(3.238.7.202) 您好!臺灣時間:2021/03/01 21:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:包欣平
研究生(外文):Hsin-Ping Pao
論文名稱:應用主動式綠牆減少室內甲醛、二氧化碳和懸浮微粒
論文名稱(外文):Application of Active Living Walls to Reduce Indoor Formaldehyde, Carbon Dioxide, and Particulate Matter
指導教授:葉德銘葉德銘引用關係
指導教授(外文):Der-Ming Yeh
口試委員:張育森陳香君陳佳堃
口試委員(外文):Yu-Sen ChangShiang-Jiuun ChenJia-Kun Chen
口試日期:2019-06-20
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:園藝暨景觀學系
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:137
中文關鍵詞:主動式綠牆甲醛二氧化碳懸浮微粒藤蔓植物
DOI:10.6342/NTU201901444
相關次數:
  • 被引用被引用:0
  • 點閱點閱:85
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
甲醛、二氧化碳(carbon dioxide, CO2)和懸浮微粒(particulate matter, PM)為已開發國家中室內主要的汙染物質,前人研究已指出應用植物可以減少室內甲醛、CO2和PM。本研究以木心板或線香作為上述物染物釋放來源,將植物與主動式綠牆模組(Active living wall modules, ALW modules)置於密閉薰氣箱中,探討過高的CO2是否會減少植物吸收甲醛,並測試外加風速對於常見十種室內植物降低甲醛、CO2和PM的影響。另利用掃描式電子顯微鏡(scanning electron microscope, SEM)測試綠牆植物葉片沉降PM之能力。
將火鶴花‘粉冠軍’、彩虹竹蕉與白鶴芋‘Petite’分別置於密閉薰氣箱(0.128 m3),內含會釋放甲醛之木心板,以不同光強度(0、60或120 μmol·m-2·s-1)與500 或1200 ppm CO2濃度處理,探討對其吸收CO2與甲醛能力的影響。結果顯示參試植物在黑暗環境中,無論是否外加CO2處理,薰氣箱於試驗3小時間CO2濃度皆因暗呼吸而提高。參試植物於60 或120 μmol·m-2·s-1光強度環境,以1200 ppm CO2處理者在試驗3小時中薰氣箱內之CO2濃度下降率皆大於500 ppm CO2處理者。不論參試之光度與 CO2濃度,彩虹竹蕉的淨光合作用與氣孔導度皆最低而細胞間隙CO2濃度最高。參試植物於黑暗環境下仍可少量移除木心板釋放之甲醛,但移除量比照光環境下低。隨光強度增加使氣孔導度提高,吸收更多甲醛並提高淨光合作用速率。單位葉面積所移除的甲醛濃度之排序為火鶴花>白鶴芋>彩虹竹蕉。提高CO2濃度由500至1200 ppm使參試植物移除甲醛能力下降。
另將ALW modules (長29 cm × 寬22 cm × 高50 cm) 與白鶴芋‘Petite’置於薰氣箱中,測試外加三種風速(0.2、0.4和0.6 m·s-1)對白鶴芋‘Petite’降低薰氣箱中燃燒線香所釋放之甲醛、CO2和PM。結果顯示白鶴芋‘Petite’以外加0.6 m·s-1風速有最高之氣孔導度、淨光合作用速率以及蒸散作用速率,並最快降低薰氣箱內甲醛、CO2和PM的濃度。
將ALW modules與十種常見室內植物置入密閉薰氣箱(0.225 m3),探討0或0.6 m·s-1風速處理對降低薰氣箱中燃燒線香之甲醛、CO2和PM之影響。結果顯示外加0.6 m·s-1風速之ALW modules可以較快降低薰氣箱內汙染物,且十種植物變化趨勢類似,其中以袖珍椰子和中班吊蘭之單位葉面積移除較多甲醛和CO2濃度。另以SEM檢測植物單位葉面積累積PM之能力與葉表特徵之關係,結果顯示葉表溝槽比例以及氣孔面積和葉片累積PM之能力呈正相關,其中以葉表溝槽比例較高( > 15%)之心葉蔓綠絨、粗肋草‘白馬’、白鶴芋‘Petite’和袖珍椰子之單位葉面積累積較多PM。
進而將有波士頓腎蕨與袖珍椰子各4盆之ALW modules (長57 cm × 寬22 cm × 高67 cm) 與市售空氣清淨機,分別置入燃燒線香之密閉薰氣箱(1.4 m3),測試6小時後之結果顯示:以0.6 m·s-1風速之ALW modules比參試空氣清淨機減少更多甲醛(62.9% vs 40.4% - 55.2%)與CO2 (12.5% vs -1.5% - 3.6%)。ALW modules沉降PM之效率低於參試空氣清淨機,但可沉降89.9%的PM10和68.4%的PM2.5。
另定植黃金葛、薜荔、越橘葉蔓榕和爬牆虎四種藤蔓植物於長槽(76 cm ×18 cm ×14 cm)中共16盆,每植物各四重複,且每盆種植4株,並倚靠於牆,每隔二週調查其覆蓋面積,並分別於秋季、冬季與春季取剛完全展開葉,進行SEM葉片累積PM能力與葉表形態特徵之分析。結果顯示於2018/5 - 2019/5月共12個月生長期間,薜荔的覆蓋面積最廣達約8000 cm2,且其每mm2葉片分別可累積3100 - 6300個PM10。參試之四種藤蔓植物的葉表溝槽比例和葉片累積PM之能力呈正相關。
The most common indoor air pollutants are formaldehyde, carbon dioxide (CO2) and particulate matter (PM) in developed countries. Potted plants can remove various indoor air pollutants. In this study, we placed plant materials and active living wall modules (ALW modules) in airtight chambers, and the above mentioned air pollutants were produced by a fresh wooden board or burning incense. We determined whether high CO2 concentrations result in stomatal closure and thus might reduce formaldehyde uptake by plants. Also, the study determined the efficiency of ALW modules with various wind speeds and common ten indoor plant species on removal of air pollutants. Besides, the relationship between leaf surface characteristics and PM accumulated capacity was shown by SEM observations.
Anthurium andraeanum Linden. ‘Pink Champion’, Dracaena marginata Lam. ‘Tricolor Rainbow’ and Spathiphyllum kochii Engler & Krause ‘Petite’ were placed respectively in airtight chambers, each with a fresh wooden board that releases formaldehyde. The experiment was constructed under three light intensities (0, 60 or 120 μmol·m-2·s-1) and two CO2 concentrations (500 or 1200 ppm) for three hours. Results show that CO2 concentration in the chamber all increased for plants at dark. Chamber CO2 decreased more rapidly with 1200 ppm CO2 than 500 ppm CO2 for plants under 60 or 120 μmol·m-2·s-1. D. marginata Lam. ‘Tricolor Rainbow’ exhibited the lowest net photosynthetic rate (Pn), stomatal conductance (Gs) and highest intercellular CO2 concentration (Ci). Increased light intensity resulted in increased Gs, which led to reduce more formaldehyde concentration in the chamber. The efficiency of removing formaldehyde per leaf area ranked as follows; Anthurium > Spathiphyllum > Dracaena. Plants with 500 ppm CO2 reduced more formaldehyde in the chamber, as compared with those with 1200 ppm CO2.
Efficiency of Spathiphyllum kochii Engler & Krause ‘Petite’ in ALW modules (29 cm × 22 cm × 50 cm) with various wind speeds (0.2, 0.4, or 0.6 m·s-1) was compared on removal of air pollutants by burning incense in an airtight chamber (1.4 m3). Results show that plants in ALW modules with 0.6 m·s-1 wind speed had the highest Pn, Gs, and transpiration rate, and reduced most formaldehyde, CO2, and PM in the chamber.
Efficiency of ten indoor plants in ALW modules with two wind speeds (0 or 0.6 m·s-1) was compared to reduce air pollutants by burning incense in an airtight chamber (0.225 m3). Results indicate that plants in ALW modules at 0.6 m·s-1 wind speed reduced air pollutants more efficiently than those without wind supply. Opened stomatal area and leaf surface groove were positively correlated to PM10 accumulation on leaf as observed with scanning electron microscope (SEM). More PM10 accumulated on leaves with high leaf groove proportion ( >15%) in Philodendron scandens subsp. Oxycardium (Schott) G. S., Aglaonema commutatum Schott ex Engl. ‘White Tip’, S. kochii Engler & Krause ‘Petite’ and Chlorophytum comosum (Thunb.) Bak. ‘Vittatum’.
Efficiency of reducing air pollutants from burning incense in the chamber was compared between the combination ALW modules (57 cm × 22 cm × 67 cm) with total eight Nephrolepis exaltata L. (Schott) ‘Bostoniensis’ and Chamaedorea elegans Mart. and commercial air purifiers. Results show that ALW modules reduced more formaldehyde (62.9% vs 40.4% - 55.2%) and CO2 (12.5% vs -1.5% - 3.6%) after six hours, as compared with commercial air purifiers. PM10 and PM2.5 were reduced by 89.9% and 68.4% by the ALW modules, respectively.
Epipremnum aureum (Linden &Andr) G.S. Bunting, Ficus pumila L., Ficus vaccinioides Hemsl. ex King and Parthenocissus tricuspidata (Sieb et Zucc.) Planch. were planted in 16 pots (76 cm ×18 cm ×14 cm), four replicates per plant species, and 4 plants per pot, and placed against the wall. Their covering area was measured every two weeks. Recently developed leaves were sampled during autumn, winter, and spring, respectively to measure PM amount by SEM method. Results show that, after 12 months, F. pumila L. had the highest cover surface area about 8000 cm2 on the wall, and 3100 - 6300 PM10 per mm2 accumulated on leaf. Leaf surface groove proportion was positively related to PM quantity accumulated on leaf.
致謝 I
目錄 II
表目錄 V
圖目錄 VII
中文摘要 X
Abstract XII
前言(Introduction) 1
前人研究(Literature Review) 3
一、 室內空氣品質 3
(一)揮發性有機物(volatile organic compounds, VOCs) 3
(二)二氧化碳(carbon dioxide, CO2) 4
(三)懸浮微粒(particulate matter, PM) 4
二、 暖通空調 5
三、 植物移除甲醛與其他VOCs之機制 6
(一)葉片氣孔和地上部其他組織之作用 7
(二)介質與根圈微生物之作用 7
(三)地上部和地下部之交互作用 8
四、 影響植物移除VOCs之因子 9
(一)植物種類 9
(二)光強度 9
(三)介質與根圈微生物 10
(四)環境中VOCs濃度 10
(五) 混合VOCs作用 11
(六) 環境中CO2濃度 11
五、 植物移除PM之機制 12
六、 影響植物移除PM之因子 12
(一)葉片濕潤程度 12
(二)葉表形態特徵 13
(三)降水/風 15
(四)採樣時間 15
(五)植物種類 16
七、 主動式綠牆 16
八、 主動式綠牆減少室內空氣汙染物之機制 16
(一)應用主動式綠牆減少VOCs 17
(二)應用主動式綠牆減少CO2 17
(三)應用主動式綠牆減少PM 18
九、 綠牆分類與成本效益分析 18
材料與方法(Materials and Methods) 19
試驗一、二氧化碳濃度與光強度對火鶴花、白鶴芋和彩虹竹蕉移除甲醛能力與光合作用之影響 19
試驗二、外加風速對白鶴芋‘Petite’綠牆模組移除甲醛、二氧化碳與懸浮微粒之能力以及光合作用之影響 20
試驗三、主動式綠牆模組對十種室內植物降低甲醛、二氧化碳與懸浮微粒之探究 21
試驗四、主動式綠牆模組與市售空氣清淨機淨化空氣效益與成本比較 23
試驗五、養成式綠牆藤蔓植物葉累積懸浮微粒之能力 24
結果(Results) 26
試驗一、二氧化碳濃度與光強度對火鶴花、白鶴芋和彩虹竹蕉移除甲醛能力與光合作用之影響 26
試驗二、外加風速對白鶴芋‘Petite’綠牆模組移除甲醛、二氧化碳與懸浮微粒之能力以及光合作用之影響 30
試驗三、主動式綠牆模組對十種室內植物降低甲醛、二氧化碳與懸浮微粒之探究 30
試驗四、主動式綠牆模組與市售空氣清淨機淨化空氣效益與成本比較 35
試驗五、養成式綠牆藤蔓植物葉片累積懸浮微粒之能力 37
討論(Discussion) 99
試驗一、二氧化碳濃度與光強度對火鶴花、白鶴芋和彩虹竹蕉甲醛移除能力與光合作用之影響 99
試驗二、外加風速對白鶴芋‘Petite’綠牆模組移除甲醛、二氧化碳與懸浮微粒之能力以及光合作用之影響 101
試驗三、主動式綠牆模組對十種室內植物降低甲醛、二氧化碳與懸浮微粒之探究 102
試驗四、主動式綠牆模組與市售空氣清淨機淨化空氣效益與成本比較 109
試驗五、養成式綠牆藤蔓植物葉片累積懸浮微粒之能力 110
結論(Conclusions) 113
參考文獻(References) 114
附錄(Appendix) 136
王會霞. 2012. 基於潤濕性的植物葉面截留降水和降塵的機制研究. 西安建築科技大學環境工程學系博士論文. 西安.
行政院環境保護署. 2005. 揮發性有機物空氣汙染管制及排放標準. <http://www.rootlaw.com.tw/LawArticle.aspx?LawID=A040300030003500-1020103>
何明昱. 2012. 室內植物移除二氧化碳能力之研究. 國立臺灣大學園藝暨景觀學系學系碩士論文. 臺北.
余軍洪. 2010. 常見室內植物移除甲醛能力之研究. 國立臺灣大學園藝暨景觀學系學系碩士論文. 臺北.
胡羡聰、殷愛華、吳小英、陸耀東. 2007. 珠三角地區城市園林綠帶滯塵樹種選擇. 園林植物栽培應用. 3: 44-46.
夏漢平、蔡錫安、彭彩霞. 2007. 5種爬藤植物垂直綠化的效果比較. 草業學報. 16:93-100.
孫明德、林信輝、陳明義. 1991. 石質邊坡綠化植物之生態與生理特性. 中華水土保持學報. 22:49-68.
徐怡雯. 本土化時間活動模式之建置與應用研究. 2006. 國立高雄第一科技大學環境與安全衛生工程系碩士論文. 高雄.
高金暉、王冬梅、趙亮. 2007. 植物葉片滯塵規律研究-以北京市為例. 北京林業大學學報. 29: 94-99.
陳小平、焦奕雯、裴婷婷、周志翔. 2014. 園林植物吸附細顆粒物(PM 2.5)效應研究進展. 生態學雜誌. 33:2558-2566.
陳琳. 2013. 光質對室內植物光合作用表現及甲醛移除能力之影響. 國立臺灣大學園藝暨景觀學系學系碩士論文. 臺北.
黃敬凱. 2013. 有機質肥料及遮蔭對蕹菜及葉萵苣生長及硝酸鹽含量之影響. 國立中興大學園藝學系碩士論文. 臺中.
楊玉婷. 常見室內植物對苯吸收之反應. 2007. 國立臺灣大學植病物理與微生物學系碩士論文. 臺北.
劉靖瑜. 2016. 臺灣立面綠化系統之成本效益分析. 國立臺灣大學園藝暨景觀學系學系碩士論文. 臺北.
Achkor, H., M. Díaz, M.R. Fernández, J.A. Biosca, X. Parés, and M.C. Martínez. 2003. Enhanced formaldehyde detoxification by overexpression of glutathione-dependent formaldehyde dehydrogenase from Arabidopsis. Plant Physiol. 132:2248-2255.
Ainsworth E.A., P.A. Davey, G.J. Hymus, C.P. Osborne, A. Rogers, H. Blum, J. Nosberger, and S.P. Long. 2003. Is stimulation of leaf photosynthesis by elevated carbon dioxide concentration maintained in the long term? A test with Loium perenne grown for 10 years at two nitrogen fertilization levels under free air CO2 enrichment (FACE). Plant Cell Environ. 26: 705-714.
Ainsworth, E.A., A. Rogers, R. Nelson, and S.P. Long. 2004. Testing the source-sink hypothesis of down-regulation of photosynthesis in elevated [CO2] in the field with single gene substitutions in Glycine max. Agr. For. Meteorol. 122:85-94.
Amthor, J.S., G.W. Koch, and A.J. Bloom. 1992. CO(2) inhibits respiration in leaves of Rumex crispus L. Plant Physiol. 98:757-760.
Aranjuelo, I., Á. Sanz-Sáez, I. Jauregui, J.J. Irigoyen, J.é.L. Araus, M. Sánchez-Díaz, and G. Erice. 2013. Harvest index, a parameter conditioning responsiveness of wheat plants to elevated CO2. J. Expt. Bot. 64:1879-1892.
Aryal, B. and G. Neuner. 2009. Leaf wettability decreases along an extreme altitudinal gradient. Oecologia 162:1-9.
ASHRAE. 1999. The Basics of ASHRAE 90.1-1999: Revised Commercial building energy standard. American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Atlanta, Georgia.
Aydogan, A. and L.D. Montoya. 2011. Formaldehyde removal by common indoor plant species and various growing media. Atmos. Environ. 45:2675-2682.
Bakker, J.C. 1991. Effects of humidity on stomatal density and its relation to leaf conductance. Scientia Hort. 48:205-212.
Bari, M.A., M. MacNeill, W.B. Kindzierski, L. Wallace, M.È. Héroux, and A.J. Wheeler. 2014. Predictors of coarse particulate matter and associated endotoxin concentrations in residential environments. Atmos. Environ. 92:221-230.
Belot, Y. and D. Gauthier. 1975. Transport of micronic particles from atmosphere to foliar surfaces. p. 583-591. In: De Vries, D.A. and Afgan, N.H. (eds.). Heat and mass transfer in the biosphere. Scripta book, Washington, DC.
Ben-David, T. and M.S. Waring. 2016. Impact of natural versus mechanical ventilation on simulated indoor air quality and energy consumption in offices in fourteen U.S. cities. Build. Environ. 104:320-336.
Brewer, C.A. and C.I. Nuñez. 2007. Patterns of leaf wettability along an extreme moisture gradient in western Patagonia, Argentina. Intl. J. Plant Sci. 168:555-562.
Buonanno, G., L. Morawska, and L. Stabile. 2009. Particle emission factors during cooking activities. Atmos. Environ. 43:3235-3242.
Burchett, M., F. Torpy, and J. Tarran. 2008. Interior plants for sustainable facility ecology and workplace productivity. Proceedings of HMAA Conference. Queensland, Australia: Faculty of Science, University of Technology p.7-9.
Burkhardt, J., K. Peters, and A. Crossley. 1995. The presence of structural surface waxes on coniferousneedles affects the pattern of dry deposition of fine particles. J. Expt. Bot. 46:823-831.
Burroughs, H.E. and S. J. Hansen. 2004. Managing Indoor Air Quality. 3rd ed. CRC Press, New York, U.S.A.
Burton, Z. and B. Bhushan. 2006. Surface characterization and adhesion and friction properties of hydrophobic leaf surfaces. Ultramicroscopy 106:709-719.
Chen, L., C. Liu, L. Zhang, R. Zou, and Z. Zhang. 2017. Variation in tree species ability to capture and retain airborne fine particulate matter (PM2.5). Sci. Rept. 7:3206.
Chun, S., M.H. Yoo, Y.S. Moon, M.H. Shin, K.C. Son, I.M. Chung, and S. Kays. 2010. Effect of bacterial population from rhizosphere of various foliage plants on removal of indoor volatile organic compounds. 28:476-483.
Colbeck, I. and Z.A. Nasir. 2010. Indoor air pollution. p.41-72. In: M. Lazaridis and L. Colbeck (eds.). Indoor air pollution, human exposure to pollutants via dermal absorption and inhalation. Springer, New York, U.S.A.
Conover, C.A. and R.T. Poole. 1990. Light and fertilizer recommendations for production of acclimatized potted foliage plants. Univ. of Fla. IFAS, Central Fla. Res. and Ed. Cntr. Apopka, CFREC-Apopka Res. Rpt. RH-90-1.
Crafts-Brandner, S.J. and M.E. Salvucci. 2000. Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. Proc. Natl. Acad. Sci. 97:13430-13435.
Daniels, S.L. 2007. CO2: Indoor air consequences. Eng. Syst. 24:73-78.
Darlington, A.B., J.F. Dat, and M.A. Dixon. 2001. The biofiltration of indoorair:  Air flux and temperature influences the removal of toluene, ethylbenzene, and xylene. Environ. Sci. Technol. 35:240-246.
Davidson, C. and Y.L. Wu. 1990. Dry deposition of particles and vapors. In: Lindberg, S.E., Page, A.L., Norton, S.A. (eds.). Acidic Precipitation. Springer, New York.
Dela Cruz, M., J.H. Christensen, J.D. Thomsen, and R. Müller. 2014. Can ornamental potted plants remove volatile organic compounds from indoor air? - A review. Environ. Sci. Pollut. Res. 21:13909-13928.
Drake, B.G., K. Raschke, and F.B. Salisbury. 1970. Temperature and transpiration resistances of Xanthium leaves as affected by air temperature, humidity, and wind speed. Plant Physiol. 46:324-330.
Dzierżanowski, K., R. Popek, H. Gawrońska, A. Sæbø, and S.W. Gawroński. 2011. Deposition of particulate matter of different size fractions on leaf surfaces and in waxes of urban forest species. Intl. J. Phytoremediation 13:1037-1046.
Eichert, T., A. Kurtz, U. Steiner, and H.E. Goldbach. 2008. Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol. Plant. 134:151-160.
El-Sharkawy, M.A., J.H. Cock, and A. Del Pilar Hernandez. 1985. Stomatal response to air humidity and its relation to stomatal density in a wide range of warm climate species. Photosynth. Res. 7:137-149.
El-Shatnawi, M.K.J. and I.M. Makhadmeh. 2001. Ecophysiology of the plant-rhizosphere system. J. Agron. Crop. Sci. 187:1-9.
Erdmann, C.A. and M.G. Apte. 2004. Mucous membrane and lower respiratory building related symptoms in relation to indoor carbon dioxide concentrations in the 100‐building BASE dataset. Indoor Air 14:127-134.
Farquhar, G.D. and T.D. Sharkey. 1982. Stomatal conductance and photosynthesis. Annu. Rev. Plant Physiol. 33:317-345.
Fisk, W.J., D. Faulkner and D.P. Sullivan. 2006. Accuracy of CO2 sensors in commercial buildings: A pilot study LBNL-61862. Berkeley, CA.
Forti, G. 2008. The role of respiration in the activation of photosynthesis upon illumination of dark adapted Chlamydomonas reinhardtii. Biochim. Biophys. Acta Bioenerg. 1777:1449-1454.
Fowler, D., C. Flechard, J.N. Cape, R.L. Storeton-West, and M. Coyle. 2001. Measurements of ozone deposition to vegetation quantifying the flux, the stomatal and non-stomatal components. Water Air Soil. Pollut. 130:63-74.
Fuzzi, S., M.O. Andreae, B.J. Huebert, M. Kulmala, T.C. Bond, M. Boy, S.J. Doherty, A. Guenther, M. Kanakidou, K. Kawamura, V.M. Kerminen, U. Lohmann, L.M. Russell, and U. Pöschl. 2006. Critical assessment of the current state of scientific knowledge, terminology, and research needs concerning the role of organic aerosols in the atmosphere, climate, and global change. Atmos. Chem. Phys. 6:2017-2038.
Gaihre, S., S. Semple, J. Miller, S. Fielding, and S. Turner. 2014. Classroom carbon dioxide concentration, school attendance, and educational attainment. J. School Health 84:569-574.
Galmés, J., I. Aranjuelo, H. Medrano, and J. Flexas. 2013. Variation in Rubisco content and activity under variable climatic factors. Photosynth. Res. 117:73-90.
Gawrońska, H. and B. Bakera. 2015. Phytoremediation of particulate matter from indoor air by Chlorophytum comosum L. plants. Air Qual. Atmos. Health 8:265-272.
Giorgioni, M.E. and U. Neretti. 2010. Effects of artificial light intensity and ambient CO2 level on photosynthesis of Araceae species commonly used for interior landscaping. International Society for Horticultural Science (ISHS), Leuven, Belgium.
Godish, T. and C. Guindon. 1989. An assessment of botanical air purification as a formaldehyde mitigation measure under dynamic laboratory chamber conditions. Environ. Pollut. 62:13-20.
Grochowicz, E. and Korytkowski, J. 1996. Air protection. Polish Educational Publisher. Poland. 2: 17.
Guieysse, B., C. Hort, V. Platel, R. Munoz, M. Ondarts, and S. Revah. 2008. Biological treatment of indoor air for VOC removal: Potential and challenges. Biotechnol. Adv. 26:398-410.
Haghighat, F. and L. De Bellis. 1998. Material emission rates: Literature review, and the impact of indoor air temperature and relative humidity. Build. Environ. 33:261-277.
He, C., L. Morawska, and L. Taplin. 2007. Particle emission characteristics of office printers. Environ. Sci. Technol. 41:6039-6045.
Hetherington, A.M. and F.I. Woodward. 2003. The role of stomata in sensing and driving environmental change. Nature 424:901-908.
Hörmann, V., K.R. Brenske, and C. Ulrichs. 2017. Suitability of test chambers for analyzing air pollutant removal by plants and assessing potential indoor air purification. Water Air Soil Pollut. 228:402.
Huang, J., S.H. Wang, L. Yan, and Q.S. Zhong. 2010. Plant photosynthesis and its influence on removal efficiencies in constructed wetlands. Ecol. Eng. 36:1037-1043.
Huang, S., W. Wei, L.B. Weschler, T. Salthammer, H. Kan, Z. Bu, and Y. Zhang. 2017. Indoor formaldehyde concentrations in urban China: Preliminary study of some important influencing factors. Sci. Total Environ. 590-591:394-405.
IARC. 2006. Formaldehyde, 2-butoxyethanol and 1-tert-butoxypropan-2-ol. Morographs on the evalution of carcinogenic risks to humans. Vol. 88.
Irga, P.J., P. Abdo, M. Zavattaro, and F.R. Torpy. 2017a. An assessment of the potential fungal bioaerosol production from an active living wall. Build. Environ. 111:140-146.
Irga, P.J., N.J. Paull, P. Abdo, and F.R. Torpy. 2017b. An assessment of the atmospheric particle removal efficiency of an in-room botanical biofilter system. Build. Environ. 115:281-290.
Irga, P.J., F.R. Torpy, and M.D. Burchett. 2013. Can hydroculture be used to enhance the performance of indoor plants for the removal of air pollutants? Atmos. Environ. 77:267-271.
Jafari, M.J., A.A. Khajevandi, N.S.A. Mousavi, M.S. Yekaninejad, M.A. Pourhoseingholi, L. Omidi, and S. Kalantary. 2015. Association of sick building syndrome with indoor air parameters. Tanaffos 14:55-62.
Jia, Y., C. Wu and C.F. Dong. 2012. Measurement on ability of dust removal of seven green plants at micro-conditions. J. Central South Univ. Sci. Technol. 43:4547-4553.
Jones, H. 1998. Stomatal control of photosynthesis and transpiration. J. Expt. Bot. 49:387-398.
Karanfil, T. and S.A. Dastgheib. 2004. Trichloroethylene adsorption by fibrous and granular activated carbons:  Aqueous phase, gas phase, and water vapor adsorption studies. Environ. Sci. Technol. 38:5834-5841.
Kesselmeier, J. and M. Staudt. 1999. Biogenic volatile organic compounds (VOC): An overview on emission, physiology and ecology. J. Atmos. Chem. 33:23-88.
Khaksar, G., C. Treesubsuntorn, and P. Thiravetyan. 2016. Effect of endophytic Bacillus cereus ERBP inoculation into non-native host: Potentials and challenges for airborne formaldehyde removal. Plant Physiol. Biochem. 107:326-336.
Kil, M., K. Kim, C. Pak, H. Kim, and Y. Lim. 2008. Effects of growing media and exposure frequency on the volatile formaldehyde removal in potted Epipremnum aureum. Korean J. Hortic. Sci .Technol. 26:325-330.
Kim, K.J., M. Il Jeong, D. Lee, J. Seob Song, H. Deug Kim, E. Ha Yoo, S. Jin Jeong, S. Won Han, S. Kays, Y.-W. Lim, and H.-H. Kim. 2010. Variation in formaldehyde removal efficiency among indoor plant species. HortScience 45:1489-1495.
Kim, K.J., M.J. Kil, J.S. Song, E.H. Yoo, K.C. Son, and J.K. Stanley. 2008. Efficiency of volatile formaldehyde removal by indoor plants: Contribution of aerial plant parts versus the root zone. J. Amer. Soc. Hort. Sci. 133:521-526.
Kitaya, Y., J. Tsuruyama, M. Kawai, T. Shibuya, and M. Kiyota. 2000. Effects of air current on transpiration and net photosynthetic rates of plants in a closed plant production system, p. 83-90. In: C. Kubota and C. Chun (eds.). Transplant production in the 21st century. Springer, Dordrecht, N.L.
Kitaya, Y., J. Tsuruyama, T. Shibuya, M. Yoshida, and M. Kiyota. 2003. Effects of air current speed on gas exchange in plant leaves and plant canopies. Adv. Space Res. 31:177-182.
Klepeis, N.E., W.C. Nelson, W.R. Ott, J.P. Robinson, A.M. Tsang, P. Switzer, J.V. Behar, S.C. Hern, and W.H. Engelmann. 2001. The national human activity pattern survey (NHAPS): A resource for assessing exposure to environmental pollutants. J. Expo. Sci. Environ. Epidemiol. 11: 231-252.
Koch, K., A. Dommisse, A. Niemietz, W. Barthlott, and K. Wandelt. 2009. Nanostructure of epicuticular plant waxes: Self-assembly of wax tubules. Surf. Sci. 603:1961-1968.
Kondo, T., K. Hasegawa, R. Uchida, M. Onishi, A. Mizukami, and K. Omasa. 1995. Absorption of formaldehyde by oleander (Nerium indicum). Environ. Sci. Technol. 29:2901-2903.
Kondo, T., K. Hasegawa, R. Uchida, M. Onishi, A. Mizukami, and K. Omasa. 1996. Absorption of atmospheric formaldehyde by deciduous broad-leaved, evergreen broad-leaved, and coniferous tree species. Bull. Chem. Soc. Jpn. 69:3673-3679.
Kulshrestha, A., P.G. Satsangi, J. Masih, and A. Taneja. 2009. Metal concentration of PM2.5 and PM10 particles and seasonal variations in urban and rural environment of Agra, India. Sci. Total Environ. 407:6196-6204.
Kumar, N., S. Pandey, A. Bhattacharya, and P.S. Ahuja. 2004. Do leaf surface characteristics affect Agrobacterium infection in tea [Camellia sinensis (L.) O Kuntze]? J. Biosci. 29:309-317.
Kunst, L. and A.L. Samuels. 2003. Biosynthesis and secretion of plant cuticular wax. Prog. Lipid Res. 42:51-80.
Lafrance, P. and M. Lapointe. 1998. Mobilization and Co-transport of pyrene in the presence of pseudomonas aeruginosa UG2 biosurfactants in sandy soil columns. Ground. Water Monit. R. 18:139-147.
Larios, B., E. Aguera, P. de la Haba, R. Perez-Vicente, and J.M. Maldonado. 2001. A short-term exposure of cucumber plants to rising atmospheric CO2 increases leaf carbohydrate content and enhances nitrate reductase expression and activity. Planta 212: 305-312.
Lee, C.H., B. Choi, and M.Y. Chun. 2015. Stabilizing soil moisture and indoor air quality purification in a wall-typed botanical biofiltration system controlled by humidifying cycle. Korean J. Hort. Sci. 33:605-617.
Lee, J. and H. Kang. 2015. The effect of improving indoor air quality using some C3 plants and CAM plants. Indian J. Sci. Technol. 8:1-7.
Lee, S.C. and B. Wang. 2004. Characteristics of emissions of air pollutants from burning of incense in a large environmental chamber. Atmos. Environ. 38:941-951.
Lelieveld, J., J.S. Evans, M. Fnais, D. Giannadaki, and A. Pozzer. 2015. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525:367.
Levin, H. 2002. Indoor Air 2002: Proceedings, 9th International Conference on Indoor Air Quality and Climate, Monterey, California, June 30-July 5, 2002. Indoor Air 2002. Monterey, CA.
Liang, D., C. Ma, Y.Q. Wang, Y.J. Wang, and C.X. Zhao. 2016. Quantifying PM2.5 capture capability of greening trees based on leaf factors analyzing. Environ. Sci. Pollut. Res. 23:21176-21186.
Li, Y., Q. Chen, S. Wang, Y. Sun, H. Yang, and S. Yang. 2018. Effects of leaf surface micro-morphology structure on leaf dust-retaining ability of main greening tree species in Kunming city. Sci. Silvae Sinicae 54:18-29.
Liu, L., D. Guan, and M.R. Peart. 2012. The morphological structure of leaves and the dust-retaining capability of afforested plants in urban Guangzhou, South China. Environ. Sci. Pollut. Res. 19:3440-3449.
Llewellyn, D. and M. Dixon. 2011. Can plants really improve indoor air quality? p. 331-338. In: Murray M. Y. (Ed.). Comprehensive biotechnology (second ed.). Pergamon Press. Oxford. U.K.
Llewellyn, J.W. 2002. Indoor air quality sampling methodologies, 1st edition. Occup. Environ. Med. 59:203.
Lu, C.Y., J.M. Lin, Y.Y. Chen, and Y.C. Chen. 2015. Building-related symptoms among office employees associated with indoor carbon dioxide and total volatile organic compounds. Int. J. Environ. Res. Public Health 12:5833.
Luengas, A., A. Barona, C. Hort, G. Gallastegui, V. Platel, and A. Elias. 2015. A review of indoor air treatment technologies. Rev. Environ. Sci. Bio. 14:499-522.
Manéro, M.H. and P. Monneyron. 2005. Traitement sélectif de l’air industriel pollué en COV par un procédé hybride adsorption-ozonation. Techniques de l’Ingénieur. IN34.
Manso, M. and C.J. Gomes. 2015. Green wall systems: A review of their characteristics. Renew. Sust. Energ. Rev. 41:863-871.
Matz, C.J., D.M. Stieb, K. Davis, M. Egyed, A. Rose, B. Chou, and O. Brion. 2014. Effects of age, season, gender and urban-rural status on time-activity: Canadian Human Activity Pattern Survey 2 (CHAPS 2). Intl. J. Environ. Res. Public Health 11:2108-2124.
Meharg, A.A. and J.W.G. Cairney. 2000. Ectomycorrhizas - extending the capabilities of rhizosphere remediation? Soil Biol. Biochem. 32:1475-1484.
Mohan, S.M. 2016. An overview of particulate dry deposition: Measuring methods, deposition velocity and controlling factors. Intl. J. Environ. Sci. 13:387-402.
Mohr, H., and P. Schopfer. 1995. The leaf as a photosynthetic system. p.225-243. In: Mohr, H., and Schopfer, P. (eds.). Springer Berlin Heidelberg, Berlin, HD.
Montgomery, J.F., S.I. Green, S.N. Rogak, and K. Bartlett. 2012. Predicting the energy use and operation cost of HVAC air filters. Energ. Build. 47:643-650.
Morawska, L., A. Afshari, G.N. Bae, G. Buonanno, C.Y.H. Chao, O. Hänninen, W. Hofmann, C. Isaxon, E.R. Jayaratne, P. Pasanen, T. Salthammer, M. Waring, and A. Wierzbicka. 2013. Indoor aerosols: From personal exposure to risk assessment. Indoor Air 23:462-487.
Mott, K.A. 2009. Opinion: Stomatal responses to light and CO2 depend on the mesophyll. Plant Cell Environ. 32:1479-1486.
Moussavi, G. and M. Mohseni. 2007. Using UV pretreatment to enhance biofiltration of mixtures of aromatic VOCs. J. Hazard. Mater. 144:59-66.
Neinhuis, C. and W. Barthlott. 1998. Seasonal changes of leaf surface contamination in beech, oak, and ginkgo in relation to leaf micromorphology and wettability. New Phytol. 138:91-98.
Neinhuis, C., F. Ditsch, H. Wilhelmi, I. Theisen, I. Meusel, W. Barthlott, and D. Cutler. 2008. Classification and terminology of plant epicuticular waxes. Bot. J. Linn. Soc. 126:237-260.
Nian, H.J., Q.C. Meng, Q. Cheng, W. Zhang, and L.M. Chen. 2013. The effects of overexpression of formaldehyde dehydrogenase gene from Brevibacillus brevis on the physiological characteristics of tobacco under formaldehyde stress. Russ. J. Plant Physiol. 60:764-769.
Orwell, R.L., R.A. Wood, M.D. Burchett, J. Tarran, and F. Torpy. 2006. The potted-plant microcosm substantially reduces indoor air VOC pollution: II. Laboratory study. Water Air Soil Pollut. 177:59-80.
Ottelé, M. 2011. The green building envelope: Vertical greening. SiecaRepro, Netherlands.
Ottelé, M., B. Ursem, A.L.A. Fraaij, and H. Bohemen. 2011. The development of an ESEM based counting method for fine dust particles and a philosophy behind the background of particle adsorption on leaves. Air Pollution 2011 Conference. Volume:147.
Ottelé, M., H.D. van Bohemen, and A.L.A. Fraaij. 2010. Quantifying the deposition of particulate matter on climber vegetation on living walls. Ecol. Eng. 36:154-162.
Oyabu, T., A. Sawada, T. Onodera, K. Takenaka, and B. Wolverton. 2003. Characteristics of potted plants for removing offensive odors. Sensor. Actuat. B-Chem. 89:131-136.
Park, J.S. and K. Ikeda. 2006. Variations of formaldehyde and VOC levels during 3 years in new and older homes. Indoor air 16:129-135.
Pei, L., J. Zhou, and L. Zhang. 2013. Preparation and properties of Ag-coated activated carbon nanocomposites for indoor air quality control. Build. Environ. 63:108-113.
Pennisi, S.V. and M.W. van Iersel. 2012. Quantification of carbon assimilation of plants in simulated and in situ interiorscapes. HortScience 47:468-476.
Perini, K. and P. Rosasco. 2013. Cost-benefit analysis for green façades and living wall systems. Build. Environ. 70:110-121.
Perini, K., M. Ottelé, S. Giulini, A. Magliocco, and E. Roccotiello. 2017. Quantification of fine dust deposition on different plant species in a vertical greening system. Ecol. Eng. 100:268-276.
Persily, A. 2015. Challenges in developing ventilation and indoor air quality standards: The story of ASHRAE Standard 62. Build. Environ. 91:61-69.
Pettit, T., P.J. Irga, P. Abdo, and F.R. Torpy. 2017. Do the plants in functional green walls contribute to their ability to filter particulate matter? Build. Environ. 125:299-307.
Pettit, T., P.J. Irga, and F.R. Torpy. 2018. Towards practical indoor air phytoremediation: A review. Chemosphere 208:960-974.
Pettit, T., P.J. Irga, and F.R. Torpy. 2019. The in situ pilot-scale phytoremediation of airborne VOCs and particulate matter with an active green wall. Air Qual. Atmos. Health 12:33-44.
Popek, R., H. Gawrońska, M. Wrochna, S.W. Gawroński, and A. Sæbø. 2013. Particulate matter on foliage of 13 woody species: deposition on surfaces and phytostabilisation in waxes - A 3-year study. Intl. J. Phytoremediation 15:245-256.
Porter, J.R. 1994. Toluene removal from air by Dieffenbachia in a closed environment. Adv. Space Res. 14:99-103.
Powe, N.A. and K.G. Willis. 2004. Mortality and morbidity benefits of air pollution (SO2 and PM10) absorption attributable to woodland in Britain. J. Environ. Magt. 70:119-128.
Prajapati, S.K. and B.D. Tripathi. 2008. Seasonal variation of leaf dust accumulation and pigment content in plant species exposed to urban particulates pollution. J. Environ. Qual. 37:865-870.
Prior S.A., and G.B. Rogers. 1994. Effect of free-air CO2 enrichment on cotton nutrient dynamics. J. Plant Nutr. 21: 1407-1426.
Prusty, B.A.K., P.C. Mishra, and P.A. Azeez. 2005. Dust accumulation and leaf pigment content in vegetation near the national highway at Sambalpur, Orissa, India. Ecotoxicol. Environ. Safe. 60:228-235.
Przybysz, A., A. Sæbø, H.M. Hanslin, and S.W. Gawroński. 2014. Accumulation of particulate matter and trace elements on vegetation as affected by pollution level, rainfall and the passage of time. Sci. Total Environ. 481:360-369.
Pugh, T. A. M., A.R. MacKenzie, J.D. Whyatt, and C.N. Hewitt. 2012. Effectiveness of green infrastructure for improvement of air quality in urban street canyons. Environ. Sci. Technol. 46: 7692-7699.
Ras, M.R., R.M. Marcé, and F. Borrull. 2010. Volatile organic compounds in air at urban and industrial areas in the Tarragona region by thermal desorption and gas chromatography–mass spectrometry. Environ. Monit. Assess. 161:389-402.
Räsänen, J.V., T. Holopainen, J. Joutsensaari, C. Ndam, P. Pasanen, Å. Rinnan, and M. Kivimäenpää. 2013. Effects of species-specific leaf characteristics and reduced water availability on fine particle capture efficiency of trees. Environ. Pollut. 183:64-70.
Raveh, E., N. Wang, and P.S. Nobel. 1998. Gas exchange and metabolite fluctuations in green and yellow bands of variegated leaves of the monocotyledonous CAM species Agave americana. Physiol. Plant. 103:99-106.
Riley, W.J., T.E. McKone, A.C.K. Lai, and W.W. Nazaroff. 2002. Indoor particulate matter of outdoor origin:  Importance of size-dependent removal mechanisms. Environ. Sci. Technol. 36:200-207.
Rottenberger, S., U. Kuhn, A. Wolf, G. Schebeske, S.T. Oliva, T.M. Tavares, and J. Kesselmeier. 2005. Formaldehyde and acetaldehyde exchange during leaf development of the Amazonian deciduous tree species Hymenaea courbaril. Atmos. Environ. 39:2275-2279.
Sæbø, A., R. Popek, B. Nawrot, H.M. Hanslin, H. Gawronska, and S.W. Gawronski. 2012. Plant species differences in particulate matter accumulation on leaf surfaces. Sci. Total Environ. 427-428:347-354.
Saksensa, S. and K.R. Smith. 2012. Indoor air pollution. p.129-142. In: G. McGranahan and F. Murray (eds.). Air pollution and health in rapidly developing countries. Routledge, London, U.K.
Salonen, H., A.L. Pasanen, S. Lappalainen, H. Riuttala, T. Tuomi, P. Pasanen, B. Back, and K. Reijula. 2009. Volatile organic compounds and formaldehyde as explaining factors for sensory irritation in office environments. J. Occup. Environ. Hyg. 6: 239-247.
Salthammer, T. 2013. Formaldehyde in the ambient atmosphere: From an indoor pollutant to an outdoor pollutant? Angew. Chem. Intl. Ed. 52:3320-3327.
Sandrin, T.R., A.M. Chech, and R.M. Maier. 2000. A rhamnolipid biosurfactant reduces cadmium toxicity during naphthalene biodegradation. Appl. Environ. Microbiol. 66:4585-4588.
Sase, S. 2006. Air movement and climate uniformity in ventilated greenhouses. International Society for Horticultural Science (ISHS), Leuven, Belgium. p. 313-324.
Satish, U., M.J. Mendell, K. Shekhar, T. Hotchi, D. Sullivan, S. Streufert, and W.J. Fisk. 2012. Is CO2 an indoor pollutant? Direct effects of low-to-moderate CO2 concentrations on human decision-making performance. Environ. Health Perspect. 120:1671-1677.
Schlink, U., A. Thiem, T. Kohajda, M. Richter, and K. Strebel. 2010. Quantile regression of indoor air concentrations of volatile organic compounds (VOC). Sci. Total Environ. 408:3840-3851.
Schmitz, H., U. Hilgers, and M. Weidner. 2000. Assimilation and metabolism of formaldehyde by leaves appear unlikely to be of value for indoor air purification. New Phytol. 147:307-315.
Schönherr, J. 2000. Calcium chloride penetrates plant cuticles via aqueous pores. Planta 212:112-118.
Schönherr, J. 2006. Characterization of aqueous pores in plant cuticles and permeation of ionic solutes. J. Expt. Bot. 57:2471-2491.
Schweinsberg, F. and S.V. Mersch. 2003. Meeting Report: 9th International conference on indoor air quality and climate indoor air 2002, Monterey, California, June 30 - July 5, 2002. Intl. J. Hyg. Environ. Health 206:133-138.
Seco, R., J. Peñuelas, and I. Filella. 2007. Short-chain oxygenated VOCs: Emission and uptake by plants and atmospheric sources, sinks, and concentrations. Atmos. Environ. 41:2477-2499.
Seppänen, O., W.J. Fisk, and Q. Lei. 2006. Ventilation and performance in office work. Indoor Air 16:28-36.
Seppänen. O. 2002. Ventilation, energy, and indoor air quality. Proceedings: Indoor Air 2002. 136-147.
Shibuya, T. and T. Kozai. 1998. Effects of air current speed on net photosynthetic and evapotranspiration rates of a tomato plug sheet under artificial light. Environ. Control Biol. 36:131-136.
Song, Z.B., S.Q. Xiao, L. You, S.S. Wang, H. Tan, K.Z. Li, and L.M. Chen. 2013. C1 metabolism and the Calvin cycle function simultaneously and independently during HCHO metabolism and detoxification in Arabidopsis thaliana treated with HCHO solutions. Plant Cell Environ. 36:1490-1506.
Speak, A.F., J.J. Rothwell, S.J. Lindley, and C.L. Smith. 2012. Urban particulate pollution reduction by four species of green roof vegetation in a UK city. Atmos. Environ. 61:283-293.
Stephens, B. and J.A. Siegel. 2013. Ultrafine particle removal by residential heating, ventilating, and air-conditioning filters. Indoor Air 23:488-497.
Sternberg, T., H. Viles, A. Cathersides, and M. Edwards. 2010. Dust particulate absorption by ivy (Hedera helix L.) on historic walls in urban environments. Sci. Total Environ. 409:162-168.
Su, Y. and Y. Liang. 2015. Foliar uptake and translocation of formaldehyde with bracket plants (Chlorophytum comosum). J. Hazard. Mater. 291:120-128.
Su, Y.M. and C.H. Lin. 2015. Removal of indoor carbon dioxide and formaldehyde using green walls by bird nest fern. Hort. J. 84:69-76.
Sun, H., W. Zhang, L. Tang, S. Han, X. Wang, S. Zhou, K. Li, and L.M. Chen. 2015. Investigation of the role of the Calvin Cycle and C1 metabolism during HCHO metabolism in gaseous HCHO-treated Petunia under light and dark conditions using 13C-NMR. Phytochem. Anal. 26:226-235.
Tada, Y. and Y. Kidu. 2011. Glutathione-dependent formaldehyde dehydrogenase from golden pothos (Epipremnum aureum) and the production of formaldehyde detoxifying plants. Plant Biotechnol. J. 28:373-378.
Taiz L, and E. Zeiger. 2010. Plant physiology, 5th ed. Sinauer Associates, Sunderland, MA.
Thongbai, P., T. Kozai, and K. Ohyama. 2010. CO2 and air circulation effects on photosynthesis and transpiration of tomato seedlings. Scientia Hort. 126:338-344.
Torpy, F.R., P.J. Irga, and M.D. Burchett. 2014. Profiling indoor plants for the amelioration of high CO2 concentrations. Urban For. Urban Green. 13:227-233.
Torpy F.R., P.J. Irga, and M.D. Burchett. 2015. Reducing indoor air pollutants through biotechnology, biotechnologies and biomimetics for civil engineering. p.181-210. In: Pacheco T.F., Labrincha J.A., Diamanti M.V., Yu C.P., Lee H.K. (eds.). Biotechnologies and Biomim. Civ. Eng. Springer, Cham, C.H.
Treesubsuntorn, C. and P. Thiravetyan. 2012. Removal of benzene from indoor air by Dracaena sanderiana: Effect of wax and stomata. Atmos. Environ. 57:317-321.
Treesubsuntorn, C., P. Suksabye, S. Weangjun, F. Pawana, and P. Thiravetyan. 2013. Benzene adsorption by plant leaf materials: Effect of quantity and composition of wax. Water Air Soil Pollut. 224:1736.
Tyree, M.T. and P. Yianoulis. 1980. The site of water evaporation from sub-stomatal cavities, liquid path resistances and hydroactive stomatal closure. Ann Bot. 46:175-193.
USEPAIRIS. 2013. Benzene. US Environmental Protection Agency. < https://www.epa.gov/iris>.
Uzu, G., S. Sobanska, G. Sarret, M. Muñoz, and C. Dumat. 2010. Foliar lead uptake by lettuce exposed to atmospheric fallouts. Environ. Sci. Technol. 44:1036-1042.
Valavanidis, A., K. Fiotakis, and T. Vlachogianni. 2008. Airborne particulate matter and human health: Toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. J. Environ. Sci. Heal. 26:339-362.
Vladimirova, S.V., B.D. McConnell, E.K. Michael, and W.R. Henley. 1997. Morphological plasticity of Dracaena sanderana ‘Ribbon’ in response to four light intensities. HortScience 32:1049-1052.
Wang, H., H. Shi, and Y. Li. 2011. Leaf dust capturing capacity of urban greening plant species in relation to leaf micromorphology. In 2011 International Symposium on Water Resource and Environmental Protection. Vol. 3, p. 2198-2201.
Wang, H., H. Shi, and Y.J. Wang. 2015. Effects of weather, time, and pollution level on the amount of particulate matter deposited on leaves of Ligustrum lucidum. Sci. World J. 2015:935942.
Wang, H., H. Shi, Y. Li, Y. Yu, and J. Zhang. 2013. Seasonal variations in leaf capturing of particulate matter, surface wettability and micromorphology in urban tree species. Front. Environ. Sci. Eng. 7:579-588.
Wang, L., L.Y. Liu, S.Y. Gao, E. Hasi, and Z. Wang. 2006. Physicochemical characteristics of ambient particles settling upon leaf surfaces of urban plants in Beijing. J. Environ. Sci 18:921-926.
Wang, Y., I. Kloog, B.A. Coull, A. Kosheleva, A. Zanobetti, and J.D. Schwartz. 2016. Estimating causal effects of long-term PM2.5 exposure on mortality in New Jersey. Environ. Health Perspect. 124:1182-1188.
Wang, Z. and J.S. Zhang. 2011. Characterization and performance evaluation of a full-scale activated carbon-based dynamic botanical air filtration system for improving indoor air quality. Build. Environ. 46:758-768.
Ward, J.K. and B.R. Strain. 1999. Elevated CO2 studies: Past, present and future. Tree Physiol. 19: 211-220.
Weerakkody, U., J.W. Dover, P. Mitchell, and K. Reiling. 2017. Particulate matter pollution capture by leaves of seventeen living wall species with special reference to rail-traffic at a metropolitan station. Urban For. Urban Green. 27:173-186.
Weerakkody, U., J.W. Dover, P. Mitchell, and K. Reiling. 2018a. Evaluating the impact of individual leaf traits on atmospheric particulate matter accumulation using natural and synthetic leaves. Urban For. Urban Green. 30:98-107.
Weerakkody, U., J.W. Dover, P. Mitchell, and K. Reiling. 2018b. Quantification of the traffic-generated particulate matter capture by plant species in a living wall and evaluation of the important leaf characteristics. Sci. Total Environ. 635:1012-1024.
Wheeler, A.J., N.A. Dobbin, N. Lyrette, L. Wallace, M. Foto, R. Mallick, J. Kearney, K. Van Ryswyk, N.L. Gilbert, I. Harrison, K. Rispler, and M.E. Héroux. 2011. Residential indoor and outdoor coarse particles and associated endotoxin exposures. Atmos. Environ. 45:7064-7071.
Willmer, C. and M. Fricker. 1996. Stomata. Springer, New York, U.S.A.
Wolverton, B.C. 1988. Foliage plants for improving indoor air quality. Natl. Foliage Found. Inter. Semin. Hollywood, FL.
Wolverton, B.C. and R.C. McDonald. 1985. Foliage plants for indoor removal of the primary combustion gases carbon monoxide and nitrogen dioxide. J. Miss Acad. Sci. 30: 1-8.
Wolverton, B.C., A. Johnson, and K. Bounds. 1989. Interior landscape plants for indoor air pollution abatement, Final Report NASA (NASA-TM-101760), National Aeronautics and Space Administration.
Wolverton, B.C., R.C. Mcdonald, and E.A. Watkins. 1984. Foliage plants for removing indoor air pollutants from energy-efficient homes. Econ. Bot. 38:224-228.
Wood, R.A., M.D. Burchett, R. Alquezar, R.L. Orwell, J. Tarran, and F. Torpy. 2006. The potted-plant microcosm substantially reduces indoor air VOC pollution: I. Office field-study. Water Air Soil Pollut. 175:163-180.
World Health Organization. 1989. Indoor air quality: organic pollutants. Environ. Technol. Lett.10:855-858.
World Health Organization. 2010. WHO guidelines for indoor air quality: Selected pollutants. WHO, Geneva, CH.
World Meteorlogical Organization. 2016. The state of greenhouse gases in the atmosphere based on global observations through 2015. WMO Greenhouse Gas Bulletin. 12:2-8.
Wu, P.C., Y.Y. Li, C.C. Lee, C.M. Chiang, and H.J.J. Su. 2003. Risk assessment of formaldehyde in typical office buildings in Taiwan. Indoor Air 13:359-363.
Xie, B., H.X. Wang, J. Yang, Y.H. Wang, and H. Shi. 2014. Retention capability of PM2.5 and it''s explanation by leaf surface micro-structure of common broad-leaved plant species in Beijing. Acta Agr. Bor. Sin. 34:2432-2438.
Xu, Z., L. Wang, and H. Hou. 2011. Formaldehyde removal by potted plant–soil systems. J. Hazard. Mater. 192:314-318.
Yabuki, K. 2004. Photosynthetic rate of a plant community and wind speed, p. 67-104. In: K. Yabuki. (ed.). Photosynthetic rate and dynamic environment. Springer, Dordrecht, NL.
Yabuki, K. and H. Miyagawa. 1970. Studies on the effect of wind speed upon the photosynthesis J. Agr. Meteorol. 26:137-141.
Yang, J., H. Wang, B. Xie, H. Shi, and Y. Wang. 2015. Accumulation of particulate matter on leaves of nine urban greening plant species with different micromorphological structures in Beijing. Res. J. Environ. Sci. 28:384-392.
Yang, J., J. McBride, J. Zhou, and Z. Sun. 2005. The urban forest in Beijing and its role in air pollution reduction. Urban For. Urban Gree. 3:65-78.
Yeom, S.H., S.H. Kim, Y.J. Yoo, and I.S. Yoo. 1997. Microbial adaptation in the degradation of phenol by Alcaligenes xylosoxidans Y234. Korean J. Chem. Eng. 14:37-40.
Yera, R., S. Davis, J. Frazer, and G. Tallman. 1986. Responses of adaxial and abaxial stomata of normally oriented and inverted leaves of Vicia faba L. to light. Plant Pathol. 82:384-389.
Yoo, M.H., J.K. Youn, K.C. Son, and S. Kays. 2006. Efficacy of indoor plants for the removal of single and mixed volatile organic pollutants and physiological effects of the volatiles on the plants. J. Amer. Soc. Hort. Sci. 131:452-458.
Zeng, Z., C. Qi, Q. Chen, K. Li, and L. Chen. 2014. Absorption and metabolism of formaldehyde in solutions by detached banana leaves. J. Biosci. Bioeng. 117:602-612.
Zha, Y., Y. Shi, J. Tang, X. Liu, C. Feng, and Y. Zhang. 2018. Spatial-temporal variability and dust-capture capability of 8 plants in urban China. Pol. J. Environ. 28:454-462.
Zhang, W., L. Tang, H. Sun, S. Han, X. Wang, S. Zhou, K. Li, and L. Chen. 2014. C1 metabolism plays an important role during formaldehyde metabolism and detoxification in petunia under liquid HCHO stress. Plant Physiol. Biochem. 83:327-336.
Zhang, Y., J. Mo, Y. Li, J. Sundell, P. Wargocki, J. Zhang, J.C. Little, R. Corsi, Q. Deng, M.H.K. Leung, L. Fang, W. Chen, J. Li, and Y. Sun. 2011. Can commonly-used fan-driven air cleaning technologies improve indoor air quality? A literature review. Atmos. Environ. 45:4329-4343.
Zhang, Y., Y. Mu, J. Liu, and A. Mellouki. 2012. Levels, sources and health risks of carbonyls and BTEX in the ambient air of Beijing. China. J. Environ. Sci. 24:124-130.
Zhao, W., Y. Yang, J. Dai, F. Liu, and Y. Wang. 2013. VUV photolysis of naphthalene in indoor air: Intermediates, pathways, and health risk. Chemosphere 91:1002-1008.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔