跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/13 19:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:馮如瑩
研究生(外文):Ru-Ying Feng
論文名稱:利用剔除液化澱粉芽孢桿菌Ba01之srf基因簇證明表面素為抑制馬鈴薯瘡痂病菌之重要二次代謝物
論文名稱(外文):Surfactin is the major secondary metabolite of Bacillus amyloliquefaciens Ba01 for combating potato common scab demonstrated by srf gene cluster deletion mutants
指導教授:陳穎練
口試委員:謝奉家劉啟德林宜賢
口試日期:2019-07-16
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:植物醫學碩士學位學程
學門:農業科學學門
學類:植物保護學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:73
中文關鍵詞:馬鈴薯瘡痂病馬鈴薯瘡痂病菌液化澱粉芽孢桿菌表面素srf基因簇突變株
DOI:10.6342/NTU201903611
相關次數:
  • 被引用被引用:2
  • 點閱點閱:151
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
馬鈴薯瘡痂病為馬鈴薯種植期間常見的病害,主要病原為馬鈴薯瘡痂病菌 (Streptomyces scabies),可造成薯塊壞疽病斑或木栓化病徵而使馬鈴薯商品價值降低,臺灣目前無推薦防治藥劑或微生物資材,僅能以種植健康種薯、水稻輪作與調節土壤酸鹼值來降低危害,然防治效果有限。本實驗室先前研究發現液化澱粉芽孢桿菌(Bacillus amyloliquefaciens) Ba01能有效防治田間瘡痂病,於雲林斗南田間試驗中,以Ba01發酵液 (2×107 CFU/mL) 澆灌,罹病度可從14.4 ± 2.9% (無Ba01發酵液處理) 降至5.6 ± 1.1% (P<0.05; Tukey’s test)。為更進一步了解Ba01抑菌機制,以質譜儀分析Ba01分泌之二次代謝物,推測表面素 (surfactin) 為主要抑制瘡痂病原菌的物質之一,故本研究藉由剔除Ba01 srf基因簇 (gene cluster) 突變株證明表面素為主要的抑菌物質。實驗利用電穿孔方式將選殖成功的質體轉入Ba01進行in-frame deletion,而後以不同溫度條件篩選srf 基因簇突變株,最後藉由專一性引子及質譜儀分析確認FRY1、FRY3為srf基因簇缺失突變株。srf基因簇突變株FRY1及FRY3於濾紙片擴散試驗中抑制馬鈴薯瘡痂病菌之能力降低 (P < 0.001;t-test),且突變株表面移行能力亦顯著下降 (P < 0.001;t-test),另外添加表面素予srf基因簇突變株FRY1則會恢復其表面移行能力。根據文獻報導表面移行能力與生物膜生成有關,故測試srf基因簇是否與生物膜相關,本研究亦發現Ba01能形成皺褶狀生物膜,而srf基因簇突變株則無法形成。生理生化測試發現srf基因簇突變株之澱粉、蛋白水解酶及溶磷能力皆明顯下降,且srf基因簇突變株無法抑制馬鈴薯薯片瘡痂病菌PS07的生長及產孢。由以上結果推測Ba01產生之表面素除了能抑制馬鈴薯瘡痂病菌的生長,施用於田間可能具保護馬鈴薯根部並增加纏聚能力以抵抗病害。未來希望運用此基因剔除技術探討液化澱粉芽孢桿菌更多基因功能、益菌及促進植物生長之機制。
Potato common scab mainly caused by Streptomyces scabies widely occurs during the potato planting fields. It causes necrotic lesions or cork symptoms on potato tubers and decreases the economic value of potato. At present, there is no recommended chemical or biological pesticides from combating potato common scab in Taiwan. We could only reduce its occurrence by planting healthy seed potato, rotation with rice and regulating soil pH, but they are not efficacious. Previous study in our laboratory found that Bacillus amyloliquefaciens Ba01 can effectively control potato common scab in the field. In the field trial in Dounan, Yunlin, the disease severity of potato common scab was reduced from 14.4 ± 2.9% (without Ba01) to 5.6 ± 1.1% after Ba01 treatment (P<0.05; Tukey’s test). To further investigate the antibacterial mechanism of Ba01, we analyzed the second metabolites secreted by Ba01 by imaging mass spectrometry, and suggested that surfactin is one of major compounds inhibiting S. scabies. Therefore, this study will test if surfactin is the main antibacterial substance by knocking out srf gene cluster in Ba01. The cloning plasmid pRY1 was transformed to Ba01 by electroporation for in-frame deletion, and the srf gene cluster mutants were screened at different temperatures. Finally, these srf gene cluster mutants were confirmed by specific primers and mass spectrometry. We further found that the ability of srf gene cluster mutants FRY1 and FRY3 to inhibit S. scabies was decreased (P < 0.001; t-test) in disc diffusion asssay, and the swarming ability of these mutants was also decreased (P < 0.001; t- test). Interestingly, the swarming ability of Δsrf mutant FRY1 was restored by the addition of surfactin. According to literatures, the swarming ability was linked to biofilm formation. We found that Ba01 formed wrinkled biofilm in MSgg liquid medium, but the mutants did not. In physiological and biochemical tests, the α-amylase, protease, and phosphate-solubilizing ability of Δsrf mutants were significantly decreased, and the mutant could not effectively inhibit the growth and sporulation of S. scabies PS07 on potato tuber slices. As a consequence, we suggest that surfactins produced by Ba01 may not only inhibit the growth of S. scabies but also protect the potato roots and increase the colonization to combat potato common scab. In the future, we plan to use this gene knockout technique to investigate gene functions of B. amyloliquefaciens, mechanisms of beneficial bacteria and plant growth promoting ability.
口試委員會審定書 i
致謝 ii
中文摘要 iv
英文摘要 vi
目錄 viii
表目錄 xi
圖目錄 xii
1. 前言 1
1.1馬鈴薯之經濟重要性 1
1.2馬鈴薯重要病害及臺灣種薯驗證制度 2
1.3馬鈴薯瘡痂病危害概況及防治策略 4
1.4液化澱粉芽孢桿菌 5
1.5液化澱粉芽孢桿菌突變株相關研究 7
1.6實驗室前人研究及研究目的 8
2. 材料與方法 10
2.1試驗菌株培養條件及培養基 10
2.2 細菌染色體DNA純化 10
2.3 srf基因簇突變株質體的建立 11
2.3.1 建立Ba01 srf 基因簇 (gene cluster) 突變株cassette 11
2.3.2 選殖srf基因簇突變株質體 12
2.4 Ba01轉型與突變株的建立 13
2.4.1電穿孔方式進行Ba01的轉型 13
2.4.2 以In-frame deletion建立突變株 14
2.5 Ba01菌株生長試驗 14
2.6 Ba01菌株內生孢子形成率試驗 15
2.7 濾紙片擴散之拮抗試驗 15
2.8以MALDI-TOF質譜儀分析Ba01菌株之表面素分泌量 15
2.9 Ba01菌株表面移行能力的測試 16
2.10 生物膜形成試驗 16
2.11 Ba01菌株胞外水解酶及溶磷能力測試 17
2.12馬鈴薯薯片試驗 (Tuber slice assays) 18
3. 結果 19
3.1 Ba01 srf基因簇突變株之獲得 19
3.2 srf基因簇突變株生長下降 19
3.3 srf基因簇突變株產孢能力下降 19
3.4 srf基因簇突變株抑制瘡痂病菌能力明顯下降 20
3.5 srf基因簇突變株無法生成表面素 20
3.6 srf基因簇突變株表面移行能力明顯降低 20
3.7 添加表面素能夠回復srf基因簇突變株表面移行能力 21
3.8 srf基因簇突變株無法形成正常生物膜及菌落結構 21
3.9 srf基因簇突變株之澱粉酶、蛋白酶以及溶磷能力降低 22
3.10 srf基因簇突變株在薯片上無法抑制瘡痂病菌的生長及產孢 22
4. 討論 23
5. 參考文獻 26
6. 圖表 34
7. 附錄 50
7.1附錄圖表 50
7.2防治馬鈴薯瘡痂病之化學藥劑及生物製劑應用 51
1.王瑞章、江汶錦、吳雅芳、林棟樑、孫文章、陳昇寬、彭瑞菊、鄭安秀、謝明憲、鍾瑞永。(2011)。馬鈴薯栽培管理技術。臺南區農業改良場技術專刊 1-25。
2.吳佳樺。(2010)。聚麩胺酸量產於枯草桿菌特殊功能生物殺菌劑發展之應用。中興大學植物病理學系所學位論文。68頁。
3.周浩平、王惠美、鄭日新、曾敏南。(2017)。液化澱粉芽孢桿菌 PMB01 於作物病害防治之應用。高雄區農業專訊20-21。
4.林上湖、鍾文全、楊佐琦。(2010)。台灣馬鈴薯產業 80 年之回顧與展望。 植物種苗 12:1-23。
5.林芝、馮如瑩、蔡佳欣、陳穎練。(2017)。殺真菌劑得克利能抑制馬鈴薯瘡痂病原細菌。植物醫學59:31-37。
6.林碩興。(2015)。應用 Bacillus amyloliquefaciens PMB01 防治甜椒細菌性斑點病。屏東科技大學植物醫學系所學位論文。61頁。
7.邵宇恆。(2017)。改良式芽孢桿菌屬細菌轉型及再生效率提升技術。中興大學植物病理學系所學位論文。57頁。
8.曹幸之。(1993)。台農一號馬鈴薯簡介。技術服務 13:13-14。
9.曹幸之。(1993)。馬鈴薯的產業與研究。臺灣蔬菜產業演進四十年專集 139-164。
10.郭建志、陳俊位、廖君達、陳葦玲、蔡宜峯。(2014)。液化澱粉芽孢桿菌在作物病害防治的開發與應用。臺中區農業改良場特刊 69-86。
11.黃巧雯。(2008)。台灣由 Streptomyces scabies 所引起之馬鈴薯瘡痂病-病原菌生物特性及應用拮抗性枯草桿菌於其生物防治之初探。中興大學植物病理學系所學位論文。92頁。
12.黃㯖昌、曾國欽、呂昀陞。(2007)。細菌性軟腐病之診斷與鑑定。植物重要防疫檢疫病害診斷鑑定技術研習會專刊 (六) 109-116。
13.廖仁宏。(2017)。液化澱粉芽孢桿菌 Ba-BPD1 及其抗菌脂胜肽防治作物病害之研究。中興大學化學工程學系所學位論文。78頁。
14.蔡志濃、安寶貞、王姻婷、王馨媛、胡瓊月。(2009)。利用中和後之亞磷酸溶液防治馬鈴薯與番茄晚疫病。台灣農業研究 58:185-195。
15.謝奉家、高穗生。(2012)。具商品化潛力之多功能液化澱粉芽孢桿菌。2011海峽兩岸生物防治研討會 28-29。
16.Aleti, G., Lehner, S., Bacher, M., Compant, S., Nikolic, B., Plesko, M., Schuhmacher, R., Sessitsch, A., and Brader, G. (2016). Surfactin variants mediate species‐specific biofilm formation and root colonization in Bacillus. Environmental Microbiology 18:2634-2645.
17.Arseneault, T., Goyer, C., and Filion, M. (2016). Biocontrol of potato common scab is associated with high Pseudomonas fluorescens LBUM223 populations and phenazine-1-carboxylic acid biosynthetic transcript accumulation in the potato geocaulosphere. Phytopathology 106:963-970.
18.Bignell, D., Fyans, J., and Cheng, Z. (2014). Phytotoxins produced by plant pathogenic Streptomyces species. Journal of Applied Microbiology 116:223-235.
19.Borriss, R. (2011). Use of plant-associated Bacillus strains as biofertilizers and biocontrol agents in agriculture. In Bacteria in Agrobiology: Plant Growth Responses (pp. 41-76): Springer.
20.Chan, J.M., Guttenplan, S.B., and Kearns, D.B. (2014). Defects in the flagellar motor increase synthesis of poly-γ-glutamate in Bacillus subtilis. Journal of Bacteriology 196:740-753.
21.Chen, X., Koumoutsi, A., Scholz, R., Schneider, K., Vater, J., Süssmuth, R., Piel, J., and Borriss, R. (2009). Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. Journal of Biotechnology 140:27-37.
22.Chowdhury, S.P., Hartmann, A., Gao, X., and Borriss, R. (2015). Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42–a review. Frontiers in Microbiology 6:780.
23.Dogsa, I., Brloznik, M., Stopar, D., and Mandic-Mulec, I. (2013). Exopolymer diversity and the role of levan in Bacillus subtilis biofilms. PloS one 8:e62044.
24.Dragoš, A., Kiesewalter, H., Martin, M., Hsu, C.-Y., Hartmann, R., Wechsler, T., Eriksen, C., Brix, S., Drescher, K., and Stanley-Wall, N. (2018). Division of labor during biofilm matrix production. Current Biology 28:1903-1913.
25.Fan, B., Wang, C., Song, X., Ding, X., Wu, L., Wu, H., Gao, X., and Borriss, R. (2018). Bacillus velezensis FZB42 in 2018: the gram-positive model strain for plant growth promotion and biocontrol. Frontiers in Microbiology 9:2491.
26.Feng, J., Gu, Y., Sun, Y., Han, L., Yang, C., Zhang, W., Cao, M., Song, C., Gao, W., and Wang, S. (2014). Metabolic engineering of Bacillus amyloliquefaciens for poly‐gamma‐glutamic acid (γ‐PGA) overproduction. Microbial Biotechnology 7:446-455.
27.Gao, W., Liu, F., Zhang, W., Quan, Y., Dang, Y., Feng, J., Gu, Y., Wang, S., Song, C., and Yang, C. (2017). Mutations in genes encoding antibiotic substances increase the synthesis of poly‐γ‐glutamic acid in Bacillus amyloliquefaciens LL3. MicrobiologyOpen 6:e00398.
28.Ghelardi, E., Salvetti, S., Ceragioli, M., Gueye, S.A., Celandroni, F., and Senesi, S. (2012). Contribution of surfactin and SwrA to flagellin expression, swimming, and surface motility in Bacillus subtilis. Applied and Environmental Microbiology 78:6540-6544.
29.Han, J.S., Cheng, J.H., Yoon, T.M., Song, J., Rajkarnikar, A., Kim, W.G., Yoo, I.D., Yang, Y.Y., and Suh, J.W. (2005). Biological control agent of common scab disease by antagonistic strain Bacillus sp. sunhua. Journal of Applied Microbiology 99:213-221.
30.Healy, F.G., Wach, M., Krasnoff, S.B., Gibson, D.M., and Loria, R. (2000). The txtAB genes of the plant pathogen Streptomyces acidiscabies encode a peptide synthetase required for phytotoxin thaxtomin A production and pathogenicity. Molecular Microbiology 38:794-804.
31.Idris, E.E., Iglesias, D.J., Talon, M., and Borriss, R. (2007). Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Molecular Plant-Microbe Interactions 20:619-626.
32.Kearns, D.B., and Losick, R. (2003). Swarming motility in undomesticated Bacillus subtilis. Molecular Microbiology 49:581-590.
33.Kloepper, J.W., Ryu, C.-M., and Zhang, S. (2004). Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259-1266.
34.Konkol, M.A., Blair, K.M., and Kearns, D.B. (2013). Plasmid-encoded ComI inhibits competence in the ancestral 3610 strain of Bacillus subtilis. Journal of Bacteriology 195:4085-4093.
35.Kumar, A., Prakash, A., and Johri, B. (2011). Bacillus as PGPR in crop ecosystem. In Bacteria in Agrobiology: crop ecosystems (pp. 37-59): Springer.
36.López, D., Vlamakis, H., Losick, R., and Kolter, R. (2009). Cannibalism enhances biofilm development in Bacillus subtilis. Molecular Microbiology 74:609-618.
37.Lerat, S., SIMAO‐BEAUNOIR, A.M., and Beaulieu, C. (2009). Genetic and physiological determinants of Streptomyces scabies pathogenicity. Molecular Plant Pathology 10:579-585.
38.Liao, J.-H., Chen, P.-Y., Yang, Y.-L., Kan, S.-C., Hsieh, F.-C., and Liu, Y.-C. (2016). Clarification of the antagonistic effect of the lipopeptides produced by Bacillus amyloliquefaciens BPD1 against Pyricularia oryzae via in situ MALDI-TOF IMS analysis. Molecules 21:1670.
39.Lin, C., Tsai, C.H., Chen, P.Y., Wu, C.Y., Chang, Y.L., Yang, Y.L., and Chen, Y.L. (2018). Biological control of potato common scab by Bacillus amyloliquefaciens Ba01. PLoS One 13:e0196520.
40.Loria, R., Bukhalid, R.A., Creath, R., Leiner, R., Olivier, M., and Steffens, J. (1995). Differential production of thaxtomins by pathogenic Streptomyces species in vitro. Phytopathology 85:537-541.
41.Loria, R., Kers, J., and Joshi, M. (2006). Evolution of plant pathogenicity in Streptomyces. Annual Review of Phytopathology. 44:469-487.
42.Luo, C., Liu, X., Zhou, H., Wang, X., and Chen, Z. (2015). Nonribosomal peptide synthase gene clusters for lipopeptide biosynthesis in Bacillus subtilis 916 and their phenotypic functions. Applied and Environmental Microbiology 81:422.
43.McLoon, A.L., Guttenplan, S.B., Kearns, D.B., Kolter, R., and Losick, R. (2011). Tracing the domestication of a biofilm-forming bacterium. Journal of Bacteriology 193:2027-2034.
44.Meng, Q., Jiang, H., Hanson, L., and Hao, J. (2012). Characterizing a novel strain of Bacillus amyloliquefaciens BAC 03 for potential biological control application. Journal of Applied Microbiology 113:1165-1175.
45.Ongena, M., Jourdan, E., Adam, A., Paquot, M., Brans, A., Joris, B., Arpigny, J.L., and Thonart, P. (2007). Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environmental Microbiology 9:1084-1090.
46.Pérez-García, A., Romero, D., and De Vicente, A. (2011). Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Current Opinion in Biotechnology 22:187-193.
47.Parker, J.B., and Walsh, C.T. (2013). Action and timing of BacC and BacD in the late stages of biosynthesis of the dipeptide antibiotic bacilysin. Biochemistry 52:889-901.
48.Patrick, J.E., and Kearns, D.B. (2008). MinJ (YvjD) is a topological determinant of cell division in Bacillus subtilis. Molecular Microbiology 70:1166-1179.
49.Paul, N., and Rao, W.S. (1971). Phosphate-dissolving bacteria in the rhizosphere of some cultivated legumes. Plant and Soil 35:127-132.
50.Pikovskaya, R. (1948). Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya 17:362-370.
51.Rabbee, M.F., Ali, M., Choi, J., Hwang, B.S., Jeong, S.C., and Baek, K.-h. (2019). Bacillus velezensis: A Valuable Member of Bioactive Molecules within Plant Microbiomes. Molecules 24:1046.
52.Rachinger, M., Bauch, M., Strittmatter, A., Bongaerts, J., Evers, S., Maurer, K.-H., Daniel, R., Liebl, W., Liesegang, H., and Ehrenreich, A. (2013). Size unlimited markerless deletions by a transconjugative plasmid-system in Bacillus licheniformis. Journal of Biotechnology 167:365-369.
53.Reynolds, J., Moyes, R., and Breakwell, D.P. (2009). Differential staining of bacteria: endospore stain. Current Protocols in Microbiology 15:A. 3J. 1-A. 3J. 5.
54.Shank, E.A., and Kolter, R. (2011). Extracellular signaling and multicellularity in Bacillus subtilis. Current Opinion in Microbiology 14:741-747.
55.St-Onge, R., Gadkar, V.J., Arseneault, T., Goyer, C., and Filion, M. (2011). The ability of Pseudomonas sp. LBUM 223 to produce phenazine-1-carboxylic acid affects the growth of Streptomyces scabies, the expression of thaxtomin biosynthesis genes and the biological control potential against common scab of potato. FEMS Microbiology Ecology 75:173-183.
56.Tsui, W.H., Yim, G., Wang, H.H., McClure, J.E., Surette, M.G., and Davies, J. (2004). Dual effects of MLS antibiotics: transcriptional modulation and interactions on the ribosome. Chemistry & Biology 11:1307-1316.
57.Wanner, L., Kirk, W., and Qu, X. (2014). Field efficacy of nonpathogenic Streptomyces species against potato common scab. Journal of Applied Microbiology 116:123-133.
58.Xue, G.-P., Johnson, J.S., and Dalrymple, B.P. (1999). High osmolarity improves the electro-transformation efficiency of the gram-positive bacteria Bacillus subtilis and Bacillus licheniformis. Journal of Microbiological Methods 34:183-191.
59.Yang, J.-W., Yu, S.-H., and Ryu, C.-M. (2009). Priming of defense-related genes confers root-colonizing bacilli-elicited induced systemic resistance in pepper. The Plant Pathology Journal 25:389-399.
60.Zeriouh, H., de Vicente, A., Pérez‐García, A., and Romero, D. (2014). Surfactin triggers biofilm formation of Bacillus subtilis in melon phylloplane and contributes to the biocontrol activity. Environmental Microbiology 16:2196-2211.
61.Zhang, G.-q., Bao, P., Zhang, Y., Deng, A.-h., Chen, N., and Wen, T.-y. (2011). Enhancing electro-transformation competency of recalcitrant Bacillus amyloliquefaciens by combining cell-wall weakening and cell-membrane fluidity disturbing. Analytical Biochemistry 409:130-137.
62.Zhang, K., Duan, X., and Wu, J. (2016). Multigene disruption in undomesticated Bacillus subtilis ATCC 6051a using the CRISPR/Cas9 system. Scientific Reports 6:27943.
63.Zhang, W., Gao, W., Feng, J., Zhang, C., He, Y., Cao, M., Li, Q., Sun, Y., Yang, C., Song, C., et al. (2014). A markerless gene replacement method for B. amyloliquefaciens LL3 and its use in genome reduction and improvement of poly-γ-glutamic acid production. Applied Microbiology Biotechnology 98:8963-8973.
64.Zhang, W., Xie, H., He, Y., Feng, J., Gao, W., Gu, Y., Wang, S., and Song, C. (2013). Chromosome integration of the Vitreoscilla hemoglobin gene (vgb) mediated by temperature-sensitive plasmid enhances γ-PGA production in Bacillus amyloliquefaciens. FEMS Microbiology Letters 343:127-134.
65.Zhang, Z., Ding, Z.-T., Shu, D., Luo, D., and Tan, H. (2015). Development of an efficient electroporation method for iturin A-producing Bacillus subtilis ZK. International Journal of Molecular Sciences 16:7334-7351.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊