(3.238.186.43) 您好!臺灣時間:2021/02/28 15:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:顧育彰
研究生(外文):Yu-Chang Ku
論文名稱:Siglec-5和Siglec-14受體對於巨噬細胞極化的影響
論文名稱(外文):The role of Siglec-5 and Siglec-14 in macrophage polarization
指導教授:張永祺張永祺引用關係
指導教授(外文):Yung-Chi Chang
口試委員:董馨蓮林婉婉
口試委員(外文):Shin-Lian DoongWan-Wan Lin
口試日期:2019-07-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:微生物學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:52
中文關鍵詞:Siglecs巨噬細胞極化腫瘤相關巨噬細胞
DOI:10.6342/NTU201902354
相關次數:
  • 被引用被引用:0
  • 點閱點閱:63
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
巨噬細胞是具有高度可塑性的免疫細胞,會因為其遇到的微環境而被極化為M1或M2巨噬細胞,對於維持生理功能的恆定性相當重要。Siglec-5和Siglec-14為主要表現於巨噬細胞上的配對型受體,兩者在配體結合位具有極高的相似性,能在相同配體的刺激下分別經由本身的細胞內ITIM motif (Siglec-5)或是結合具有ITAM motif的DAP12 (Siglec-14)來傳遞相反的訊息。此外,腫瘤細胞可藉由其唾液酸修飾蛋白去鍵結巨噬細胞上的Siglecs受體來調控巨噬細胞極化成腫瘤相關巨噬細胞的能力,因此,本篇論文主要想探討巨噬細胞上的Siglec-5/14配對型受體在巨噬細胞分別被極化為M1、M2或是腫瘤相關巨噬細胞時所扮演的角色。我們會先利用LPS/IFN-γ和IL-4/IL-13來建立巨噬細胞極化的模式,隨後會將巨噬細胞培養在腫瘤細胞培養液中來研究Siglec-5/14是否可以調控腫瘤相關巨噬細胞形成。首先,經由比較發炎性激素的產生,我們知道表現Siglec-5/14與否並不影響THP-1細胞在LPS/IFN-γ刺激下形成M1巨噬細胞的能力。但表現Siglec-14的THP-1細胞在IL-4/IL-13的刺激能夠表現比較多的M2指標,如CCL18、CCL22、IL-1RA、CD36和CD204,以及表現較高量可促使M2巨噬細胞極化的轉錄因子,如PPAR-γ和LXR-α。我們發現,實驗所用到的三種大腸癌細胞(SW480、SW620、HT29)培養液都能夠促進THP-1細胞形成腫瘤相關巨噬細胞,而肺癌細胞(CL1-0、CL1-5)和乳癌細胞(BT549)則無法極化THP-1成為腫瘤相關巨噬細胞。在大腸癌細胞培養液的處理下,與腫瘤相關巨噬細胞有關的指標會因THP-1細胞表現Siglec-5或是Siglec-14而有所不同。Siglec-14/THP-1細胞能夠產生出較多的CCL18、CCL22、IL-1RA、CD36、CD204和IDO,而Siglec-5/THP-1細胞會產生出較多的IL-10和MMP-9。經由分析多種轉錄因子的表現或是活性,我們認為Siglec-14可能可以在大腸癌細胞培養液的處理下經由促進STAT3的活化和LXR-α的表現來增加TAM指標的表達。總結來說,我們發現在巨噬細胞上的Siglec-5和Siglec-14受體的確能在刺激下影響巨噬細胞的極化,但目前仍不明瞭兩者會透過什麼樣的機制來進行調控。
Macrophages are highly plastic immune cells which can be further polarized into M1 or M2 macrophages in response to their surrounding microenvironment, and they play a critical role in maintaining the physiological homeostasis of the body. Siglec-5 and Siglec-14 are paired receptors primarily expresssing on macrophages and have the same sequence of amino acid in their first two N-terminal domains which are critical for ligand binding. However, Siglec-5 delivers inhibitory signals through its intracellular ITIM motif while Siglec-14 transduces activating signaling through the coupled ITAM-containing adaptor, DAP12, upon ligand engagement. In addition, sialylated glycoproteins derived from tumor cells have been shown to target various Siglec receptors to modulate macrophage polarizing into tumor-associated macrophages (TAMs) which can generate an immunosuppressive and pro-tumoral environment to assist cancer progression. In this study, we aim to investigate the role of Siglec-5 and Siglec-14 in macrophage polarization in response to different environmental cues. We first tried to establish a THP-1 macrophage polarization system driven by LPS/IFN-γ and IL-4/IL-13 stimulation, and a successful polarizing stimulation was proved by examing the expression of classical markers often used to classify the M1 and M2 population. Next, expression of M2/TAM markers of the THP-1 macrophages cultured with the tumor conditional medium were studied to explore the impact of the paired Siglec receptors, Siglec-5 and Siglec-14, in TAM programming. Comparable expression of M1 macrophage markers were observed in the Siglec-5/THP-1 and Siglec-14/THP-1 cells upon LPS/IFN-γ treatment, suggesting that exogenous expression of Siglec-5 and Siglec-14 on THP-1 cells did not affect M1 macrophage polarization. Notably, increased expression of M2-specific markers, CCL18, CCL22, IL-1RA, CD36 and CD204, as well as transcriptional factor involved in M2 polarization, PPAR-γ and LXR-α, were detected in Siglec-14-expressing THP-1 cells upon IL-4/IL-13 treatment. Moreover, we found that conditional mediums (CMs) derived from all the tested colorectal cancer cells (SW480, SW620 and HT29) successfully induce THP-1 macrophage differentiating into TAMs, while CM derived from lung cnacer cells (CL1-0 and CL1-5) and breast cancer cells (BT549) failed to achieve the same effects in our experimental condition. Importantly, Siglec-5 and Siglec-14 differentially regulated the TAM-related markers expression of the THP-1 macrophages stimulated with colon cancer CMs. Siglec-14/THP-1 cells expressed more CCL18, CCL22, IL-1RA, CD36, CD204 and IDO, while Siglec-5/THP-1 cells generated more IL-10 and MMP-9. Siglec-14 may induce the activation of STAT3 and the transcription of LXR-α to facilitate TAM formation upon colon cancer CM treatment. In conclusion, our results demonstrate that Siglec-5 and Siglec-14 can modulate the polarization of macrophages in response to IL-4/IL-13 and colon cancer CM, but further studies are required to elucidate the involved mechanisms.
口試委員會審定書 i
致謝 ii
中文摘要 iii
Abstract v
目錄 vii
第一章 研究背景與動機 1
一、巨噬細胞 (macrophages) 1
1. 巨噬細胞的功能 1
2. 巨噬細胞的極化 (macrophage polarization) 1
3. 巨噬細胞極化的分子機制 3
4. 巨噬細胞的極化與代謝作用 3
5. 腫瘤相關巨噬細胞 (tumor-associated macrophages) 4
二、Sialic acid-binding immunoglobulin-like lectins (Siglecs) 受體 5
1. Siglecs受體 5
2. Siglec-5和Siglec-14為配對型受體 (paired receptors) 7
3. Siglecs受體與巨噬細胞極化之間的關係 8
三、研究動機 9

第二章 研究材料與實驗方法 11
一、研究材料 11
1. 細胞株 (cell lines) 11
2. 重組蛋白 (recombinant proteins) 11
3. 酵素免疫分析法試劑組 (ELISA kits) 12
4. 抗體 (antibodies) 12
5. 引子 (primers) 13
二、實驗方法 14
1. 巨噬細胞的極化 14
2. 利用腫瘤細胞培養液處理巨噬細胞 16

第三章 研究結果 17
一、Siglec-5/14對於巨噬細胞極化的影響 17
1. Siglec-14/THP-1細胞在IL-4/IL-13刺激下表現較多M2巨噬細胞相關指標 17
2. IL-10和TGF-β1無法極化THP-1細胞形成M2巨噬細胞 18
3. IL-4/IL-13並不影響THP-1細胞唾液酸化之程度 18
4. Siglec-14/THP-1細胞在IL-4/IL-13刺激下表現較多的PPAR-γ和LXR-α 19
二、Siglec-5/14和腫瘤相關巨噬細胞之間的關係 20
1. Siglec-14受體可以促進巨噬細胞在大腸癌細胞培養液處理下TAM的形成 20
2. 多種癌細胞培養液對THP-1巨噬細胞形成TAM之探討 22
3. 大腸癌細胞培養液處理不改變TAM表面的唾液酸化程度 23
4. STAT3和LXR-α可能參與在Siglec-14下游來促進大腸癌細胞培養液處理所驅動的TAM極化 23

第四章 討論與未來研究方向 25
參考文獻 29
結果圖表 35
1.Wynn, T.A., A. Chawla, and J.W. Pollard, Macrophage biology in development, homeostasis and disease. Nature, 2013. 496(7446): p. 445-55.
2.Epelman, S., K.J. Lavine, and G.J. Randolph, Origin and functions of tissue macrophages. Immunity, 2014. 41(1): p. 21-35.
3.Nourshargh, S. and R. Alon, Leukocyte migration into inflamed tissues. Immunity, 2014. 41(5): p. 694-707.
4.Sica, A. and A. Mantovani, Macrophage plasticity and polarization: in vivo veritas. J Clin Invest, 2012. 122(3): p. 787-95.
5.Murray, P.J., Macrophage Polarization. Annu Rev Physiol, 2017. 79: p. 541-566.
6.Sica, A., M. Erreni, P. Allavena, and C. Porta, Macrophage polarization in pathology. Cell Mol Life Sci, 2015. 72(21): p. 4111-26.
7.Martinez, F.O. and S. Gordon, The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep, 2014. 6: p. 13.
8.Braga, T.T., J.S. Agudelo, and N.O. Camara, Macrophages During the Fibrotic Process: M2 as Friend and Foe. Front Immunol, 2015. 6: p. 602.
9.Gordon, S. and F.O. Martinez, Alternative activation of macrophages: mechanism and functions. Immunity, 2010. 32(5): p. 593-604.
10.Jetten, N., S. Verbruggen, M.J. Gijbels, M.J. Post, et al., Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo. Angiogenesis, 2014. 17(1): p. 109-18.
11.Cassetta, L., E. Cassol, and G. Poli, Macrophage polarization in health and disease. ScientificWorldJournal, 2011. 11: p. 2391-402.
12.Mantovani, A., S. Sozzani, M. Locati, P. Allavena, et al., Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol, 2002. 23(11): p. 549-55.
13.Sica, A. and V. Bronte, Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest, 2007. 117(5): p. 1155-66.
14.Krausgruber, T., K. Blazek, T. Smallie, S. Alzabin, et al., IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nat Immunol, 2011. 12(3): p. 231-8.
15.Junttila, I.S., K. Mizukami, H. Dickensheets, M. Meier-Schellersheim, et al., Tuning sensitivity to IL-4 and IL-13: differential expression of IL-4Ralpha, IL-13Ralpha1, and gammac regulates relative cytokine sensitivity. J Exp Med, 2008. 205(11): p. 2595-608.
16.Pauleau, A.L., R. Rutschman, R. Lang, A. Pernis, et al., Enhancer-mediated control of macrophage-specific arginase I expression. J Immunol, 2004. 172(12): p. 7565-73.
17.Satoh, T., O. Takeuchi, A. Vandenbon, K. Yasuda, et al., The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat Immunol, 2010. 11(10): p. 936-44.
18.Odegaard, J.I., R.R. Ricardo-Gonzalez, M.H. Goforth, C.R. Morel, et al., Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature, 2007. 447(7148): p. 1116-20.
19.Odegaard, J.I., R.R. Ricardo-Gonzalez, A. Red Eagle, D. Vats, et al., Alternative M2 activation of Kupffer cells by PPARdelta ameliorates obesity-induced insulin resistance. Cell Metab, 2008. 7(6): p. 496-507.
20.Kang, K., S.M. Reilly, V. Karabacak, M.R. Gangl, et al., Adipocyte-derived Th2 cytokines and myeloid PPARdelta regulate macrophage polarization and insulin sensitivity. Cell Metab, 2008. 7(6): p. 485-95.
21.Szanto, A., B.L. Balint, Z.S. Nagy, E. Barta, et al., STAT6 transcription factor is a facilitator of the nuclear receptor PPARgamma-regulated gene expression in macrophages and dendritic cells. Immunity, 2010. 33(5): p. 699-712.
22.Bouhlel, M.A., B. Derudas, E. Rigamonti, R. Dievart, et al., PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metab, 2007. 6(2): p. 137-43.
23.Liao, X., N. Sharma, F. Kapadia, G. Zhou, et al., Kruppel-like factor 4 regulates macrophage polarization. J Clin Invest, 2011. 121(7): p. 2736-49.
24.Galvan-Pena, S. and L.A. O''Neill, Metabolic reprograming in macrophage polarization. Front Immunol, 2014. 5: p. 420.
25.O''Neill, L.A., A broken krebs cycle in macrophages. Immunity, 2015. 42(3): p. 393-4.
26.Tavakoli, S., K. Downs, J.D. Short, H.N. Nguyen, et al., Characterization of Macrophage Polarization States Using Combined Measurement of 2-Deoxyglucose and Glutamine Accumulation: Implications for Imaging of Atherosclerosis. Arterioscler Thromb Vasc Biol, 2017. 37(10): p. 1840-1848.
27.Jha, A.K., S.C. Huang, A. Sergushichev, V. Lampropoulou, et al., Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity, 2015. 42(3): p. 419-30.
28.De, I., M.D. Steffen, P.A. Clark, C.J. Patros, et al., CSF1 Overexpression Promotes High-Grade Glioma Formation without Impacting the Polarization Status of Glioma-Associated Microglia and Macrophages. Cancer Res, 2016. 76(9): p. 2552-60.
29.Ries, C.H., M.A. Cannarile, S. Hoves, J. Benz, et al., Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell, 2014. 25(6): p. 846-59.
30.Li, Y., Y. Zheng, T. Li, Q. Wang, et al., Chemokines CCL2, 3, 14 stimulate macrophage bone marrow homing, proliferation, and polarization in multiple myeloma. Oncotarget, 2015. 6(27): p. 24218-29.
31.Ma, R., T. Ji, D. Chen, W. Dong, et al., Tumor cell-derived microparticles polarize M2 tumor-associated macrophages for tumor progression. Oncoimmunology, 2016. 5(4): p. e1118599.
32.Yang, L. and Y. Zhang, Tumor-associated macrophages: from basic research to clinical application. J Hematol Oncol, 2017. 10(1): p. 58.
33.Noman, M.Z., G. Desantis, B. Janji, M. Hasmim, et al., PD-L1 is a novel direct target of HIF-1alpha, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med, 2014. 211(5): p. 781-90.
34.Munn, D.H. and A.L. Mellor, IDO in the Tumor Microenvironment: Inflammation, Counter-Regulation, and Tolerance. Trends Immunol, 2016. 37(3): p. 193-207.
35.Mazzieri, R., F. Pucci, D. Moi, E. Zonari, et al., Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells. Cancer Cell, 2011. 19(4): p. 512-26.
36.Ojalvo, L.S., W. King, D. Cox, and J.W. Pollard, High-density gene expression analysis of tumor-associated macrophages from mouse mammary tumors. Am J Pathol, 2009. 174(3): p. 1048-64.
37.Chen, J., Y. Yao, C. Gong, F. Yu, et al., CCL18 from tumor-associated macrophages promotes breast cancer metastasis via PITPNM3. Cancer Cell, 2011. 19(4): p. 541-55.
38.Su, S., Q. Liu, J. Chen, J. Chen, et al., A positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis. Cancer Cell, 2014. 25(5): p. 605-20.
39.Chen, G.Y., N.K. Brown, W. Wu, Z. Khedri, et al., Broad and direct interaction between TLR and Siglec families of pattern recognition receptors and its regulation by Neu1. Elife, 2014. 3: p. e04066.
40.Ando, M., W. Tu, K. Nishijima, and S. Iijima, Siglec-9 enhances IL-10 production in macrophages via tyrosine-based motifs. Biochem Biophys Res Commun, 2008. 369(3): p. 878-83.
41.Carlin, A.F., S. Uchiyama, Y.C. Chang, A.L. Lewis, et al., Molecular mimicry of host sialylated glycans allows a bacterial pathogen to engage neutrophil Siglec-9 and dampen the innate immune response. Blood, 2009. 113(14): p. 3333-6.
42.Chang, Y.C., J. Olson, F.C. Beasley, C. Tung, et al., Group B Streptococcus engages an inhibitory Siglec through sialic acid mimicry to blunt innate immune and inflammatory responses in vivo. PLoS Pathog, 2014. 10(1): p. e1003846.
43.Crocker, P.R., J.C. Paulson, and A. Varki, Siglecs and their roles in the immune system. Nat Rev Immunol, 2007. 7(4): p. 255-66.
44.Macauley, M.S., P.R. Crocker, and J.C. Paulson, Siglec-mediated regulation of immune cell function in disease. Nat Rev Immunol, 2014. 14(10): p. 653-66.
45.Yamada, E. and D.W. McVicar, Paired receptor systems of the innate immune system. Curr Protoc Immunol, 2008. Chapter 1: p. Appendix 1X.
46.Angata, T., T. Hayakawa, M. Yamanaka, A. Varki, et al., Discovery of Siglec-14, a novel sialic acid receptor undergoing concerted evolution with Siglec-5 in primates. FASEB J, 2006. 20(12): p. 1964-73.
47.Yamanaka, M., Y. Kato, T. Angata, and H. Narimatsu, Deletion polymorphism of SIGLEC14 and its functional implications. Glycobiology, 2009. 19(8): p. 841-6.
48.Huang, P.J., P.Y. Low, I. Wang, S.D. Hsu, et al., Soluble Siglec-14 glycan-recognition protein is generated by alternative splicing and suppresses myeloid inflammatory responses. J Biol Chem, 2018. 293(51): p. 19645-19658.
49.Angata, T., T. Ishii, T. Motegi, R. Oka, et al., Loss of Siglec-14 reduces the risk of chronic obstructive pulmonary disease exacerbation. Cell Mol Life Sci, 2013. 70(17): p. 3199-210.
50.Ali, S.R., J.J. Fong, A.F. Carlin, T.D. Busch, et al., Siglec-5 and Siglec-14 are polymorphic paired receptors that modulate neutrophil and amnion signaling responses to group B Streptococcus. J Exp Med, 2014. 211(6): p. 1231-42.
51.Fong, J.J., K. Sreedhara, L. Deng, N.M. Varki, et al., Immunomodulatory activity of extracellular Hsp70 mediated via paired receptors Siglec-5 and Siglec-14. EMBO J, 2015. 34(22): p. 2775-88.
52.Schwarz, F., C.S. Landig, S. Siddiqui, I. Secundino, et al., Paired Siglec receptors generate opposite inflammatory responses to a human-specific pathogen. EMBO J, 2017. 36(6): p. 751-760.
53.Laubli, H., F. Alisson-Silva, M.A. Stanczak, S.S. Siddiqui, et al., Lectin galactoside-binding soluble 3 binding protein (LGALS3BP) is a tumor-associated immunomodulatory ligand for CD33-related Siglecs. J Biol Chem, 2014. 289(48): p. 33481-91.
54.Beatson, R., V. Tajadura-Ortega, D. Achkova, G. Picco, et al., The mucin MUC1 modulates the tumor immunological microenvironment through engagement of the lectin Siglec-9. Nat Immunol, 2016. 17(11): p. 1273-1281.
55.Laubli, H., O.M. Pearce, F. Schwarz, S.S. Siddiqui, et al., Engagement of myelomonocytic Siglecs by tumor-associated ligands modulates the innate immune response to cancer. Proc Natl Acad Sci U S A, 2014. 111(39): p. 14211-6.
56.Takamiya, R., K. Ohtsubo, S. Takamatsu, N. Taniguchi, et al., The interaction between Siglec-15 and tumor-associated sialyl-Tn antigen enhances TGF-beta secretion from monocytes/macrophages through the DAP12-Syk pathway. Glycobiology, 2013. 23(2): p. 178-87.
57.Wang, J., J. Sun, L.N. Liu, D.B. Flies, et al., Siglec-15 as an immune suppressor and potential target for normalization cancer immunotherapy. Nat Med, 2019. 25(4): p. 656-666.
58.Zhang, F., H. Wang, X. Wang, G. Jiang, et al., TGF-beta induces M2-like macrophage polarization via SNAIL-mediated suppression of a pro-inflammatory phenotype. Oncotarget, 2016. 7(32): p. 52294-52306.
59.Varki, A. and P. Gagneux, Multifarious roles of sialic acids in immunity. Ann N Y Acad Sci, 2012. 1253: p. 16-36.
60.Hong, C. and P. Tontonoz, Coordination of inflammation and metabolism by PPAR and LXR nuclear receptors. Curr Opin Genet Dev, 2008. 18(5): p. 461-7.
61.Feijoo, C., M. Paez de la Cadena, F.J. Rodriguez-Berrocal, and V.S. Martinez-Zorzano, Sialic acid levels in serum and tissue from colorectal cancer patients. Cancer Lett, 1997. 112(2): p. 155-60.
62.Lurier, E.B., D. Dalton, W. Dampier, P. Raman, et al., Transcriptome analysis of IL-10-stimulated (M2c) macrophages by next-generation sequencing. Immunobiology, 2017. 222(7): p. 847-856.
63.Wang, D., E. Ozhegov, L. Wang, A. Zhou, et al., Sialylation and desialylation dynamics of monocytes upon differentiation and polarization to macrophages. Glycoconj J, 2016. 33(5): p. 725-33.
64.Buchner, M., S. Fuchs, G. Prinz, D. Pfeifer, et al., Spleen tyrosine kinase is overexpressed and represents a potential therapeutic target in chronic lymphocytic leukemia. Cancer Res, 2009. 69(13): p. 5424-32.
65.Oellerich, T., M.F. Oellerich, M. Engelke, S. Munch, et al., beta2 integrin-derived signals induce cell survival and proliferation of AML blasts by activating a Syk/STAT signaling axis. Blood, 2013. 121(19): p. 3889-99, S1-66.
66.Uckun, F.M., S. Qazi, H. Ma, L. Tuel-Ahlgren, et al., STAT3 is a substrate of SYK tyrosine kinase in B-lineage leukemia/lymphoma cells exposed to oxidative stress. Proc Natl Acad Sci U S A, 2010. 107(7): p. 2902-7.
67.Landskron, G., M. De la Fuente, P. Thuwajit, C. Thuwajit, et al., Chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res, 2014. 2014: p. 149185.
68.Lin, L., Y.S. Chen, Y.D. Yao, J.Q. Chen, et al., CCL18 from tumor-associated macrophages promotes angiogenesis in breast cancer. Oncotarget, 2015. 6(33): p. 34758-73.
69.Curiel, T.J., G. Coukos, L. Zou, X. Alvarez, et al., Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med, 2004. 10(9): p. 942-9.
70.Wiedemann, G.M., M.M. Knott, V.K. Vetter, M. Rapp, et al., Cancer cell-derived IL-1alpha induces CCL22 and the recruitment of regulatory T cells. Oncoimmunology, 2016. 5(9): p. e1175794.
71.Ohtaki, Y., G. Ishii, K. Nagai, S. Ashimine, et al., Stromal macrophage expressing CD204 is associated with tumor aggressiveness in lung adenocarcinoma. J Thorac Oncol, 2010. 5(10): p. 1507-15.
72.Shigeoka, M., N. Urakawa, T. Nakamura, M. Nishio, et al., Tumor associated macrophage expressing CD204 is associated with tumor aggressiveness of esophageal squamous cell carcinoma. Cancer Sci, 2013. 104(8): p. 1112-9.
73.Mellor, A.L. and D.H. Munn, IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol, 2004. 4(10): p. 762-74.
74.Ye, L.Y., W. Chen, X.L. Bai, X.Y. Xu, et al., Hypoxia-Induced Epithelial-to-Mesenchymal Transition in Hepatocellular Carcinoma Induces an Immunosuppressive Tumor Microenvironment to Promote Metastasis. Cancer Res, 2016. 76(4): p. 818-30.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔