. Plant Physiol. 173:2383-2398.
Denoux, C., Galletti, R., Mammarella, N., Gopalan, S., Werck, D., De Lorenzo, G., Ferrari, S., Ausubel, F. M., and Dewdney J. 2008. Activation of defense response pathways by OGs and Flg22 elicitors in Arabidopsis seedlings. Mol. Plant 1:423-445.
Derevnina, L., Dagdas, Y. F., De la Concepcion, J. C., Bialas, A., Kellner, R., Petre, B., Domazakis, E., Du, J., Wu, C. H., Lin, X., Aguilera-Galvez, C., Cruz-Mireles, N., Vleeshouwers, V. G., Kamoun, S. 2016. Nine things to know about elicitins. New Phytol. 212:888-895.
Dokládal, L., Obořil, M., Stejskal, K., Zdráhal, Z., Ptáčková, N., Chaloupková, R., Damborsky, J., Kasparovsky, T., Jeandroz, S., Zd''árská, M. and Lochman, J. 2012. Physiological and proteomic approaches to evaluate the role of sterol binding in elicitin-induced resistance. J. Ex. Bot. 63:2203-2215.
Domazakis, E., Wouters, D., Visser, R. G., Kamoun, S., Joosten, M. H., and Vleeshouwers, V. G. A. A. 2018. The ELR-SOBIR1 complex functions as a two-component receptor-like kinase to mount defense against Phytophthora infestans. Mol. Plant-Microbe Interact. 31:795-802.
Du, J., Verzaux, E., Chaparro-Garcia, A., Bijsterbosch, G., Keizer, L. C. P., Zhou, J., Liebrand, T. W. H., Xie, C., Govers, F., Robatzek, S., van der Vossen, E. A. G., Jacobsen, E., Visser, R. G. F., Kamoun, S., and Vleeshouwers, V. G. A. A. 2015. Elicitin recognition confers enhanced resistance to Phytophthora infestans in potato. Nat. Plants 1:15034.
Ebel, J., Ayers, A. R., and Albersheim, P. 1976. Host-pathogen interactions: XII. Response of suspension-cultured soybean cells to the elicitor isolated from Phytophthora megasperma var. sojae, a fungal pathogen of soybeans. Plant Physiol. 57:775-779.
Enkerli, J., Felix, G., and Boller, T. 1999. The enzymatic activity of fungal xylanase is not necessary for its elicitor activity. Plant Physiol. 121:391-398.
Erbs, G., and Newman, M. A. 2012. The role of lipopolysaccharide and peptidoglycan, two glycosylated bacterial microbe‐associated molecular patterns (MAMPs), in plant innate immunity. Mol. Plant Pathol. 13:95-104.
Farkas, V. 1979. Biosynthesis of cell walls of fungi. Microbiol. Rev. 43:117.
Felix, G., and Boller, T. 2003. Molecular sensing of bacteria in plants. The highly conserved RNA-binding motif RNP-1 of bacterial cold shock proteins is recognized as an elicitor signal in tobacco. J. Biol. Chem. 278:6201-6208.
Felix, G., Duran, J. D., Volko, S., and Boller, T. 1999. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J. 18:265-276.
Ferrari, S., Savatin, D. V., Sicilia, F., Gramegna, G., Cervone, F., and De Lorenzo, G. 2013. Oligogalacturonides: plant damage-associated molecular patterns and regulators of growth and development. Front. Plant Sci. 4:49.
Fesel, P. H., and Zuccaro, A. 2016. β-glucan: Crucial component of the fungal cell wall and elusive MAMP in plants. Fungal Genet. Biol. 90:53-60.
Fielding, A. H. 1981. Natural inhibitors of fungal polygalacturonases in infected fruit tissues. Microbiology 123:377-381.
Franco‐Orozco, B., Berepiki, A., Ruiz, O., Gamble, L., Griffe, L. L., Wang, S., Birch, P. R. J., Kanyuka, K., and Avrova, A. 2017. A new proteinaceous pathogen‐associated molecular pattern (PAMP) identified in Ascomycete fungi induces cell death in Solanaceae. New Phytol. 214:1657-1672.
Furman-Matarasso, N., Cohen, E., Du, Q., Chejanovsky, N., Hanania, U., and Avni, A. 1999. A point mutation in the ethylene-inducing xylanase elicitor inhibits the β-1-4-endoxylanase activity but not the elicitation activity. Plant Physiol. 121:345-352.
Furukawa, T., Inagaki, H., Takai, R., Hirai, H., and Che, F. S. 2014. Two distinct EF-Tu epitopes induce immune responses in rice and Arabidopsis. Mol. Plant-Microbe Interact. 27:113-124.
Gao, X., Cox Jr, K., and He, P. 2014. Functions of calcium-dependent protein kinases in plant innate immunity. Plants 3:160-176.
Gaulin, E., Dramé, N., Lafitte, C., Torto-Alalibo, T., Martinez, Y., Ameline-Torregrosa, C., Khatib, M., Mazarguil, H., Villalba-Mateos, F., Kamoun, S., Mazars, C., Dumas, B., Bottin, A., Esquerré-Tugayé, M.T., and Rickauer, M. 2006. Cellulose binding domains of a Phytophthora cell wall protein are novel pathogen-associated molecular patterns. Plant Cell 18:1766-1777.
Gaulin, E., Jauneau, A., Villalba, F., Rickauer, M., Esquerré-Tugayé, M. T., and Bottin, A. 2002. The CBEL glycoprotein of Phytophthora parasitica var. nicotianae is involved in cell wall deposition and adhesion to cellulosic substrates. J. Cell Sci. 115:4565-4575.
Göhre, V., Jones, A. M., Sklenář, J., Robatzek, S., and Weber, A. P. 2012. Molecular crosstalk between PAMP-triggered immunity and photosynthesis. Mol. Plant-Microbe Interact. 25:1083-1092.
Göhre, V., Spallek, T., Häweker, H., Mersmann, S., Mentzel, T., Boller, T., de Torres, M., Mansfield, J. W., and Robatzek, S. 2008. Plant pattern-recognition receptor FLS2 is directed for degradation by the bacterial ubiquitin ligase AvrPtoB. Curr. Boil. 18:1824-1832.
Gómez-Gómez, L., and Boller, T. 2000. FLS2: an LRR receptor–like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol. cell 5:1003-1011.
Gore, R. S., and Miller, K. J. 1993. Cyclic β-1,6-1,3 glucans are synthesized by Bradyrhizobium japonicum bacteroids within soybean (Glycine max) root nodules. Plant Physiol. 102:191-194.
Granado, J., Felix, G., and Boller, T. 1995. Perception of fungal sterols in plants (subnanomolar concentrations of ergosterol elicit extracellular alkalinization in tomato cells). Plant Physiol. 107:485-490.
Grasser, K. D., Launholt, D., and Grasser, M. 2007. High mobility group proteins of the plant HMGB family: dynamic chromatin modulators. BBA-Gene Struct. Expr. 1769:346-357.
Greeff, C. C., Roux, M. M., Mundy, J. J., and Petersen, M. M. 2012. Receptor-like kinase complexes in plant innate immunity. Front. Plant sci. 3:209.
Gust, A. A., Biswas, R., Lenz, H. D., Rauhut, T., Ranf, S., Kemmerling, B., Götz, F., Glawischnig, E., Lee, J., Felix, G., and Nürnberger, T. 2007. Bacteria-derived peptidoglycans constitute pathogen-associated molecular patterns triggering innate immunity in Arabidopsis. J. Biol. Chem. 282:32338-32348.
Gust, A. A., Pruitt, R., and Nürnberger, T. 2017. Sensing danger: key to activating plant immunity. Trends Plant Sci. 22:779-791.
Halim, V. A., Altmann, S., Ellinger, D., Eschen‐Lippold, L., Miersch, O., Scheel, D., and Rosahl, S. 2009. PAMP‐induced defense responses in potato require both salicylic acid and jasmonic acid. Plant J. 57:230-242.
Ham, K. S., Kauffmann, S., Albersheim, P., and Darvill, A. G. 1991. Host pathogen Interactions XXXIX. A soybean pathogenesis-related protein with β-1,3-glucanase activity releases phytoalexin elicitor-active heat stable fragments from fungal walls. Mol. Plant-Microbe Interact. 4:545-552.
Have, A. T., Mulder, W., Visser, J., and van Kan, J. A. 1998. The endopolygalacturonase gene Bcpg1 is required for full virulence of Botrytis cinerea. Mol. Plant-Microbe Interact. 11:1009-1016.
Heese, A., Hann, D. R., Gimenez-Ibanez, S., Jones, A. M., He, K., Li, J., Schroeder, J. I., Peck, S. C., Rathjen, J. P., and Rathjen, J. P. 2007. The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc. Natl. Acad. Sci. 104:12217-12222.
Hendrix, J. W. 1970. Sterols in growth and reproduction of fungi. Annu. Rev. Phytopathol. 8:111-130.
Hoffman, R. M., and Turner, J. G. 1982. Partial purification of proteins from pea leaflets that inhibit Ascochyta pisi endopolygalacturonase. Physiol. Plant Pathol. 20:173-187.
Hou, S., Wang, X., Chen, D., Yang, X., Wang, M., Turrà, D., Di Pietro, A. and Zhang, W. 2014. The secreted peptide PIP1 amplifies immunity through receptor-like kinase 7. PLoS Pathog. 10:e1004331.
Huang, Q., and Allen, C. 2000. Polygalacturonases are required for rapid colonization and full virulence of Ralstonia solanacearum on tomato plants. Physiol. Mol. Plant Path. 57:77-83.
Huet, J. C., and Pernollet, J. C. 1989. Amino acid sequence of cinnamomin, a new member of the elicitin family, and its comparison to cryptogein and capsicein. FEBS Lett. 257:302-306.
Huffaker, A., and Ryan, C. A. 2007. Endogenous peptide defense signals in Arabidopsis differentially amplify signaling for the innate immune response. Proc. Natl. Acad. Sci. 104:10732-10736.
Huffaker, A., Pearce, G., and Ryan, C. A. 2006. An endogenous peptide signal in Arabidopsis activates components of the innate immune response. Proc. Natl. Acad. Sci. 103:10098-10103.
Jeter, C. R., and Roux, S. J. 2006. Plant responses to extracellular nucleotides: Cellular processes and biological effects. Purinerg. Signal. 2:443.
Jeter, C. R., Tang, W., Henaff, E., Butterfield, T., and Roux, S. J. 2004. Evidence of a novel cell signaling role for extracellular adenosine triphosphates and diphosphates in Arabidopsis. Plant Cell 16:2652-2664.
Jiang, J., Ma, S., Ye, N., Jiang, M., Cao, J., and Zhang, J. 2017. WRKY transcription factors in plant responses to stresses. J. Integr. Plant Biol. 59:86-101.
Jiang, R. H., Tyler, B. M., Whisson, S. C., Hardham, A. R., and Govers, F. 2006. Ancient origin of elicitin gene clusters in Phytophthora genomes. Mol. Boil. Evol. 23:338-351.
Jin, D. F., and West, C. A. 1984. Characteristics of galacturonic acid oligomers as elicitors of casbene synthetase activity in castor bean seedlings. Plant Physiol. 74:989-992.
Jones, J. D., and Dangl, J. L. 2006. The plant immune system. Nature 444:323-329.
Joubert, D. A., Kars, I., Wagemakers, L., Bergmann, C., Kemp, G., Vivier, M. A., and van Kan, J. A. 2007. A polygalacturonase-inhibiting protein from grapevine reduces the symptoms of the endopolygalacturonase BcPG2 from Botrytis cinerea in Nicotiana benthamiana leaves without any evidence for in vitro interaction. Mol. Plant-Microbe Interact. 20:392-402.
Kadota, Y., Sklenar, J., Derbyshire, P., Stransfeld, L., Asai, S., Ntoukakis, V., Jones, J. D., Shirasu, K., Menke, F., Jones, A., and Zipfel, C. 2014. Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity. Mol. Cell 54:43-55.
Kalunke, R. M., Tundo, S., Benedetti, M., Cervone, F., De Lorenzo, G., and D''Ovidio, R. 2015. An update on polygalacturonase-inhibiting protein (PGIP), a leucine-rich repeat protein that protects crop plants against pathogens. Front Plant Sci. 6:146.
Kamoun, S., Furzer, O., Jones, J. D., Judelson, H. S., Ali, G. S., Dalio, R. J., Roy, S. G., Schena, L., Zambounis, A., Panabières, F., Cahill, D., Ruocco, M., Figueiredo, A., Chen, X. R., Hulvey, J., Stam, R., Lamour, K., Gijzen, M., Tyler, B. M., Grünwald, N. J., Mukhtar, M. S., Tomé, D. F., Tör, M., Van Den Ackerveken, G., McDowell, J., Daayf, F., Fry, W. E., Lindqvist-Kreuze, H., Meijer, H. J., Petre, B., Ristaino, J., Yoshida, K., Birch, P. R., Govers, F. 2015. The Top 10 oomycete pathogens in molecular plant pathology. Mol. Plant Pathol. 16:413-434.
Kamoun, S., Klucher, K. M., Coffey, M. D., and Tyler, B. M. 1993a. A gene encoding a host-specific elicitor protein of Phytophthora parasitica. Mol. Plant-Microbe Interact. 6:573-573.
Kamoun, S., van West, P., Vleeshouwers, V. G., de Groot, K. E., and Govers, F. 1998. Resistance of Nicotiana benthamiana to Phytophthora infestans is mediated by the recognition of the elicitor protein INF1. Plant Cell 10:1413-1425.
Kamoun, S., Young, M., Glascock, C. B., and Tyler, B. M. 1993b. Extracellular protein elicitors from Phytophthora: host-specificity and induction of resistance to bacterial and fungal phytopathogens. Mol. Plant-Microbe Interact. 6:15-25.
Keen, N. T., and Yoshikawa, M. 1983. β-1,3-Endoglucanase from soybean releases elicitor-active carbohydrates from fungus cell walls. Plant Physiol. 71:460-465.
Keller, H., Pamboukdjian, N., Ponchet, M., Poupet, A., Delon, R., Verrier, J. L., Roby, D., and Ricci, P. 1999. Pathogen-induced elicitin production in transgenic tobacco generates a hypersensitive response and nonspecific disease resistance. Plant Cell 11:223-235.
Kim, S. Y., Sivaguru, M., and Stacey, G. 2006. Extracellular ATP in plants. Visualization, localization, and analysis of physiological significance in growth and signaling. Plant Physiol. 142:984-992.
Khatib, M., Lafitte, C., Esquerré‐Tugayé, M. T., Bottin, A., and Rickauer, M. 2004. The CBEL elicitor of Phytophthora parasitica var. nicotianae activates defence in Arabidopsis thaliana via three different signalling pathways. New Phytol. 162:501-510.
Klarzynski, O., Plesse, B., Joubert, J. M., Yvin, J. C., Kopp, M., Kloareg, B., and Fritig, B. 2000. Linear β-1,3 glucans are elicitors of defense responses in tobacco. Plant Physiol. 124:1027-1038.
Klemptner, R. L., Sherwood, J. S., Tugizimana, F., Dubery, I. A., and Piater, L. A. 2014. Ergosterol, an orphan fungal microbe‐associated molecular pattern (MAMP). Mol. Plant Pathol. 15:747-761.
Kou, Y., and Wang, S. 2010. Broad-spectrum and durability: understanding of quantitative disease resistance. Curr. Opin. Plant boil. 13:181-185.
Kroon, L. P., Brouwer, H., de Cock, A. W., and Govers, F. 2012. The genus Phytophthora anno 2012. Phytopathology 102:348-364.
Kunze, G., Zipfel, C., Robatzek, S., Niehaus, K., Boller, T., Felix, G. 2004. The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell 16:3496-3507.
Kwaaitaal, M., Huisman, R., Maintz, J., Reinstädler, A., and Panstruga, R. 2011. Ionotropic glutamate receptor (iGluR)-like channels mediate MAMP-induced calcium influx in Arabidopsis thaliana. Biochem. J. 440:355-373.
Lafitte, C., Barthe, J. P., Montillet, J. L., and Tou, A. 1984. Glycoprotein inhibitors of Colletotrichum lindemuthianum endopolygalacturonase in near isogenic lines of Phaseolus vulgaris resistant and susceptible to anthracnose. Physiol. Plant Pathol. 25:39-53.
Lamotte, O., Gould, K., Lecourieux, D., Sequeira-Legrand, A., Lebrun-Garcia, A., Durner, J., Pugin, A., and Wendehenne, D. 2004. Analysis of nitric oxide signaling functions in tobacco cells challenged by the elicitor cryptogein. Plant Physiol. 135:516-529.
Langmead, B., and Salzberg, S. L. 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9:357.
Lecourieux, D., Ranjeva, R., and Pugin, A. 2006. Calcium in plant defence‐signalling pathways. New Phytol. 171:249-269.
Lee, S. C., and West, C. A. 1981. Properties of Rhizopus stolonifer polygalacturonase, an elicitor of casbene synthetase activity in castor bean (Ricinus communis L.) seedlings. Plant Physiol. 67:640-645.
Li, B., and Dewey, C. N. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC bioinformatics 12:323.
Li, L., Li, M., Yu, L., Zhou, Z., Liang, X., Liu, Z., Cai, G., Gao, L., Zhang, X., Wang, Y., Chen, S., and Zhou, J. M. 2014. The FLS2-associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity. Cell Host Microbe 15: 329-338.
Liebrand, T. W., van den Burg, H. A., and Joosten, M. H. 2014. Two for all: receptor-associated kinases SOBIR1 and BAK1. Trends Plant Sci. 19:123-132.
Love, M. I., Huber, W., and Anders, S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15:550.
Lu, D., Wu, S., Gao, X., Zhang, Y., Shan, L., and He, P. 2010. A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity. Proc. Natl. Acad. Sci. 107:496-501.
Luna, E., Pastor, V., Robert, J., Flors, V., Mauch-Mani, B., and Ton, J. 2011. Callose deposition: a multifaceted plant defense response. Mol. Plant-Microbe Interact. 24:183-193.
Ma, W. 2011. Roles of Ca2+ and cyclic nucleotide gated channel in plant innate immunity. Plant Sci. 181:342-346.
Ma, Z., Song, T., Zhu, L., Ye, W., Wang, Y., Shao, Y., Dong, S., Zhang, Z., Dou, D., Zheng, X., Tyler, B. M., and Wang, Y. 2015. A Phytophthora sojae glycoside hydrolase 12 protein is a major virulence factor during soybean infection and is recognized as a PAMP. Plant Cell 27:2057-2072.
Ma, Z., Zhu, L., Song, T., Wang, Y., Zhang, Q., Xia, Y., Qiu M1,2, Lin Y1,2, Li H1,2, Kong, L., Fang, Y., Ye, W., Wang, Y., Dong, S., Zheng, X., Tyler, B. M., Wang, Y. 2017. A paralogous decoy protects Phytophthora sojae apoplastic effector PsXEG1 from a host inhibitor. Science 355:710-714.
Macho, A. P., and Zipfel, C. 2014. Plant PRRs and the activation of innate immune signaling. Mol. Cell 54:263-272.
Manzoor, H., Kelloniemi, J., Chiltz, A., Wendehenne, D., Pugin, A., Poinssot, B., and Garcia‐Brugger, A. 2013. Involvement of the glutamate receptor AtGLR3.3 in plant defense signaling and resistance to Hyaloperonospora arabidopsidis. Plant J. 76:466-480.
Mateos, F. V., Rickauer, M., and Esquerré-Tugayé, M. T. 1997. Cloning and characterization of a cDNA encoding an elicitor of Phytophthora parasitica var. nicotianae that shows cellulose-binding and lectin-like activities. Mol. Plant-Microbe Interact. 10:1045-1053.
Mathieu, Y., Armen, K., Xia, H., Guern, J., Koller, A., Spiro, M. D., O''Neill, M., Albersheim, P. and Darvill, A. 1991. Membrane responses induced by oligogalacturonides in suspension-cultured tobacco cells. Plant J. 1:333.
Martinez-Medina, A., Flors, V., Heil, M., Mauch-Mani, B., Pieterse, C. M., Pozo, M. J., Ton, J., van Dam, N. M., and Conrath, U. 2016. Recognizing plant defense priming. Trends Plant Sci. 21:818-822.
Mauch, F., Mauch-Mani, B., and Boller, T. 1988. Antifungal hydrolases in pea tissue: II. Inhibition of fungal growth by combinations of chitinase and β-1,3-glucanase. Plant Physiol. 88:936-942.
Mauch-Mani, B., Baccelli, I., Luna, E., and Flors, V. 2017. Defense priming: an adaptive part of induced resistance. Annu. Rev. Plant Boil. 68, 485-512.
Ménard, R., Alban, S., de Ruffray, P., Jamois, F., Franz, G., Fritig, B., Yvin, J. C. and Kauffmann, S. 2004. β-1,3 glucan sulfate, but not β-1,3 glucan, induces the salicylic acid signaling pathway in tobacco and Arabidopsis. Plant Cell 16:3020-3032.
Mélida, H., Sopeña‐Torres, S., Bacete, L., Garrido‐Arandia, M., Jordá, L., López, G., Muñoz-Barrios, A., Pacios, L. F., and Molina, A. 2018. Non‐branched β‐1,3‐glucan oligosaccharides trigger immune responses in Arabidopsis. Plant J. 93:34-49.
Meng, Y., Zhang, Q., Ding, W., and Shan, W. 2014. Phytophthora parasitica: a model oomycete plant pathogen. Mycology 5:43-51.
Michard E., Lima P. T., Borges F., Silva A. C., Portes M. T., Carvalho J. E., Gilliham M., Liu L. H., Obermeyer G., and Feijo J. A. 2011. Glutamate receptor-like genes form Ca2+ channels in pollen tubes and are regulated by pistil D-serine. Science 332:434-437.
Mikes, V., Milat, M. L., Ponchet, M., Panabières, F., Ricci, P., and Blein, J. P. 1998. Elicitins, proteinaceous elicitors of plant defense, are a new class of sterol carrier proteins. Biochem. Biophys. Res. Commun. 245:133-139.
Mikes, V., Milat, M. L., Ponchet, M., Ricci, P., and Blein, J. P. 1997. The fungal elicitor cryptogein is a sterol carrier protein. FEBS Lett. 416:190-192.
Mishina, T. E., and Zeier, J. 2007. Pathogen‐associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis. Plant J. 50:500-513.
Mistry, J., Finn, R. D., Eddy, S. R., Bateman, A., and Punta, M. 2013. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res. 41:e121-e121.
Mithoe, S. C., and Menke, F. L. 2018. Regulation of pattern recognition receptor signalling by phosphorylation and ubiquitination. Curr. Opin. Plant Biol. 45:162-170.
Mithöfer, A., Bhagwat, A. A., Feger, M., and Ebel, J. 1996. Suppression of fungal β-glucan-induced plant defence in soybean (Glycine max L.) by cyclic 1, 3-1, 6-β-glucans from the symbiont Bradyrhizobium japonicum. Planta 199:270-275.
Mithöfer, A., Ebel, J., Bhagwat, A. A., Boller, T., and Neuhaus-Url, G. 1999. Transgenic aequorin monitors cytosolic calcium transients in soybean cells challenged with β-glucan or chitin elicitors. Planta 207:566-574.
Miya, A., Albert, P., Shinya, T., Desaki, Y., Ichimura, K., Shirasu, K., Narusaka, Y., Kawakami, N., Kaku, H. and Shibuya, N. 2007. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc. Natl. Acad. Sci. 104:19613-19618.
Mur, L. A., Kenton, P., Atzorn, R., Miersch, O., and Wasternack, C. 2006. The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiol. 140:249-262.
Nguyen, H. P., Chakravarthy, S., Velásquez, A. C., McLane, H. L., Zeng, L., Nakayashiki, H., Park, D. H., Collmer, A., and Martin, G. B. 2010. Methods to study PAMP-triggered immunity using tomato and Nicotiana benthamiana. Mol. Plant-Microbe Interact. 23:991-999.
Nürnberger, T., Nennstiel, D., Jabs, T., Sacks, W. R., Hahlbrock, K., and Scheel, D. 1994. High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses. Cell 78:449-460.
Panabières, F., Ponchet, M., Allasia, V., Cardin, L., and Ricci, P. 1997. Characterization of border species among Pythiaceae: several Pythium isolates produce elicitins, typical proteins from Phytophthora spp. Mycol. Res. 101:1459-1468.
Parker, J. E., Schulte, W., Hahlbrock, K., and Scheel, D. 1991. An extracellular glycoprotein from Phytophthora megasperma f. sp. glycinea elicits phytoalexin synthesis in cultured parsley cells and protoplasts. Mol. Plant-Microbe Interact. 4:19-27.
Pearce, G., Moura, D. S., Stratmann, J., and Ryan, C. A. 2001a. Production of multiple plant hormones from a single polyprotein precursor. Nature 411:817.
Pearce, G., Moura, D. S., Stratmann, J., and Ryan, C. A. 2001b. RALF, a 5-kDa ubiquitous polypeptide in plants, arrests root growth and development. Proc. Natl. Acad. Sci. 98:12843-12847.
Pearce, G., Strydom, D., Johnson, S., and Ryan, C. A. 1991. A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science 253:895-897.
Pedersen, D. S., and Grasser, K. D. 2010. The role of chromosomal HMGB proteins in plants. BBA-Gene Regul. Mech. 1799:171-174.
Pel, M. J., van Dijken, A. J., Bardoel, B. W., Seidl, M. F., van der Ent, S., van Strijp, J. A., and Pieterse, C. M. 2014. Pseudomonas syringae evades host immunity by degrading flagellin monomers with alkaline protease AprA. Mol. Plant-Microbe Interact. 27:603-610.
Peng, K. C., Wang, C. W., Wu, C. H., Huang, C. T., and Liou, R. F. 2015. Tomato SOBIR1/EVR homologs are involved in elicitin perception and plant defense against the oomycete pathogen Phytophthora parasitica. Mol. Plant-Microbe Interact. 28:913-926.
Pernollet, J. C., Sallantin, M., Salle-Tourne, M., and Huet, J. C. 1993. Elicitin isoforms from seven Phytophthora species: comparison of their physico-chemical properties and toxicity to tobacco and other plant species. Physiol. Mol. Plant Path. 42:53-67.
Phukan, U. J., Jeena, G. S., Tripathi, V., and Shukla, R. K. 2017. Regulation of Apetala2/Ethylene response factors in plants. Front. Plant Sci. 8:150.
Piršelová, B., and Matušíková, I. 2013. Callose: the plant cell wall polysaccharide with multiple biological functions. Acta Physiol. Plant. 35:635-644.
Poinssot, B., Vandelle, E., Bentéjac, M., Adrian, M., Levis, C., Brygoo, Y., Garin, J., Sicilia, F., Coutos-Thévenot, P., and Pugin, A. 2003. The endopolygalacturonase 1 from Botrytis cinerea activates grapevine defense reactions unrelated to its enzymatic activity. Mol. Plant-Microbe Interact. 16:553-564.
Pugin, A., Frachisse, J. M., Tavernier, E., Bligny, R., Gout, E., Douce, R., and Guern, J. 1997. Early events induced by the elicitor cryptogein in tobacco cells: involvement of a plasma membrane NADPH oxidase and activation of glycolysis and the pentose phosphate pathway. Plant Cell 9:2077-2091.
Ranf, S., Gisch, N., Schäffer, M., Illig, T., Westphal, L., Knirel, Y. A., Sánchez-Carballo, P. M., Zähringer, U., Hückelhoven, R., Lee, J., and Scheel, D. 2015. A lectin S-domain receptor kinase mediates lipopolysaccharide sensing in Arabidopsis thaliana. Nature Immunol. 16:426-433.
Ricci, P., Bonnet, P., Huet, J. C., Sallantin, M., Beauvais-Cante, F., Bruneteau, M., Billard, V., Michel, G., and Pernollet, J. C. 1989. Structure and activity of proteins from pathogenic fungi Phytophthora eliciting necrosis and acquired resistance in tobacco. Eur. J. Biochem. 183:555-563.
Ricker, K. E., and Bostock, R. M. 1992. Evidence for release of the elicitor arachidonic acid and its metabolites from sporangia of Phytophthora infestans during infection of potato. Physiol. Mol. Plant P. 41:61-72.
Ridley, B. L., O''Neill, M. A., and Mohnen, D. 2001. Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57:929-967.
Rieder, B., and Neuhaus, H. E. 2011. Identification of an Arabidopsis plasma membrane–located ATP transporter important for anther development. Plant Cell 23:1932-1944.
Robert-Seilaniantz, A., Grant, M., and Jones, J. D. 2011. Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu. Rev. Phytopathol. 49:317-343.
Roby, D., Gadelle, A., and Toppan, A. 1987. Chitin oligosaccharides as elicitors of chitinase activity in melon plants. Biochem. Biophys. Res. Commun. 143:885-892.
Rodriguez-Palenzuela, P., Burr, T. J., and Collmer, A. 1991. Polygalacturonase is a virulence factor in Agrobacterium tumefaciens biovar 3. J. Bacteriol. 173:6547-6552.
Rossard, S., Roblin, G., and Atanassova, R. 2010. Ergosterol triggers characteristic elicitation steps in Beta vulgaris leaf tissues. J. Exp. Bot. 61:1807-1816.
Roux, M., Schwessinger, B., Albrecht, C., Chinchilla, D., Jones, A., Holton, N., Malinovsky, F. G., Tör, M., de Vries, S., and Zipfel, C. 2011. The Arabidopsis leucine-rich repeat receptor-like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens. Plant Cell 23:2440-2455.
Roux, S. J., and Steinebrunner, I. 2007. Extracellular ATP: an unexpected role as a signaler in plants. Trends Plant Sci., 12:522-527.
Sacks, W., Nürnberger, T., Hahlbrock, K., and Scheel, D. 1995. Molecular characterization of nucleotide sequences encoding the extracellular glycoprotein elicitor from Phytophthora megasperma. Mol. Gen. Genet. 246:45-55.
Saijo, Y., Loo, E. P. I., and Yasuda, S. 2018. Pattern recognition receptors and signaling in plant-microbe interactions. Plant J. 93:592-613.
Sasabe, M., Takeuchi, K., Kamoun, S., Ichinose, Y., Govers, F., Toyoda, K., Shiraishi, T., and Yamada, T. 2000. Independent pathways leading to apoptotic cell death, oxidative burst and defense gene expression in response to elicitin in tobacco cell suspension culture. Eur. J. Biochem. 267:5005-5013.
Savchenko, T., Walley, J. W., Chehab, E. W., Xiao, Y., Kaspi, R., Pye, M. F., Mohamed, M. E., Lazarus, C. M., Bostock, R. M., and Dehesh, K. 2010. Arachidonic acid: an evolutionarily conserved signaling molecule modulates plant stress signaling networks. Plant Cell 22:3193-3205.
Schlumbaum, A., Mauch, F., Vögeli, U., and Boller, T. 1986. Plant chitinases are potent inhibitors of fungal growth. Nature 324:365-367.
Schulze, B., Mentzel, T., Jehle, A. K., Mueller, K., Beeler, S., Boller, T., Felix, G. and Chinchilla, D. 2010. Rapid heteromerization and phosphorylation of ligand-activated plant transmembrane receptors and their associated kinase BAK1. J. Biol. Chem. 285:9444-9451.
Séjalon-Delmas, N., Dargent, R., Villalba, F., Bottin, A., Rickauer, M., and Esquerré-Tugayé, M. T. 1995. Characterization of a cell-surface antigen isolated from the plant pathogen Phytophthora parasitica var. nicotianae. Can. J. Botany 73:1104-1108.
Sharp, J. K., McNeil, M., and Albersheim, P. 1984a. The primary structures of one elicitor-active and seven elicitor-inactive hexa (beta-D-glucopyranosyl)-D-glucitols isolated from the mycelial walls of Phytophthora megasperma f. sp. glycinea. J. Biol. Chem. 259:11321-11336.
Sharp, J. K., Valent, B., and Albersheim, P. 1984b. Purification and partial characterization of a β-glucan fragment that elicits phytoalexin accumulation in soybean. J. Biol. Chem. 259:11312-11320.
Shibuya, N., and Minami, E. 2001. Oligosaccharide signalling for defence responses in plant. Physiol. Mol. Plant Path. 59:223-233.
Simon‐Plas, F., Rustérucci, C., Milat, M. L., Humbert, C., Montillet, J. L., and Blein, J. P. 1997. Active oxygen species production in tobacco cells elicited by cryptogein. Plant Cell Environ. 20:1573-1579.
Song, C. J., Steinebrunner, I., Wang, X., Stout, S. C., and Roux, S. J. 2006. Extracellular ATP induces the accumulation of superoxide via NADPH oxidases in Arabidopsis. Plant Physiol. 140:1222-1232.
Stekoll, M., and West, C. A. 1978. Purification and properties of an elicitor of castor bean phytoalexin from culture filtrates of the fungus Rhizopus stolonifer. Plant Physiol. 61:8-45.
Stegmann, M., Monaghan, J., Smakowska-Luzan, E., Rovenich, H., Lehner, A., Holton, N., Belkhadir, Y. and Zipfel, C. 2017. The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling. Science 355:287-289.
Tanaka, K., Choi, J., Cao, Y., and Stacey, G. 2014. Extracellular ATP acts as a damage-associated molecular pattern (DAMP) signal in plants. Front. Plant Sci. 5:446.
Tanaka, K., Gilroy, S., Jones, A. M., and Stacey, G. 2010. Extracellular ATP signaling in plants. Trends Cell Biol. 20:601-608.
Tang, W., Brady, S. R., Sun, Y., Muday, G. K., and Roux, S. J. 2003. Extracellular ATP inhibits root gravitropism at concentrations that inhibit polar auxin transport. Plant Physiol. 131:147-154.
Tavernier, E., Wendehenne, D., Blein, J. P., and Pugin, A. 1995. Involvement of free calcium in action of cryptogein, a proteinaceous elicitor of hypersensitive reaction in tobacco cells. Plant Physiol. 109:1025-1031.
Thomma, B. P., Nürnberger, T., and Joosten, M. H. 2011. Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell 23:4-15.
Tjamos, E. C., and Kuć, J. A. 1982. Inhibition of steroid glycoalkaloid accumulation by arachidonic and eicosapentaenoic acids in potato. Science 217:542-544.
van der Burgh, A. M., Postma, J., Robatzek, S., and Joosten, M. H. A. J. 2019. Kinase activity of SOBIR1 and BAK1 is required for immune signalling. Mol. Plant Pathol. 20:410-422.
Verma, V., Ravindran, P., and Kumar, P. P. 2016. Plant hormone-mediated regulation of stress responses. BMC plant biology, 16:86-95.
Waldmüller, T., Cosio, E. G., Grisebach, H., and Ebel, J. 1992. Release of highly elicitor-active glucans by germinating zoospores of Phytophthora megasperma f. sp. glycinea. Planta 188:498-505.
Wan, J., Zhang, X. C., Neece, D., Ramonell, K. M., Clough, S., Kim, S. Y., Stacey, M. G. and Stacey, G. 2008 A LysM receptor‐like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell 20:471-481.
Wang, L., Rong, W., and He, C. 2008. Two Xanthomonas extracellular polygalacturonases, PghAxc and PghBxc, are regulated by type III secretion regulators HrpX and HrpG and are required for virulence. Mol. Plant-Microbe Interact. 21:555-563.
Wang, Y., Xu, Y., Sun, Y., Wang, H., Qi, J., Wan, B., Ye, W., Lin, Y., Shao, Y., Dong, S., Tyler, B. M., and Wang, Y. 2018. Leucine-rich repeat receptor-like gene screen reveals that Nicotiana RXEG1 regulates glycoside hydrolase 12 MAMP detection. Nat. Commun. 9:594.
Wu, S. J., Liu, Y. S., and Wu, J. Y. 2008. The signaling role of extracellular ATP and its dependence on Ca2+ flux in elicitation of Salvia miltiorrhiza hairy root cultures. Plant Cell Physiol. 49:617-624.
Yamaguchi, T., Yamada, A., Hong, N., Ogawa, T., Ishii, T., and Shibuya, N. 2000. Differences in the recognition of glucan elicitor signals between rice and soybean: β-glucan fragments from the rice blast disease fungus Pyricularia oryzae that elicit phytoalexin biosynthesis in suspension-cultured rice cells. Plant Cell 12:817-826.
Yoshikawa, M., Matama, M., and Masago, H. 1981. Release of a soluble phytoalexin elicitor from mycelial walls of Phytophthora megasperma var. sojae by soybean tissues. Plant Physiol. 67:1032-1035.
Yu, X., Feng, B., He, P., and Shan, L. 2017. From chaos to harmony: responses and signaling upon microbial pattern recognition. Annu. Rev. Phytopathol. 55:109-137.
Zhang, J., Li, W., Xiang, T., Liu, Z., Laluk, K., Ding, X., Zou, Y., Gao, M., Zhang, X., Chen, S., Mengiste, T., Zhang, Y., and Zhou, J. M. 2010. Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector. Cell Host Microbe 7:290-301.
Zhang, L., Kars, I., Essenstam, B., Liebrand, T. W., Wagemakers, L., Elberse, J., Tagkalaki, P., Tjoitang, D., van den Ackerveken, G., and van Kan, J. A. 2014. Fungal endopolygalacturonases are recognized as microbe-associated molecular patterns by the Arabidopsis receptor-like protein RESPONSIVENESS TO BOTRYTIS POLYGALACTURONASES1. Plant Physiol. 164:352-364.
Zhang, W., Fraiture, M., Kolb, D., Löffelhardt, B., Desaki, Y., Boutrot, F. F., Tör, M., Zipfel, C., Gust, A. A., and Brunner, F. 2013. Arabidopsis receptor-like protein30 and receptor-like kinase suppressor of BIR1-1/EVERSHED mediate innate immunity to necrotrophic fungi. Plant Cell 25:4227-4241.
Zhang, W., Yang, X., Qiu, D., Guo, L., Zeng, H., Mao, J. and Gao, Q. 2010. PeaT1-induced systemic acquired resistance in tobacco follows salicylic acid-dependent pathway. Mol. Biol. Rep. 38:2549-2556.
Zhu, W., Ronen, M., Gur, Y., Minz-Dub, A., Masrati, G., Ben-Tal, N., Savidor, A., Sharon, I., Eizner, E., Valerius, O., Braus, G. H., Bowler, K., Bar-Peled, M., and Sharon, A. 2017. BcXYG1, a secreted xyloglucanase from Botrytis cinerea, triggers both cell death and plant immune responses. Plant Physiol. 175:438-456.
Zipfel, C. 2014. Plant pattern-recognition receptors. Trends Immunol. 35:345-351.
Zipfel, C., Kunze, G., Chinchilla, D., Caniard, A., Jones, J. D., Boller, T., and Felix, G. 2006. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125:749-760.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔