|
1.王瑞章、江汶錦、吳雅芳、林棟樑、孫文章、陳昇寬、彭瑞菊、鄭安秀、謝明憲、鍾瑞永。(2011)。馬鈴薯栽培管理技術。臺南區農業改良場技術專刊 1-25。 2.吳佳樺。(2010)。聚麩胺酸量產於枯草桿菌特殊功能生物殺菌劑發展之應用。中興大學植物病理學系所學位論文。68頁。 3.周浩平、王惠美、鄭日新、曾敏南。(2017)。液化澱粉芽孢桿菌 PMB01 於作物病害防治之應用。高雄區農業專訊20-21。 4.林上湖、鍾文全、楊佐琦。(2010)。台灣馬鈴薯產業 80 年之回顧與展望。 植物種苗 12:1-23。 5.林芝、馮如瑩、蔡佳欣、陳穎練。(2017)。殺真菌劑得克利能抑制馬鈴薯瘡痂病原細菌。植物醫學59:31-37。 6.林碩興。(2015)。應用 Bacillus amyloliquefaciens PMB01 防治甜椒細菌性斑點病。屏東科技大學植物醫學系所學位論文。61頁。 7.邵宇恆。(2017)。改良式芽孢桿菌屬細菌轉型及再生效率提升技術。中興大學植物病理學系所學位論文。57頁。 8.曹幸之。(1993)。台農一號馬鈴薯簡介。技術服務 13:13-14。 9.曹幸之。(1993)。馬鈴薯的產業與研究。臺灣蔬菜產業演進四十年專集 139-164。 10.郭建志、陳俊位、廖君達、陳葦玲、蔡宜峯。(2014)。液化澱粉芽孢桿菌在作物病害防治的開發與應用。臺中區農業改良場特刊 69-86。 11.黃巧雯。(2008)。台灣由 Streptomyces scabies 所引起之馬鈴薯瘡痂病-病原菌生物特性及應用拮抗性枯草桿菌於其生物防治之初探。中興大學植物病理學系所學位論文。92頁。 12.黃㯖昌、曾國欽、呂昀陞。(2007)。細菌性軟腐病之診斷與鑑定。植物重要防疫檢疫病害診斷鑑定技術研習會專刊 (六) 109-116。 13.廖仁宏。(2017)。液化澱粉芽孢桿菌 Ba-BPD1 及其抗菌脂胜肽防治作物病害之研究。中興大學化學工程學系所學位論文。78頁。 14.蔡志濃、安寶貞、王姻婷、王馨媛、胡瓊月。(2009)。利用中和後之亞磷酸溶液防治馬鈴薯與番茄晚疫病。台灣農業研究 58:185-195。 15.謝奉家、高穗生。(2012)。具商品化潛力之多功能液化澱粉芽孢桿菌。2011海峽兩岸生物防治研討會 28-29。 16.Aleti, G., Lehner, S., Bacher, M., Compant, S., Nikolic, B., Plesko, M., Schuhmacher, R., Sessitsch, A., and Brader, G. (2016). Surfactin variants mediate species‐specific biofilm formation and root colonization in Bacillus. Environmental Microbiology 18:2634-2645. 17.Arseneault, T., Goyer, C., and Filion, M. (2016). Biocontrol of potato common scab is associated with high Pseudomonas fluorescens LBUM223 populations and phenazine-1-carboxylic acid biosynthetic transcript accumulation in the potato geocaulosphere. Phytopathology 106:963-970. 18.Bignell, D., Fyans, J., and Cheng, Z. (2014). Phytotoxins produced by plant pathogenic Streptomyces species. Journal of Applied Microbiology 116:223-235. 19.Borriss, R. (2011). Use of plant-associated Bacillus strains as biofertilizers and biocontrol agents in agriculture. In Bacteria in Agrobiology: Plant Growth Responses (pp. 41-76): Springer. 20.Chan, J.M., Guttenplan, S.B., and Kearns, D.B. (2014). Defects in the flagellar motor increase synthesis of poly-γ-glutamate in Bacillus subtilis. Journal of Bacteriology 196:740-753. 21.Chen, X., Koumoutsi, A., Scholz, R., Schneider, K., Vater, J., Süssmuth, R., Piel, J., and Borriss, R. (2009). Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. Journal of Biotechnology 140:27-37. 22.Chowdhury, S.P., Hartmann, A., Gao, X., and Borriss, R. (2015). Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42–a review. Frontiers in Microbiology 6:780. 23.Dogsa, I., Brloznik, M., Stopar, D., and Mandic-Mulec, I. (2013). Exopolymer diversity and the role of levan in Bacillus subtilis biofilms. PloS one 8:e62044. 24.Dragoš, A., Kiesewalter, H., Martin, M., Hsu, C.-Y., Hartmann, R., Wechsler, T., Eriksen, C., Brix, S., Drescher, K., and Stanley-Wall, N. (2018). Division of labor during biofilm matrix production. Current Biology 28:1903-1913. 25.Fan, B., Wang, C., Song, X., Ding, X., Wu, L., Wu, H., Gao, X., and Borriss, R. (2018). Bacillus velezensis FZB42 in 2018: the gram-positive model strain for plant growth promotion and biocontrol. Frontiers in Microbiology 9:2491. 26.Feng, J., Gu, Y., Sun, Y., Han, L., Yang, C., Zhang, W., Cao, M., Song, C., Gao, W., and Wang, S. (2014). Metabolic engineering of Bacillus amyloliquefaciens for poly‐gamma‐glutamic acid (γ‐PGA) overproduction. Microbial Biotechnology 7:446-455. 27.Gao, W., Liu, F., Zhang, W., Quan, Y., Dang, Y., Feng, J., Gu, Y., Wang, S., Song, C., and Yang, C. (2017). Mutations in genes encoding antibiotic substances increase the synthesis of poly‐γ‐glutamic acid in Bacillus amyloliquefaciens LL3. MicrobiologyOpen 6:e00398. 28.Ghelardi, E., Salvetti, S., Ceragioli, M., Gueye, S.A., Celandroni, F., and Senesi, S. (2012). Contribution of surfactin and SwrA to flagellin expression, swimming, and surface motility in Bacillus subtilis. Applied and Environmental Microbiology 78:6540-6544. 29.Han, J.S., Cheng, J.H., Yoon, T.M., Song, J., Rajkarnikar, A., Kim, W.G., Yoo, I.D., Yang, Y.Y., and Suh, J.W. (2005). Biological control agent of common scab disease by antagonistic strain Bacillus sp. sunhua. Journal of Applied Microbiology 99:213-221. 30.Healy, F.G., Wach, M., Krasnoff, S.B., Gibson, D.M., and Loria, R. (2000). The txtAB genes of the plant pathogen Streptomyces acidiscabies encode a peptide synthetase required for phytotoxin thaxtomin A production and pathogenicity. Molecular Microbiology 38:794-804. 31.Idris, E.E., Iglesias, D.J., Talon, M., and Borriss, R. (2007). Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Molecular Plant-Microbe Interactions 20:619-626. 32.Kearns, D.B., and Losick, R. (2003). Swarming motility in undomesticated Bacillus subtilis. Molecular Microbiology 49:581-590. 33.Kloepper, J.W., Ryu, C.-M., and Zhang, S. (2004). Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259-1266. 34.Konkol, M.A., Blair, K.M., and Kearns, D.B. (2013). Plasmid-encoded ComI inhibits competence in the ancestral 3610 strain of Bacillus subtilis. Journal of Bacteriology 195:4085-4093. 35.Kumar, A., Prakash, A., and Johri, B. (2011). Bacillus as PGPR in crop ecosystem. In Bacteria in Agrobiology: crop ecosystems (pp. 37-59): Springer. 36.López, D., Vlamakis, H., Losick, R., and Kolter, R. (2009). Cannibalism enhances biofilm development in Bacillus subtilis. Molecular Microbiology 74:609-618. 37.Lerat, S., SIMAO‐BEAUNOIR, A.M., and Beaulieu, C. (2009). Genetic and physiological determinants of Streptomyces scabies pathogenicity. Molecular Plant Pathology 10:579-585. 38.Liao, J.-H., Chen, P.-Y., Yang, Y.-L., Kan, S.-C., Hsieh, F.-C., and Liu, Y.-C. (2016). Clarification of the antagonistic effect of the lipopeptides produced by Bacillus amyloliquefaciens BPD1 against Pyricularia oryzae via in situ MALDI-TOF IMS analysis. Molecules 21:1670. 39.Lin, C., Tsai, C.H., Chen, P.Y., Wu, C.Y., Chang, Y.L., Yang, Y.L., and Chen, Y.L. (2018). Biological control of potato common scab by Bacillus amyloliquefaciens Ba01. PLoS One 13:e0196520. 40.Loria, R., Bukhalid, R.A., Creath, R., Leiner, R., Olivier, M., and Steffens, J. (1995). Differential production of thaxtomins by pathogenic Streptomyces species in vitro. Phytopathology 85:537-541. 41.Loria, R., Kers, J., and Joshi, M. (2006). Evolution of plant pathogenicity in Streptomyces. Annual Review of Phytopathology. 44:469-487. 42.Luo, C., Liu, X., Zhou, H., Wang, X., and Chen, Z. (2015). Nonribosomal peptide synthase gene clusters for lipopeptide biosynthesis in Bacillus subtilis 916 and their phenotypic functions. Applied and Environmental Microbiology 81:422. 43.McLoon, A.L., Guttenplan, S.B., Kearns, D.B., Kolter, R., and Losick, R. (2011). Tracing the domestication of a biofilm-forming bacterium. Journal of Bacteriology 193:2027-2034. 44.Meng, Q., Jiang, H., Hanson, L., and Hao, J. (2012). Characterizing a novel strain of Bacillus amyloliquefaciens BAC 03 for potential biological control application. Journal of Applied Microbiology 113:1165-1175. 45.Ongena, M., Jourdan, E., Adam, A., Paquot, M., Brans, A., Joris, B., Arpigny, J.L., and Thonart, P. (2007). Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environmental Microbiology 9:1084-1090. 46.Pérez-García, A., Romero, D., and De Vicente, A. (2011). Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Current Opinion in Biotechnology 22:187-193. 47.Parker, J.B., and Walsh, C.T. (2013). Action and timing of BacC and BacD in the late stages of biosynthesis of the dipeptide antibiotic bacilysin. Biochemistry 52:889-901. 48.Patrick, J.E., and Kearns, D.B. (2008). MinJ (YvjD) is a topological determinant of cell division in Bacillus subtilis. Molecular Microbiology 70:1166-1179. 49.Paul, N., and Rao, W.S. (1971). Phosphate-dissolving bacteria in the rhizosphere of some cultivated legumes. Plant and Soil 35:127-132. 50.Pikovskaya, R. (1948). Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya 17:362-370. 51.Rabbee, M.F., Ali, M., Choi, J., Hwang, B.S., Jeong, S.C., and Baek, K.-h. (2019). Bacillus velezensis: A Valuable Member of Bioactive Molecules within Plant Microbiomes. Molecules 24:1046. 52.Rachinger, M., Bauch, M., Strittmatter, A., Bongaerts, J., Evers, S., Maurer, K.-H., Daniel, R., Liebl, W., Liesegang, H., and Ehrenreich, A. (2013). Size unlimited markerless deletions by a transconjugative plasmid-system in Bacillus licheniformis. Journal of Biotechnology 167:365-369. 53.Reynolds, J., Moyes, R., and Breakwell, D.P. (2009). Differential staining of bacteria: endospore stain. Current Protocols in Microbiology 15:A. 3J. 1-A. 3J. 5. 54.Shank, E.A., and Kolter, R. (2011). Extracellular signaling and multicellularity in Bacillus subtilis. Current Opinion in Microbiology 14:741-747. 55.St-Onge, R., Gadkar, V.J., Arseneault, T., Goyer, C., and Filion, M. (2011). The ability of Pseudomonas sp. LBUM 223 to produce phenazine-1-carboxylic acid affects the growth of Streptomyces scabies, the expression of thaxtomin biosynthesis genes and the biological control potential against common scab of potato. FEMS Microbiology Ecology 75:173-183. 56.Tsui, W.H., Yim, G., Wang, H.H., McClure, J.E., Surette, M.G., and Davies, J. (2004). Dual effects of MLS antibiotics: transcriptional modulation and interactions on the ribosome. Chemistry & Biology 11:1307-1316. 57.Wanner, L., Kirk, W., and Qu, X. (2014). Field efficacy of nonpathogenic Streptomyces species against potato common scab. Journal of Applied Microbiology 116:123-133. 58.Xue, G.-P., Johnson, J.S., and Dalrymple, B.P. (1999). High osmolarity improves the electro-transformation efficiency of the gram-positive bacteria Bacillus subtilis and Bacillus licheniformis. Journal of Microbiological Methods 34:183-191. 59.Yang, J.-W., Yu, S.-H., and Ryu, C.-M. (2009). Priming of defense-related genes confers root-colonizing bacilli-elicited induced systemic resistance in pepper. The Plant Pathology Journal 25:389-399. 60.Zeriouh, H., de Vicente, A., Pérez‐García, A., and Romero, D. (2014). Surfactin triggers biofilm formation of Bacillus subtilis in melon phylloplane and contributes to the biocontrol activity. Environmental Microbiology 16:2196-2211. 61.Zhang, G.-q., Bao, P., Zhang, Y., Deng, A.-h., Chen, N., and Wen, T.-y. (2011). Enhancing electro-transformation competency of recalcitrant Bacillus amyloliquefaciens by combining cell-wall weakening and cell-membrane fluidity disturbing. Analytical Biochemistry 409:130-137. 62.Zhang, K., Duan, X., and Wu, J. (2016). Multigene disruption in undomesticated Bacillus subtilis ATCC 6051a using the CRISPR/Cas9 system. Scientific Reports 6:27943. 63.Zhang, W., Gao, W., Feng, J., Zhang, C., He, Y., Cao, M., Li, Q., Sun, Y., Yang, C., Song, C., et al. (2014). A markerless gene replacement method for B. amyloliquefaciens LL3 and its use in genome reduction and improvement of poly-γ-glutamic acid production. Applied Microbiology Biotechnology 98:8963-8973. 64.Zhang, W., Xie, H., He, Y., Feng, J., Gao, W., Gu, Y., Wang, S., and Song, C. (2013). Chromosome integration of the Vitreoscilla hemoglobin gene (vgb) mediated by temperature-sensitive plasmid enhances γ-PGA production in Bacillus amyloliquefaciens. FEMS Microbiology Letters 343:127-134. 65.Zhang, Z., Ding, Z.-T., Shu, D., Luo, D., and Tan, H. (2015). Development of an efficient electroporation method for iturin A-producing Bacillus subtilis ZK. International Journal of Molecular Sciences 16:7334-7351.
|