|
1.Wynn, T.A., A. Chawla, and J.W. Pollard, Macrophage biology in development, homeostasis and disease. Nature, 2013. 496(7446): p. 445-55. 2.Epelman, S., K.J. Lavine, and G.J. Randolph, Origin and functions of tissue macrophages. Immunity, 2014. 41(1): p. 21-35. 3.Nourshargh, S. and R. Alon, Leukocyte migration into inflamed tissues. Immunity, 2014. 41(5): p. 694-707. 4.Sica, A. and A. Mantovani, Macrophage plasticity and polarization: in vivo veritas. J Clin Invest, 2012. 122(3): p. 787-95. 5.Murray, P.J., Macrophage Polarization. Annu Rev Physiol, 2017. 79: p. 541-566. 6.Sica, A., M. Erreni, P. Allavena, and C. Porta, Macrophage polarization in pathology. Cell Mol Life Sci, 2015. 72(21): p. 4111-26. 7.Martinez, F.O. and S. Gordon, The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep, 2014. 6: p. 13. 8.Braga, T.T., J.S. Agudelo, and N.O. Camara, Macrophages During the Fibrotic Process: M2 as Friend and Foe. Front Immunol, 2015. 6: p. 602. 9.Gordon, S. and F.O. Martinez, Alternative activation of macrophages: mechanism and functions. Immunity, 2010. 32(5): p. 593-604. 10.Jetten, N., S. Verbruggen, M.J. Gijbels, M.J. Post, et al., Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo. Angiogenesis, 2014. 17(1): p. 109-18. 11.Cassetta, L., E. Cassol, and G. Poli, Macrophage polarization in health and disease. ScientificWorldJournal, 2011. 11: p. 2391-402. 12.Mantovani, A., S. Sozzani, M. Locati, P. Allavena, et al., Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol, 2002. 23(11): p. 549-55. 13.Sica, A. and V. Bronte, Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest, 2007. 117(5): p. 1155-66. 14.Krausgruber, T., K. Blazek, T. Smallie, S. Alzabin, et al., IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nat Immunol, 2011. 12(3): p. 231-8. 15.Junttila, I.S., K. Mizukami, H. Dickensheets, M. Meier-Schellersheim, et al., Tuning sensitivity to IL-4 and IL-13: differential expression of IL-4Ralpha, IL-13Ralpha1, and gammac regulates relative cytokine sensitivity. J Exp Med, 2008. 205(11): p. 2595-608. 16.Pauleau, A.L., R. Rutschman, R. Lang, A. Pernis, et al., Enhancer-mediated control of macrophage-specific arginase I expression. J Immunol, 2004. 172(12): p. 7565-73. 17.Satoh, T., O. Takeuchi, A. Vandenbon, K. Yasuda, et al., The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat Immunol, 2010. 11(10): p. 936-44. 18.Odegaard, J.I., R.R. Ricardo-Gonzalez, M.H. Goforth, C.R. Morel, et al., Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature, 2007. 447(7148): p. 1116-20. 19.Odegaard, J.I., R.R. Ricardo-Gonzalez, A. Red Eagle, D. Vats, et al., Alternative M2 activation of Kupffer cells by PPARdelta ameliorates obesity-induced insulin resistance. Cell Metab, 2008. 7(6): p. 496-507. 20.Kang, K., S.M. Reilly, V. Karabacak, M.R. Gangl, et al., Adipocyte-derived Th2 cytokines and myeloid PPARdelta regulate macrophage polarization and insulin sensitivity. Cell Metab, 2008. 7(6): p. 485-95. 21.Szanto, A., B.L. Balint, Z.S. Nagy, E. Barta, et al., STAT6 transcription factor is a facilitator of the nuclear receptor PPARgamma-regulated gene expression in macrophages and dendritic cells. Immunity, 2010. 33(5): p. 699-712. 22.Bouhlel, M.A., B. Derudas, E. Rigamonti, R. Dievart, et al., PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metab, 2007. 6(2): p. 137-43. 23.Liao, X., N. Sharma, F. Kapadia, G. Zhou, et al., Kruppel-like factor 4 regulates macrophage polarization. J Clin Invest, 2011. 121(7): p. 2736-49. 24.Galvan-Pena, S. and L.A. O''Neill, Metabolic reprograming in macrophage polarization. Front Immunol, 2014. 5: p. 420. 25.O''Neill, L.A., A broken krebs cycle in macrophages. Immunity, 2015. 42(3): p. 393-4. 26.Tavakoli, S., K. Downs, J.D. Short, H.N. Nguyen, et al., Characterization of Macrophage Polarization States Using Combined Measurement of 2-Deoxyglucose and Glutamine Accumulation: Implications for Imaging of Atherosclerosis. Arterioscler Thromb Vasc Biol, 2017. 37(10): p. 1840-1848. 27.Jha, A.K., S.C. Huang, A. Sergushichev, V. Lampropoulou, et al., Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity, 2015. 42(3): p. 419-30. 28.De, I., M.D. Steffen, P.A. Clark, C.J. Patros, et al., CSF1 Overexpression Promotes High-Grade Glioma Formation without Impacting the Polarization Status of Glioma-Associated Microglia and Macrophages. Cancer Res, 2016. 76(9): p. 2552-60. 29.Ries, C.H., M.A. Cannarile, S. Hoves, J. Benz, et al., Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell, 2014. 25(6): p. 846-59. 30.Li, Y., Y. Zheng, T. Li, Q. Wang, et al., Chemokines CCL2, 3, 14 stimulate macrophage bone marrow homing, proliferation, and polarization in multiple myeloma. Oncotarget, 2015. 6(27): p. 24218-29. 31.Ma, R., T. Ji, D. Chen, W. Dong, et al., Tumor cell-derived microparticles polarize M2 tumor-associated macrophages for tumor progression. Oncoimmunology, 2016. 5(4): p. e1118599. 32.Yang, L. and Y. Zhang, Tumor-associated macrophages: from basic research to clinical application. J Hematol Oncol, 2017. 10(1): p. 58. 33.Noman, M.Z., G. Desantis, B. Janji, M. Hasmim, et al., PD-L1 is a novel direct target of HIF-1alpha, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med, 2014. 211(5): p. 781-90. 34.Munn, D.H. and A.L. Mellor, IDO in the Tumor Microenvironment: Inflammation, Counter-Regulation, and Tolerance. Trends Immunol, 2016. 37(3): p. 193-207. 35.Mazzieri, R., F. Pucci, D. Moi, E. Zonari, et al., Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells. Cancer Cell, 2011. 19(4): p. 512-26. 36.Ojalvo, L.S., W. King, D. Cox, and J.W. Pollard, High-density gene expression analysis of tumor-associated macrophages from mouse mammary tumors. Am J Pathol, 2009. 174(3): p. 1048-64. 37.Chen, J., Y. Yao, C. Gong, F. Yu, et al., CCL18 from tumor-associated macrophages promotes breast cancer metastasis via PITPNM3. Cancer Cell, 2011. 19(4): p. 541-55. 38.Su, S., Q. Liu, J. Chen, J. Chen, et al., A positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis. Cancer Cell, 2014. 25(5): p. 605-20. 39.Chen, G.Y., N.K. Brown, W. Wu, Z. Khedri, et al., Broad and direct interaction between TLR and Siglec families of pattern recognition receptors and its regulation by Neu1. Elife, 2014. 3: p. e04066. 40.Ando, M., W. Tu, K. Nishijima, and S. Iijima, Siglec-9 enhances IL-10 production in macrophages via tyrosine-based motifs. Biochem Biophys Res Commun, 2008. 369(3): p. 878-83. 41.Carlin, A.F., S. Uchiyama, Y.C. Chang, A.L. Lewis, et al., Molecular mimicry of host sialylated glycans allows a bacterial pathogen to engage neutrophil Siglec-9 and dampen the innate immune response. Blood, 2009. 113(14): p. 3333-6. 42.Chang, Y.C., J. Olson, F.C. Beasley, C. Tung, et al., Group B Streptococcus engages an inhibitory Siglec through sialic acid mimicry to blunt innate immune and inflammatory responses in vivo. PLoS Pathog, 2014. 10(1): p. e1003846. 43.Crocker, P.R., J.C. Paulson, and A. Varki, Siglecs and their roles in the immune system. Nat Rev Immunol, 2007. 7(4): p. 255-66. 44.Macauley, M.S., P.R. Crocker, and J.C. Paulson, Siglec-mediated regulation of immune cell function in disease. Nat Rev Immunol, 2014. 14(10): p. 653-66. 45.Yamada, E. and D.W. McVicar, Paired receptor systems of the innate immune system. Curr Protoc Immunol, 2008. Chapter 1: p. Appendix 1X. 46.Angata, T., T. Hayakawa, M. Yamanaka, A. Varki, et al., Discovery of Siglec-14, a novel sialic acid receptor undergoing concerted evolution with Siglec-5 in primates. FASEB J, 2006. 20(12): p. 1964-73. 47.Yamanaka, M., Y. Kato, T. Angata, and H. Narimatsu, Deletion polymorphism of SIGLEC14 and its functional implications. Glycobiology, 2009. 19(8): p. 841-6. 48.Huang, P.J., P.Y. Low, I. Wang, S.D. Hsu, et al., Soluble Siglec-14 glycan-recognition protein is generated by alternative splicing and suppresses myeloid inflammatory responses. J Biol Chem, 2018. 293(51): p. 19645-19658. 49.Angata, T., T. Ishii, T. Motegi, R. Oka, et al., Loss of Siglec-14 reduces the risk of chronic obstructive pulmonary disease exacerbation. Cell Mol Life Sci, 2013. 70(17): p. 3199-210. 50.Ali, S.R., J.J. Fong, A.F. Carlin, T.D. Busch, et al., Siglec-5 and Siglec-14 are polymorphic paired receptors that modulate neutrophil and amnion signaling responses to group B Streptococcus. J Exp Med, 2014. 211(6): p. 1231-42. 51.Fong, J.J., K. Sreedhara, L. Deng, N.M. Varki, et al., Immunomodulatory activity of extracellular Hsp70 mediated via paired receptors Siglec-5 and Siglec-14. EMBO J, 2015. 34(22): p. 2775-88. 52.Schwarz, F., C.S. Landig, S. Siddiqui, I. Secundino, et al., Paired Siglec receptors generate opposite inflammatory responses to a human-specific pathogen. EMBO J, 2017. 36(6): p. 751-760. 53.Laubli, H., F. Alisson-Silva, M.A. Stanczak, S.S. Siddiqui, et al., Lectin galactoside-binding soluble 3 binding protein (LGALS3BP) is a tumor-associated immunomodulatory ligand for CD33-related Siglecs. J Biol Chem, 2014. 289(48): p. 33481-91. 54.Beatson, R., V. Tajadura-Ortega, D. Achkova, G. Picco, et al., The mucin MUC1 modulates the tumor immunological microenvironment through engagement of the lectin Siglec-9. Nat Immunol, 2016. 17(11): p. 1273-1281. 55.Laubli, H., O.M. Pearce, F. Schwarz, S.S. Siddiqui, et al., Engagement of myelomonocytic Siglecs by tumor-associated ligands modulates the innate immune response to cancer. Proc Natl Acad Sci U S A, 2014. 111(39): p. 14211-6. 56.Takamiya, R., K. Ohtsubo, S. Takamatsu, N. Taniguchi, et al., The interaction between Siglec-15 and tumor-associated sialyl-Tn antigen enhances TGF-beta secretion from monocytes/macrophages through the DAP12-Syk pathway. Glycobiology, 2013. 23(2): p. 178-87. 57.Wang, J., J. Sun, L.N. Liu, D.B. Flies, et al., Siglec-15 as an immune suppressor and potential target for normalization cancer immunotherapy. Nat Med, 2019. 25(4): p. 656-666. 58.Zhang, F., H. Wang, X. Wang, G. Jiang, et al., TGF-beta induces M2-like macrophage polarization via SNAIL-mediated suppression of a pro-inflammatory phenotype. Oncotarget, 2016. 7(32): p. 52294-52306. 59.Varki, A. and P. Gagneux, Multifarious roles of sialic acids in immunity. Ann N Y Acad Sci, 2012. 1253: p. 16-36. 60.Hong, C. and P. Tontonoz, Coordination of inflammation and metabolism by PPAR and LXR nuclear receptors. Curr Opin Genet Dev, 2008. 18(5): p. 461-7. 61.Feijoo, C., M. Paez de la Cadena, F.J. Rodriguez-Berrocal, and V.S. Martinez-Zorzano, Sialic acid levels in serum and tissue from colorectal cancer patients. Cancer Lett, 1997. 112(2): p. 155-60. 62.Lurier, E.B., D. Dalton, W. Dampier, P. Raman, et al., Transcriptome analysis of IL-10-stimulated (M2c) macrophages by next-generation sequencing. Immunobiology, 2017. 222(7): p. 847-856. 63.Wang, D., E. Ozhegov, L. Wang, A. Zhou, et al., Sialylation and desialylation dynamics of monocytes upon differentiation and polarization to macrophages. Glycoconj J, 2016. 33(5): p. 725-33. 64.Buchner, M., S. Fuchs, G. Prinz, D. Pfeifer, et al., Spleen tyrosine kinase is overexpressed and represents a potential therapeutic target in chronic lymphocytic leukemia. Cancer Res, 2009. 69(13): p. 5424-32. 65.Oellerich, T., M.F. Oellerich, M. Engelke, S. Munch, et al., beta2 integrin-derived signals induce cell survival and proliferation of AML blasts by activating a Syk/STAT signaling axis. Blood, 2013. 121(19): p. 3889-99, S1-66. 66.Uckun, F.M., S. Qazi, H. Ma, L. Tuel-Ahlgren, et al., STAT3 is a substrate of SYK tyrosine kinase in B-lineage leukemia/lymphoma cells exposed to oxidative stress. Proc Natl Acad Sci U S A, 2010. 107(7): p. 2902-7. 67.Landskron, G., M. De la Fuente, P. Thuwajit, C. Thuwajit, et al., Chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res, 2014. 2014: p. 149185. 68.Lin, L., Y.S. Chen, Y.D. Yao, J.Q. Chen, et al., CCL18 from tumor-associated macrophages promotes angiogenesis in breast cancer. Oncotarget, 2015. 6(33): p. 34758-73. 69.Curiel, T.J., G. Coukos, L. Zou, X. Alvarez, et al., Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med, 2004. 10(9): p. 942-9. 70.Wiedemann, G.M., M.M. Knott, V.K. Vetter, M. Rapp, et al., Cancer cell-derived IL-1alpha induces CCL22 and the recruitment of regulatory T cells. Oncoimmunology, 2016. 5(9): p. e1175794. 71.Ohtaki, Y., G. Ishii, K. Nagai, S. Ashimine, et al., Stromal macrophage expressing CD204 is associated with tumor aggressiveness in lung adenocarcinoma. J Thorac Oncol, 2010. 5(10): p. 1507-15. 72.Shigeoka, M., N. Urakawa, T. Nakamura, M. Nishio, et al., Tumor associated macrophage expressing CD204 is associated with tumor aggressiveness of esophageal squamous cell carcinoma. Cancer Sci, 2013. 104(8): p. 1112-9. 73.Mellor, A.L. and D.H. Munn, IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol, 2004. 4(10): p. 762-74. 74.Ye, L.Y., W. Chen, X.L. Bai, X.Y. Xu, et al., Hypoxia-Induced Epithelial-to-Mesenchymal Transition in Hepatocellular Carcinoma Induces an Immunosuppressive Tumor Microenvironment to Promote Metastasis. Cancer Res, 2016. 76(4): p. 818-30.
|