(3.231.29.122) 您好!臺灣時間:2021/02/26 01:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉影
研究生(外文):Ying Liu
論文名稱:非洲芙蓉扦插繁殖與開花生理之研究
論文名稱(外文):Studies on Cutting Propagation and Flowering Physiology of Dombeya wallichii
指導教授:葉德銘葉德銘引用關係李國譚
指導教授(外文):Der-Ming YehKuo-Tan Li
口試委員:李金龍張育森
口試日期:2019-06-20
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:園藝暨景觀學系
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:106
中文關鍵詞:容器大小與修剪插穗型式非洲芙蓉开花激勃素光週溫度
DOI:10.6342/NTU201901427
相關次數:
  • 被引用被引用:0
  • 點閱點閱:50
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
非洲芙蓉[Dombeya wallichii (Lindl.) K.Schum.]為錦葵科之觀賞花木,花型獨特,芬芳艷麗,應用於盆花或景觀佈置,深受歡迎,然而其自然花期局限於冬季。本論文探討非洲芙蓉扦插繁殖,並研究溫度、光週期、容器大小與修剪及噴施GA3等因素對其開花之影響,以期調整花期,增加其應用價值。
本論文第一部分探討非洲芙蓉扦插發根率,於11月初取15 cm長不帶葉片之綠枝、半硬枝及硬枝插穗扦插,結果28天後所有插穗皆存活,但均無發根;另取15 cm長,帶頂芽及葉片之綠枝、不帶葉片之半硬枝及硬枝插穗扦插,結果28天後所有插穗皆存活,但僅帶頂芽及葉片之綠枝插穗發根。於11月初另取帶頂芽及兩片葉的綠枝,分別剪成5、10、15或20 cm長之插穗扦插,結果28天與56天後,所有長度之插穗皆發根,但長5 cm之插穗發根率及發根數略低。非洲芙蓉的扦插發根包含了皮部發根及癒傷組織發根。
本論文第二部份探討溫度及日長對非洲芙蓉開花之影響,於5月初取高度20 cm,帶兩片葉之扦插苗,置於日/夜溫為15/13、20/15、25/20、30/25或35/20℃的人工氣候室,處理84天後以30/25℃處理植株最高,枝條最長,每枝條葉片數最多。處理119天後以35/30℃處理植株的葉片最小,新生枝條莖徑最細。15/13℃處理植株的葉片最大螢光值(maximum fluorescence, Fm)及PSⅡ最大光化學效率(maximum quantum efficiency of photosystem Ⅱ photochemistry, Fv/Fm)最低;35/30℃處理植株的葉片光化學猝熄(photochemical quenching, qP)、非光化學猝熄係數(non-photochemical quenching coefficient, qN)以及非光化學猝熄(non-photochemical quenching, NPQ)下降,且其淨光合作用速率(net CO2 assimilation rate, Pn)顯著低於其他溫度處理。植株於15/13℃與20/15℃處理112天後現蕾,花下葉片數分別爲7.9與9.1;25/20℃處理者119天現蕾,花下葉片數為12;30/25℃與35/30℃處理182天後仍未形成花芽。結果顯示15/13℃處理有利非洲芙蓉之花芽形成,而25/20℃已接近非洲芙蓉花芽形成的上限溫度。
另於9月將原本於30/25℃與35/30℃處理18週之非洲芙蓉植株半數移入15/13℃低溫中,移入15/13℃之植株於35天後皆可見花蕾,而持續於30/25℃與35/30℃高溫環境之植株則未產生花蕾。可見高溫前處理不影響日後低溫下非洲芙蓉的花芽形成。
於12月初將具直徑2.1±0.1 cm花芽之非洲芙蓉植株移入人工氣候室接受不同溫度處理,結果顯示15/13℃、20/15℃及25/20℃皆有利花芽發育,且25/20℃處理者花序數最多,開花最早; 30/25℃不利非洲芙蓉花芽發育,處理50天後有38.6%消蕾。非洲芙蓉自花芽直徑為2.1±0.1 cm發育到花萼顯色及開花的基礎溫度(base temperature, Tb)分別為1.54及1.82℃,計算非洲芙蓉自花芽直徑為2.1±0.1 cm發育至花萼顯色階段,約需396-487℃d,而發育至開花階段,約需556-645℃d。
於8月中旬取帶6片展開葉的非洲芙蓉綠枝扦插苗置於24/14℃、每日以PPF (photosynthetic photon flux)約300 μmol·m-2·s-1人工光源照光8 h的環境中經7、14、21、28或35天後,移入紅:藍=8:1之混合LED白光燈盤提供PPF約150 μmol·m-2·s-1的16 h長日環境。結果顯示隨著短日循環次數增多,植株新長之花下葉片數及新長之節間長減少,花芽數及初始花芽直徑則增加,推測非洲芙蓉為非絕對性短日植物。
本文第三部份探討容器大小與修剪對非洲芙蓉生長及開花之影響,於11月初將非洲芙蓉樹苗修剪至30、60、90、120 cm高,僅保留主幹。並定植於47、32、18 L三種大小的容器中,處理150天後,植株高度與容器尺寸及修剪高度成正比;處理210天後之植株高度增加量與容器尺寸成正比但與修剪高度成反比。容器處理255天後植株側枝數不受容器尺寸影響,但隨修剪高度增加;側枝長度與容器尺寸成正比但與修剪高度成反比,側枝葉片數亦同。處理60天後,大容器栽培有利植株形成花芽,但修剪高度則無影響。
本論文第四部份探討勃激素(GA)對非洲芙蓉開花之影響,於10月初在非洲芙蓉未現蕾枝條葉片上噴施2500 mg·L-1或5000 mg·L-1 的GA3溶液,可提早7天現蕾,但對花萼顯色天數及開花天數無影響。GA3處理後14天有枝條現蕾,而未噴施GA3之對照組晚1週始現蕾。每枝條花芽數、花序直徑及花序梗長度於處理間均無顯著差異。
於1月自然花期,於非洲芙蓉枝條自頂端數起第三個腋生花苞(直徑4.4±0.1 cm,花序梗長12.1±0.3 cm)上噴施250或500 mg·L-1的GA3溶液。可讓花苞提早約3-4天達到花萼顯色階段,但對開花天數無影響。
Dombeya wallichii (Lindl.) K. Schum. is a woody ornamental species in the Malvaceae family. The attractive flower pattern and fragrance make it a popular choice for container gardending or landscape layout. However, its natural flowering period is limited to winter. In this thesis, methods for cutting propagation was evaluated, and environmental factors, e.g. temperature and photoperiod as well as cultural factors, e.g. container size, pruning, and GA3 spray were investigated to document the mentioned variables on plant growth and flowering of Dombeya in order to increase its commercial potential.
In the first part of this thesis, cutting propagation of Dombeya was evaluated. In the fist trial, defoliated softwoods, semi-hardwoods and hardwoods were trimmed to a length of 15 cm and were inserted into propagation medium in early November. All the cuttings survived after 28 days but none rooted. In the second trial, leafy terminal softwoods and defoliated semi-hardwoods and hardwoods were trimmed to a length of 15 cm for cutting. All survived after 28 days but only leafy softwoods successfully rooted. In the third trial, leafy terminal softwoods were trimmed to 5, 10, 15 or 20 cm for cutting. All culltings rooted after 28 days and 56 days. Low rooting rate and root number were recorded in the 5 cm cuttings . Rooting types of Dombeya wallichii included rooting from barks and callus.
In the second part of this thesis, temperature and photoperiod effect on Dombeya flowering were investigated. Single stemmed Dombeya plants were heading to a height of 20 cm with two fully expanded leaves and grown in phytotrons, under natural daylength conditions in May, with day/night temperatures of 15/13℃, 20/15℃, 25/20℃, 30/25℃ or 35/30℃. Plants at 30/25℃ after 84 days were most vigorous, with the longest shoots and the greatest number of leaves per shoot than plants subjected to other temperatures. Plants at 35/30℃ after 119 days had the smallest leaves and diameter of new shoots. The maximum fluorescence (Fm) and maximum quantum efficiency of photosystem II photochemistry (Fv/Fm) of the mature leaf on plants at 15/13°C were the lowest, and the photochemical quenching (qP), non-photochemical quenching coefficient (qN) and non-photochemical quenching (NPQ) of the leaf on plants at 35/30°C declined. Also, leaf net photosynthesis rate (Pn) of plants grown at 35/30°C was significantly lower than other temperature treatments. Flower buds were observed on plants after 112 days at 15/13℃ or 20/15℃, with 7.9 and 9.1 leaves below the first inflorescence, respectively, and on plants after 119 days at 25/20℃, with 12 leaves below the first inflorecence. No flower buds were observed on plants at 30/25℃ or 35/30℃ for 182 days. The results indicated that 15/13℃ is beneficial for flower formation of Dombeya, and 25/20℃ is likely the upper limit temperature for flower formation.
In the second temperature trail, half of the plants originally grown at 30/25℃ and 35/30℃ for 18 weeks beforetransferred to 15/13 °C in early September produced flower buds after 35 days, while those remained at high temperatures did not produce any flower buds, suggesting that high temperature pretreatment did not affect flower formation of Dombeya at low temperatures.
In the third temperature trail, Dombeya with 2.1±0.1 cm flower buds were transferred to phytotrons in early December. Results showed that within the range of 15/13°C to 25/20 °C, warm temperatures were beneficial to flower development and plants grown at 25/20 °C flowered earlier and the number of inflorescences was the highest. However, 30/25°C was not suitable for flower development, as 38.6% buds aborted after treatment for 50 days. Base temperatures of 2.1±0.1 cm flower buds developing to calyx visibility and flower were 1.54°C and 1.82°C, respectively. And the thermal time of 2.1±0.1 cm flower buds reaching to calyx visibility stage and flower stage were about 396-487℃d and 556-645℃d, respectively.
In the photoperiod trial, rooted softwood cuttings with six expanded leaves were placed at 24/14°C in mid- August and illuminated with a photosynthetic photon flux (PPF) of 300 μmol·m-2·s-1 for 8 h daily. After 7, 14, 21, 28, and 35 days, plants were transferred to long day environment and lighted with a PPF of 150 μmol·m-2·s-1 provided with a mixed LED white light panel with red : blue=8:1 for 16 h daily . Results showed that the increase in the number of short-day cycles decreased the number of newly-grown leaves below the flowers and the length of newly-grown internodes , while increased the number of flower buds and the initial flower bud diameter. The result indicated that Dombeya is a facultative short-day plant.
The third part of this thesis reported the effects of container size and pruning severity on growth and flowering in Dombeya. Saplings were trimmed to 30, 60, 90, or 120 cm tall, leaving only the trunk and planted in 47, 32, or 18 L containers in early November. Plants grown in 47 L containers after 150 days were the highest, and the plant height decreased with the decrease of the pruning height. More plant height increment were observed in plants grown in large containers or pruned to 30 cm high after 210 days, and the plant height increment reduced as container size decreased or pruning height increased. After 255 days of treatments, container size had no effect on number of shoots, but number of shoots increased as the pruning height increased from 30 to 120 cm. Shoot length increased with increasing container size or decreaing prun height. Similar reaction was also observed on number of leaves per shoot. More plants grown in large containers produced flower buds after 60 days, while prun height had no effect on it. After 120 days of treatment, the proportion of plants with flower buds were higher in which grown in large containers, and lower in those grown in small containers. Flowering rate of plants grown in small containers was significantly lower after 183 days.
The final part of this thesis investigated the effect of gibberellin on flowering of Dombeya. In early October, 2500 mg·L-1 and 5000 mg·L-1 of GA3 solution were sprayed on the leaves of Dombeya shoots without flower buds. Flower buds were visible 7 days earlier on shoots with GA3 treatment than the un-sprayed control but days to calyx visibility and days to flowering were not affected by GA3. Flower buds were visible after GA3 treatment for 14 days, and the control group without GA3 treatment had visible flower buds 1 week later. There was no significant difference in number of flower buds, inflorescence diameter and peduncle length between treatments.
In the natural flowering period, the third axillary flower bud (diameter 4.4±0.1 cm, peduncle length 12.1±0.3 cm) from the top of Dombeya was sprayed with 250 and 500 mg·L-1 GA3 solution in January. Results showed that GA3 treatment allowed the flower buds to reach the calyx visibility stage about 3-4 days earlier, but had no effect on the days to flowering.
誌 謝 I
目 錄 II
表目錄 IV
圖目錄 V
摘 要 VII
Abstract IX
前言 (Introduction) 1
前人研究 (Literature Review) 3
一、非洲芙蓉簡介 3
(一)原生地及分布 3
(二)形態 3
(三)繁殖與生長開花習性 4
二、影響觀賞花木扦插繁殖之因子 5
(一)取穗部位 5
(二)插穗長度 7
三、影響觀賞花木開花之因子 8
(一)溫度 9
(二)光週期 11
(三)容器大小 13
(四)修剪 16
(五)激勃素(GAs) 18
材料與方法 (Materials and Methods) 21
試驗一、插穗型式對非洲芙蓉扦插繁殖之影響 21
試驗二、帶葉綠枝插穗長度對非洲芙蓉扦插繁殖之影響 22
試驗三、溫度對非洲芙蓉生長、光合作用及開花之影響 22
試驗四、變溫處理對非洲芙蓉花芽形成之影響 25
試驗五、溫度對非洲芙蓉現蕾後花芽發育之影響 26
試驗六、短日循環次數對非洲芙蓉花芽形成之影響 27
試驗七、容器大小與修剪高度對非洲芙蓉生長開花之影響 27
試驗八、噴施GA3對非洲芙蓉花芽形成之影響 28
試驗九、噴施GA3對非洲芙蓉花芽發育之影響 29
結果 (Results) 31
試驗一、插穗型式對非洲芙蓉扦插繁殖之影響 31
試驗二、帶葉綠枝插穗長度對非洲芙蓉扦插繁殖之影響 31
試驗三、溫度對非洲芙蓉生長、光合作用及開花之影響 31
試驗四、變溫對非洲芙蓉花芽形成之影響 33
試驗五、溫度對非洲芙蓉現蕾後花芽發育之影響 33
試驗六、短日循環次數對非洲芙蓉花芽形成之影響 34
試驗七、容器大小與修剪高度對非洲芙蓉生長開花之影響 35
試驗八、噴施GA3對非洲芙蓉花芽形成之影響 36
試驗九、噴施GA3對非洲芙蓉花芽發育之影響 36
討論 (Discussion) 76
試驗一、插穗型式對非洲芙蓉扦插繁殖之影響 76
試驗二、帶葉綠枝插穗長度對非洲芙蓉扦插繁殖之影響 77
試驗三、溫度對非洲芙蓉生長、光合作用及開花之影響 78
試驗四、變溫對非洲芙蓉花芽形成之影響 82
試驗五、溫度對非洲芙蓉現蕾後花芽發育之影響 82
試驗六、短日循環次數對非洲芙蓉花芽形成之影響 85
試驗七、容器大小與修剪高度對非洲芙蓉生長開花之影響 85
試驗八、噴施GA3對非洲芙蓉花芽形成之影響 89
試驗九、噴施GA3對非洲芙蓉花芽發育之影響 89
綜合討論與結論 (General Discussion and Conclusions) 91
參考文獻 (References) 94
附錄 (Appendix) 106
中国科学院华南植物园. 2017. 来自非洲的芙蓉美眉. 旅游服务. 花讯展览. <http://www.scib.cas.cn/lyfw/hx/201701/t20170121_4739575.html>.
孔海云、張麗霞、王日為. 2011. 低溫與光照對茶樹葉片葉綠素螢光參數的影響. 茶葉 37:75-78.
王彬、田正鳳、應彬彬、馬元丹、左照江. 2019. 高溫脅迫對樟樹光合性能的影響. 浙江農林大學學報 36:47-53.
朱云美、張玲、高用順、林順權. 2016. 溫度對植物開花時間調控的研究進展. 亞熱帶農業研究 12:130-135.
何東、彭盡輝、邱波、彭亮、胡凌雪、胡瑤、趙盈盈. 2013. 溫度對觀賞植物花芽分化影響的研究進展. 中國園藝文摘 40-41.
余永富、余志彪、王興祥、李寧、唐秀俊、王子明、潘紅英、袁繼林. 2011. 藥用植物昆明山海棠不同長度和着生部位插穗扦插繁殖試驗. 貴州農業科學 39:179-181.
吳淑均、張育森. 1996. 溫度對矮仙丹生長與開花之影響. 中國園藝 42:123-130.
呂長平、成明亮、莫寧捷、丁丁、陳晨甜、王高寬. 2009. 外源GA3對芍藥花芽發育的影響. 作物研究 23:133-135,137.
李巧峽、張麗、王玉、黃小霞. 2019. 赤黴素調控植物開花及花器官發育的研究進展. 中國細胞生物學學報 4:746-758.
李春紅. 2015. 不同月季品種不同插穗部位扦插繁殖試驗. 現代園藝 3:18-19.
李梅. 2017. 蕾期噴施赤黴素和氯化鈣對蠟梅開花的影響. 四川農業大學碩士學位論文. 四川.
李煥勇、劉濤、張華新、楊秀艷、楊升. 2014. 植物扦插發根機理研究進展. 世界林業研究 27:23-28.
沈永根、費偉英. 2010. 影響紫薇扦插發根成活的因素研究. 綠色科技 11:37-38.
周愛琴、宋玉麗、于青. 2001. 溫度對桃樹萌芽開花生物學特性的影響. 烟臺果樹 3:30-31.
林曉君. 2003. 中斑香龍血樹莖幹與萬年竹插穗萌芽與發根之研究. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北.
姜波、沈宗根、黃四娣、葉節、呂洪飛. 2012. 草繡球與繡球的光合作用和葉綠素螢光特性比較. 浙江農業學報 24:582-588.
柯世省、金則新. 2008. 水分脅迫和溫度對夏臘梅葉片氣體交換和葉綠素螢光特性的影響. 應用生態學報 19:43-49.
胡惠蓉、王彩云、包滿珠. 2000. 溫光處理調控觀賞植物花期的研究進展. 園藝學報 27:522-526.
孫偉. 2010. 野生柳穿魚扦插繁殖技術研究. 中國農學通報 26:298-301.
徐玲、文鳳竹、曹明星、陳蕾伊、連芳青. 2007. 赤黴素(GA3)對八仙花花期及開花品質的影響. 江西林業科技 2:22-23.
袁霞. 2015. 噴施赤黴素和水楊酸對‘照手桃’開花的影響. 中南林業科技大學碩士學位論文. 長沙. 湖南.
張育森、吳淑均. 1997. 仙丹花之開花習性與修剪時期對矮仙丹生長及開花之影響. 中國園藝 43:330-340.
張育森、鄭正勇. 1992. 溫度和光綫對百香果生長及花芽形成之影響. 中國園藝 38:30-36.
張哲瑋、趙政男、陳右人、鄭正勇. 1997. 溫度及乾旱對荔枝開花的影響. 中國園藝 43:322-329.
張艷紅. 2007. 不同修剪時期對杜鵑花花期的影響. 北方園藝 118-119.
梁曉琳、常金寶. 2016. 不同插穗長度對寬葉薰衣草綠枝扦插發根率的影響. 黑龍江農業科學 90-91.
莊溪. 2019. 非洲芙蓉. 認識植物. <http://kplant.biodiv.tw/%E9%9D%9E%E6%B4%B2%E8%8A%99%E8%93%89/%E9%9D%9E%E6%B4%B2%E8%8A%99%E8%93%89.htm>.
許大全. 1997. 光合作用氣孔限制分析中的一些問題. 植物生理學通訊 33:241-244.
郭素娟. 1997. 林木扦插生根的解剖學及生理學研究進展. 北京林業大學學報 19:64-69.
郭姿吟. 2012. 利用香木槿培育朱槿盆花. 國立中興大學園藝系碩士學位碩士論文.臺中.
陳方清. 2016. 插條部位和長度對芳樟扦插效果的影響. 林業勘察設計 4:52-53.
陳厚彬、張海嵐. 1996. 重修剪推遲紫花芒果開花期的研究初報. 華南農業大學學報 17:63-67.
陳顯. 2013. 外源赤黴素對油茶成花調控機理的研究. 中南林業科技大學碩士學位論文. 長沙. 湖南.
陸金猴、袁貴明. 2011. 花灌木的修剪技術. 現代園藝 4:94,96.
曾宋君. 2003. 非洲芙蓉. 花木盆景(花卉園藝) 8:05.
華夏. 2015. 修剪強度对核桃萌芽率和成枝率的影响. 現代園藝 11.
楊青珍、騰紅梅. 2009. 三葉木通硬枝扦插試驗. 北方園藝 235-237.
萬雪芹、葉燕萍、梅利民、刑永秀. 2009. GA3和BR對金銀花花期及綠原酸含量的影響. 西南農業學報 22:156-158.
葉德銘、江秀紅. 2003. 溫度對繡球花花芽形成之影響. 中國園藝 49:211-220.
賈志遠、葛曉敏、唐羅忠. 2015. 木本植物扦插繁殖及其影響因素. 世界林業研究 2:36-41.
臧云鵬、李明傑、卞建國. 2018. 花卉扦插繁殖技術. 現代農業科技 24:151,155.
趙健、仇碩、李秀娟、張翠萍. 2009. 不同激素對錦綉杜鵑的催花作用. 廣西植物 29:92-95.
劉付東標. 1996. 三種修剪強度對月季切花產量的影響. 廣東園林 30-32.
劉建海、梁平、李亞絨. 2009. 月季整形修剪及應用. 農技服務 26:142-143.
劉傑. 2017. 木本花卉花期調控技術. 現代園藝11:81.
賴允慧. 2004. 扶桑花扦插繁殖技術之研究. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北.
魏高軍. 2012. 修剪強度對野生杜鵑開花的影響. 江蘇林業科技 39:32-34.
龐鈺潔、陶寧穎、竺嘯恆、陳心源、王莉、張望舒、賈惠娟. 2018. 根域限制栽培對桃花芽分化進程中碳氮比及ABA含量的影響. 果樹學報 35:1363-1373.
蘇德銓、李哖. 1984. 玫瑰之增產與產期調節. 中國園藝 30:149-164.
Achard, P., A. Herr, D.C. Baulcombe, and N.P. Harberd. 2004. Modulation of floral development by a gibberellin-regulated microRNA. Development 131:3357-3365.
Adelman, J.D., B.E. Ewers, and D.S. Mackay. 2008. Use of temporal patterns in vapor pressure deficit to explain spatial autocorrelation dynamics in tree transpiration. Tree Physiol. 28:647-658.
Almeida, J.A.S. and M.F.D.A. Pereira. 1996. The control of flower initiation by gibberellin in Helianthus annuus L. (sunflower), a non-photoperiodic plant. Plant Growth Regulat. 19:109-115.
Ara, N., M.K. Bashar, S. Begum, and S.S. Kakon. 2007. Effect of spacing and stem pruning on the growth and yield of tomato. Intl. J. Sustainable Crop Production 455:422-430.
Armitage, A.M. 1994. Ornamental bedding plants. CAB International, Wallingford, Oxon, UK.
Arulrajah, T. and D.P. Ormrod. 1973. Response of okra (Hibiscus esculentus L.) to photoperiod and temperature. Ann. Bot. 37:331-340.
Asl, M.B., S. Shakueefar, and V. Valipour. 2012. Effects of indole-3-butyric acid on the rooting ability of semi-hardwood Bougainvillea sp. cuttings. Modern Appl. Sci. 6:121-123.
Ausín, I., C. Alonso-Blanco, and J.M. Martínez-Zapater. 2005. Environmental regulation of flowering. Intl. J. Dev. Biol. 49:689-705.
Bailey, D.A. and P.A. Hammer. 1989. Stimulation of “hydrangea distortion” through environmental mannipulations. J. Amer. Soc. Hort. Sci. 114:411-416.
Beeson, R.C. 1991. Scheduling woody plants for production and harvest. HortTechnology 1:30-35.
Ben-Jaacov, J., A. Ackerman, and E. Tal. 1989. Development of new woody flowering pot plants: A comprehensive approach. Acta Hort. 51-58.
Bernier, G., J.M. Kinet, and R.M. Sachs. 1981. The physiology of flowering. CRC press, Inc. Boca Raton, Florida, U.S.A.
Bhattacharya, A., S. Kourmpetli, and M.R. Davey. 2010. Practical applications of manipulating plant architecture by regulating gibberellin metabolism. J. Plant Growth Regulat. 29:249-256.
Bock, A., T.H. Sparks, N. Estrella, N. Jee, A. Casebow, C. Schunk, M. Leuchner, and A. Menzel. 2014. Changes in first flowering dates and flowering duration of 232 plant species on the island of Guernsey. Global Change Biol. 20:3508-3519.
Bodson, M. and E. Thomas. 1995. The role of gibberellins in the control of inflorescence bud initiation of Rhododendron simsii. Acta Hort. 378:113-121.
Borchert, R. 1983. Phenology and control of flowering in tropical trees. Biotropica 15:81-89.
Bradley, M.V. and J.C. Crane. 1960. Gibberellin-induced inhibition of bud development in some species of Prunus. Science 131:825-826.
Bredmose, N., K. Kristiansen, and B. Nielsen. 2004. Propagation temperature, PPFD, auxin treatment, cutting size and cutting position affect root formation, axillary bud growth and shoot development in miniature rose (Rosa hybrida L.) plants and alter homogeneity. J. Hort. Sci. Biotechnol. 79:458-465.
Burgess, D., O.Q. Hendrickson, and L. Roy. 1990. The importance of initial cutting size for improving the growth performance of Salix alba L. Scandinavian J. Forest Res. 5:215-224.
Capovilla, G., M. Schmid, and D. Posé. 2015. Control of flowering by ambient temperature. J. Expt. Bot. 66:59-69.
Carmi, A. 1986. Effects of root zone volume and plant density on the vegetative and reproductive development of cotton. Field Crops Res. 13:25-32.
Carmi, A. and B. Heuer. 1981. The role of roots in control of bean shoot growth. Ann. Bot. 48:519-527.
Chapman, B.M. and R.E. Lyons. 1988. Controlling height of Abutilon hybrids with ancymidol, mechanical pinching and photoperiod. Scientia Hort. 36:125-129.
Cockshull, K.E. and A.P. Hughes. 1971. The effects of light intensity at different stages in flower initiation and development of Chrysanthemum morifolium. Ann. Bot. 35:915-926.
Cosmulescu, S., A. Baciu, M. Botu, and G. Achim. 2010. Environmental factors’ influence on walnut flowering. Acta Hort. 861:83-88.
Costa, G., G. Vizzotto, and A. Maroe. 1992. Root restriction and growth manipulation in peach. Acta Hort. 322:221-230.
Dubik, S.P., D.T. Krizek, and D.P. Stimart. 1990. Influence of root zone restriction on mineral element concentration water potential chlorophyll concentration and partitioning of assimilate in spreading euonymus (E. Kiautschovica Loes. ‘Sieboldiana’). J. Plant Nutr. 13:677-699.
Duguma, B., B.T. Kang, and D.U.U. Okali. 1988. Effect of pruning intensities of three woody leguminous species grown in alley cropping with maize and cowpea on an alfisol. Agroforest Systems 6:19-35.
Elisea, R.N. and T.L. Davenport. 1995. Effect of leaf age, duration of cool temperature treatment, and photoperiod on bud dormancy release and floral initiation in mango. Scientia Hort. 62:63-73.
Erwin, J. 2007. Factors affecting flowering in ornamental plants, p. 7-48. In: N. O. Anderson (ed.). Flower breeding and genetics: Issues, challenges and opportunities for the 21st century. Springer, Dordrecht, The Netherlands.
Farooqi, A.H.A., Y.N. Shukla, S. Sharma, and R.P. Bansal. 1994. Relationship between gibberellin and cytokinin activity and flowering in Rosa damascena Mill. Plant Growth Regulat. 14:109-113.
Fathi, M., H. Zarei, and F. Varsteh. 2017. The effect of natural and chemical compounds on rooting traits of bougainvillea (Bougainvillea spectabilis L.). J. Chem. Health Risks. 7:181-192.
Fisher, J.B. 1980. Gibberellin-induced flowering in Cordyline (Agavaceae). J. Expt. Bot. 31:731-735.
Follin, J.C. 1972. Four years of experimentation on kenaf and roselle in the Ivory Coast. Cotton Fibre Trop. 27:265-268.
Ganelevin, R. and N. Zieslin. 2002. Contribution of sepals and gibberellin treatments to growth and development of rose (Rosa hybrida) flowers. Plant Growth Regulat. 37:255-261.
Gilman, E. F. and D.G. Watson. 1993. Dombeya wallichii Pinkball. University of Florida. IFAS Fact Sheet 1-3.
Hailemichael, A. 2001. Propagation of Dombeya torrida (J.F.Gmel.) P. Bamps through rooting of leafy stem cuttings. MS thesis. Swedish Univ. Agr. Sci. Ultuna, Sweden.
Haldimann, P. and U. Feller. 2004. Inhibition of photosynthesis by high temperature in oak (Quercus pubescens L.) leaves grown under natural conditions closely correlates with a reversible heat-dependent reduction of the activation state of ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant Cell Environ. 27:1169-1183.
Hallé, F., R.A.A. Oldeman, and P.B. Tomlinson. 1978. Tropical trees and forests. An architectural analysis. Springer Verlag, Berlin.
Hamilton, D.F. and J.T. Midcap. 1985. Propagation of woody ornamentals by cuttings. IFAS, Univ. Florida. p. 1-6.
Hansen, J. 1986. Influence of cutting position and stem length on rooting of leaf-bud cuttings of Schefflera arboricola. Scientia Hort. 28:177-186.
Hansen, J. 1989. Influence of cutting position and temperature during rooting on adventitious root formation and axillary bud break of Stephanotis floribunda. Scientia Hort. 40:345-354.
Hartmann, H.T., D.E. Kester, F.T. Davies, and R.L. Geneve. 2011. Plant propagation principles and practices. 8th ed. Prentice Hall, Englewood Cliffs, USA. p.345-355.
Healy, W. and S. Klick. 1993. Potting method improves flowering of Alstroemeria. Acta Hort. 337:19-24.
Higuchi, H., T. Sakuratani, and N. Utsunomiya. 1999. Photosynthesis, leaf morphology, and shoot growth as affected by temperatures in cherimoya (Annona cherimola Mill.) trees. Scientia Hort. 80:91-104.
Hsu, Y.M., M.J. Tseng, and C.H. Lin. 1996. Container volume affects growth and development of wax-apple. HortScience 31:1139-1142.
Hurley, M.B. and J.S. Rowarth. 1999. Resistance to root growth and changes in the concentrations of ABA within the root and xylem sap during root-restriction stress. J. Expt. Bot. 335:799-804.
Iersel, M.V. 1997. Root restriction effects on growth and development of salvia (Salvia splendens). HortScience 32:1186-1190.
Ismail, M.R. and K.M. Noor. 1996. Growth, water relations and physiological processes of starfruit (Averrhoa carambola L.) plants under root growth restriction. Scientia Hort. 66:51-58.
Jackson, M.B. 1986. New root formation in plants and cuttings, p.197-198. In: Jackson, M.B.(ed.). Developments in plants and soil sciences, Vol 20. Martinus Nijhoff Publishers, Dordrecht, The Netherlands.
King, R.W., I.A. Dawson, and S.S. Speer. 1992. Control of growth and flowering in two western Australian species of Pimelea. Austral. J. Bot. 40:377-388.
Konishi, K. 1982. Plant growth and development. Yokendo, Tokyo, Japan.
Lang, A. 1952. Physiology of flowering. Ann. Rev. Plant Physiol. 3:265-306.
Lang, A. 1956. Gibberellin and flower formation. Naturwissenschaften 43:544.
Larson, R.A. 1980. Introduction to floriculture. p. 589-596. Academic press, New York, U.S.A.
Latimer, J.G. 1991. Container size and shape influence growth and landscape performance of marigold seedlings. HortScience 26:124-126.
Litlere, B. and E. Strømme. 1975. The influence of temperature, daylength and light intensity on flowering in Hydrangea macrophylla. (Thunb.) Ser. Acta Hort. 51:285-298.
Lopez, R.G. and E.S. Runkle. 2004. The effect of temperature on leaf and flower development and flower longevity of Zygopetalum Redvale ‘Fire Kiss’ orchid. Hortscience 39:1630-1634.
Mansour, B.M.M. 1975. Effects of temperature and daylength on growth and flowering of roselle, Hibiscus sabdariffa L. Scientia Hort. 3:129-135.
Martini, C.A., D.L. Ingram, and T.A. Nell. 1991. Growth and photosynthesis of Magnolia grandiflora ‘St. Mary’ in response to constant and increased container volume. J. Amer. Soc. Hort. Sci. 116:439-445.
Meijón, M., M.J. Cañal, H. Fernández, A. Rodríguez, B. Fernández, R. Rodríguez, and I. Feito. 2011. Hormonal profile in vegetative and floral buds of azalea: Levels of polyamines, gibberellins, and cytokinins. J. Plant Growth Regulat. 30:74-82.
Meilan, R. 1997. Floral induction in woody angiosperms. New Forests 14:179-202.
Metzger, J.D. 1987. Hormones and reproductive development. In: P.J. Davies (ed.). Plant hormones and their role in plant growth and development. p. 431-462. Martinus Nijhoff Publishers, Dordrecht, The Netherlands.
Moe, R. and R. Heins. 1990. Control of plant morphogenesis and flowering by light quality and temperature. Acta Hort. 272:81-89.
Muniandi, S.K.M., M.A. Hossain, M.P. Abdullah, and N.A.A. Shukor. 2018. Gibberellic acid (GA3) affects growth and development of some selected kenaf (Hibiscus cannabinus L.) cultivars. Ind. Crops Prod. 118:180-187.
Mutasa-Göttgens, E. and P. Hedden. 2009. Gibberellin as a factor in floral regulatory networks. J. Expt. Bot. 60:1979-1989.
Mutsaers, H.J.W. 1983. Leaf growth in cotton (Gossypium hirsutum L.) 2. The influence of temperature, light, water stress and root restriction on the growth and initiation of leaves. Ann. Bot. 51:521-529.
Nordli, E.F., M. Strøm, and S. Torre. 2011. Temperature and photoperiod control of morphology and flowering time in two greenhouse grown Hydrangea macrophylla cultivars. Scientia Hort. 127:372-377.
North, J.J., C.P. Laubscher and P. A. Ndakidemi. 2010. Effect of the growth retardant Cycocel® in controlling the growth of Dombeya burgessiae. African J. Biotechnol. 9:4529-4533.
Ogaya, R. and J. Peñuelas. 2003. Comparative seasonal gas exchange and chlorophyll fluorescence of two dominant woody species in a Holm Oak Forest. Flora 198:132-141.
Okoro, O.O. and J. Grace. 1976. The physiology of rooting Populus cuttings. Physiol. Plant. 36:133-138.
Oosthuyse, S.A. and G. Jacobs. 1997. Flowering synchronization of ‘Sensation’ mango trees by winter pruning. Acta Hort. 455:422-430.
Otiende, M.A., J.O. Nyabundi, K. Ngamau, and P. Opala. 2017. Effects of cutting position of rose rootstock cultivars on rooting and its relationship with mineral nutrient content and endogenous carbohydrates. Scientia Hort. 225:204-212.
Ouma, G. 2007. Effect of different container sizes and irrigation frequency on the morphological and physiological characteristics of mango (Mangifera indica) rootstock seedlings. Intl. J. Bot. 3:260-268.
OuYang, F., J. Wang, and Y. Li. 2015. Effects of cutting size and exogenous hormone treatment on rooting of shoot cuttings in Norway spruce [Picea abies (L.) Karst.]. New Forests 46:91-105.
Palanisamy, K. and P. Kumar. 1997. Effect of position, size of cuttings and environmental factors on adventitious rooting in neem (Azadirachtu indica A. Juss). Forest Ecol. Mgt. 98:277-280.
Partey, S.T. 2011. Effect of pruning frequency and pruning height on the biomass production of Tithonia diversifolia (Hemsl) A. Gray. Agroforest Systems 83:181-187.
Pasian, C.C. and J.H. Lieth. 1994. Prediction of flowering rose shoot development based on air temperature and thermal units. Scientia Hort. 59:131-145.
Peterson, T.A. and D.T. Krizek. 1992. A flow‐through hydroponic system for the study of root restriction. J. Plant Nutr. 15:893-911.
Phinney, B.O., C.A. West, M. Ritzel, and P.M. Neely. 1957. Evidence for “ gibberellin-like” substances from flowering plants. Proc. Natl. Acad. Sci. 43:398-404.
Pimentel, R.G. and G.C. Rangel. 2017. Flower biology of two species of Dombeya (Malvaceae) in the botanical garden of UFRRJ. Revista Trópica – Ciências Agrárias e Biológicas 09:77-85.
Poorter, H., J. Bühler, D.V. Dusschoten, J. Climent, and J.A. Postma. 2012. Pot size matters: A meta-analysis of the effects of rooting volume on plant growth. Functional Plant Biol. 39:839-850.
Purseglove, J.W. 1968. Tropical crops: Dicotyledons, volume 2, John Wiley & Sons, NY, U.S.A.
Rahman, M.O., M.A. Hassan, M.M.K. Mia, and A.M. Huq. 2012. A synoptical account of the sterculiacear in Bangladesh. Bangladesh J. Plant Taxon. 19:63-78.
Rainey, K.M. and P.D. Griffiths. 2005. Differential response of common bean genotypes to high temperature. J. Amer. Soc. Hort. Sci. 130:18-23.
Read, P.E. and C.M. Bavougian. 2014. Woody ornamentals, p. 619-644. In: Dixon, G.R. and D.E. Aldous (eds.). Horticulture: Plants for people and places, volume 2: Environmental Horticulture. 1st ed. Springer, Netherlands.
Richards, D. 1986. Tree growth and productivity-the role of roots. Acta Hort. 175:27-36.
Richards, D. and R.N. Rowe. 1977. Effects of root restriction, root pruning and 6-benzylaminopurine on the growth of peach seedlings. Ann. Bot. 41:729-740.
Roberts, E.H. and R.J. Summerfield. 1987. Measurement and prediction of flowering in annual crops, p.17-50. In: J.G. Atherton (ed.). Manipulation of flowering. Butterworths, London, UK.
Rossi, P. 1999. Length of cuttings in establishment and production of short-rotation plantations of Salix ‘Aquatica’. New Forests 18:161-177.
Sawano, M. and M. Tsukamoto. 1963. Stimulation of flowering in roselle hemp by short-day treatment. Sci. Rpt. Hyogo Univ. Agr. 6:55-58.
Schaffer, B., A.W. Whiley, and C. Searle. 1999. Atmospheric CO2 enrichment, root restriction, photosynthesis, and dry-matter partitioning in subtropical and tropical fruit crops. HortScience 34:1033-1037.
Sharp, R.G., M.A. Else, W.J. Davies, and R.W. Cameron. 2010. Gibberellin-mediated suppression of floral initiation in the long-day plant Rhododendron cv. Hatsugiri. Scientia Hort. 124:231-238.
Shu, Z.H. and T.F. Sheen. 1987. Floral induction in axillary buds of mango (Mangifera indica L.) as affected by temperature. Scientia Hort. 31:81-87.
Skema, C.K. 2010. The systematics of Dombeya Cav. and its near relatives (Dombeyaceae). PhD Diss. Cornell Univ., Ithaca, NY. U.S.A.
Skema, C.K. 2012. Toward a new circumscription of Dombeya (Malvales: Dombeyaceae): A molecular phylogenetic and morphological study of Dombeya of Madagascar and a new segregate genus, Andringitra. Taxon 61:612-628.
Soderholm, P.K. 1967. Evaluation of Dombeya introduction for new ornamentals for Florida. Florida Agr. Expt. Soc. J. Ser. 2875:477-480.
Stevenson, M.R. and K.J. Fisher. 1974. Effect of container size and peat source on growth and yield of the tomato. J. Experimental Agr. 3:157-160.
Storey, W.B. and F.I.O. Nwoke. 1985. Hibiscus, p. 135-139. In: A.H. Halevy (ed.). CRC handbook of flowering (volume Ⅲ). CRC press, Inc. Boca Raton, Florida, U.S.A.
Stuart, N.W. and H.M. Cathey. 1961. Applied aspects of the gibberellins. Annu. Rev. Plant Physiol. 12:369-394.
Sukhvibul, N., A.W. Whiley, M.K. Smith, S.E. Hetherington, and V. Vithanage. 1999. Effect of temperature on inflorescence and floral development in four mango (Mangifera indica L.) cultivars. Scientia Hort. 82:67-84.
Szwarcbaum, I. 1982. Influence of leaf morphology and optical properties on leaf temperature and survival in three mediterranean shrubs. Plant Sci. Lett. 26:47-56.
Tchoundjeu, Z. and R.R.B. Leakey. 1996. Vegetative propagation of African mahogany : Effects of auxin, node position, leaf area and cutting length. New Forests 11:125-136.
Tipu, S.U., K.L. Hossain, M.O. Islam, and M.A. Hossain. 2006. Effect of pruning height on shoot biomass yield of Leucaena leucocephala. Asian J. Plant Sci. 5:1043-1046.
Tschaplinski, T.J., and T.J. Blake. 1985. Effects of root restriction on growth correlations, water relations and senescence of alder seedlings. Physiol. Plant. 64:167-176.
Wade, G.L. and R.R. Westerfield. 2009. Basic principles of pruning woody plants. The University of Georgia, Coop. Ext. 1-6.
Wareing, P.F. 1956. Photoperiodism in woody plants. Annu. Rev. Plant Physiol. 7:191-214.
Warner, R.M. and J.E. Erwin. 2001. Variation in floral induction requirements of Hibiscus sp. J. Amer. Soc. Hort. Sci. 126:262-268.
Webster, A.D. and C.J. Atkinson. 1997. Controlling the shoot growth and cropping of sweet cherry trees using root pruning or root restriction techniques. Acta Hort. 451:643-651.
Westwood, M.N. 1978. Temperate-zone pomology. p. 169-185, 369-376. W.H. Freeman and Co., San Francisco, Calif. U.S.A.
Whiley, A.W., T.S. Rasmussen, J.B. Saranah, and B.N. Wolstenholme. 1989. Effect of temperature on growth, dry matter production and starch accumulation in ten mango (Mangifera indica L.) cultivars. J. Hort. Sci. 64:753-765.
Wilkie, J.D., M. Sedgley, and T. Olesen. 2008. Regulation of floral initiation in horticultural trees. J. Expt. Bot. 59:3215-3228.
Xie, Z.S., B. Li, C.F. Forney, W.P. Xu, and S.P. Wang. 2009. Changes in sugar content and relative enzyme activity in grape berry in response to root restriction. Scientia Hort. 123:39-45.
Xu, Q. and B. Huang. 2011. Morphological and physiological characteristics associated with heat tolerance in creeping bentgrass. Crop Sci. 41:127-133.
Yamamoto, S. and E. Nawata. 2009. Effect of root zone on flower bud formation and flowering in species of genus Capsicum. Trop. Agr. Dev. 53:55-58.
Yang, T. L. Zhu, S. Wang, W. Gu, D. Huang, W. Xu, A. Jiang, and S. Li. 2007. Nitrate uptake kinetics of grapevine under root restriction. Scientia Hort. 111:358-364.
Yeh, D.M. and H.H. Chiang. 2001. Growth and flower initiation in hydrangea as affected by root restriction and defoliation. Scientia Hort. 91:123-132.
Yeh, D.M. and J.G. Atherton. 1997. Manipulation of flowering in cineraria. Ⅰ. Effects of photoperiod. J. Hort. Sci. 72:43-54.
Yeh, D.M., J.G. Atherton, and J. Craigon. 1999. A thermal time model of post-initiation flower development in shade plant, cineraria. Ann. Appl. Biol. 134:335-340.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔