|
[1] Akita, R., Yoshihara, A., Matsubara, T., Uehara, K. (2016). ”Deep Learning for Stock Predic- tion Using Numerical and Textual Information”, IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS), 1-6. [2] Athiwaratkun, B., and Stokes, J.W. (2017). ”Malware Classification with LSTM and GRU Lan- guage Models and a Character-Level CNN”, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2482-2486. [3] Balassa,B.(1964)“. ThePurchasingPowerParityDoctrine:AReappraisal,”JournalofPolitical Economy 72 , 584-96. [4] Clark, P. B. and MacDonald, R. (1998). “Exchange Rates and Economic Fundamentals: A Methodological Comparison of Beers and Feers,”Equilibrium Exchange Rates, 285-322. Dor- drecht: Springer Netherlands. doi: 10.1007/978-94-011-4411-7_10 [5] Clark, P. B. and MacDonald, R. (2004). “Filtering the BEER: A Permanent and Transitory Decomposition,”Global Finance Journal 15 (1), 29-56. doi: 10.1016/j.gfj.2003.10.005 [6] Chen, S-S. and Chou,Y-H. (2010). ”Exchange Rates and Fundamentals: Evidence from Long- Horizon Regression Tests,” Oxford Bulletin of Economics and Statistic, 72, 1, 63-88. doi: 10.1111/j.1468-0084.2009.00571.x [7] Cho, K., Bahdanau ,D., Bougares, F., Schwenk, H. and Bengio, Y. (2014). ”Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation”. arXiv: 1406.1078 [cs.CL]. [8] Cheung, Y-W, Chinn, M. D., Pascual, A.D. and Zhang, Y. (2017). ”Exchange Rate Prediction Redux: New Models, New Data, New Currencies,” European Central Bank Working Paper, No 2018. doi: 10.2866/524144 [9] Diebold,F.X.andMariano,R.S.(1995).”ComparingPredictiveAccuracy”,JournalofBusiness & Economic Statistics, 20:1, 134-144. doi: 10.1198/073500102753410444 [10] Dornbusch, R.(1976). ”Expectations and Exchange Rate Dynamics,” Journal of Political Econ- omy, Vol. 84, No. 6, 1161-1176. [11] Fu, R., Zhang, Z. and Li, L. (2016) .”Using LSTM and GRU Neural Network Methods for Traffic Flow Prediction,” Proc. 4th Conf. Chin. Assoc. Autom. Acad. Annu. (YAC), 324-328. doi: 10.1109/YAC.2016.7804912 [12] Galeshchuk,S.andMukherjee,S.(2017).”DeepNetworksforPredictingDirectionofChangein Foreign Exchange Rates,” Intelligent Systems in Accounting Finance & Management,100-110. doi: 10.1002/isaf.1404 [13] Irie, K., Tüske, Z., Alkhouli, T., Schlüter, R. and Ney, H.(2016). ”LSTM, GRU, Highway and a Bit of Attention:An Empirical Overview for Language Modeling in Speech Recognition,” In- terspeech, San Francisco, CA, USA, 2016. doi: 10.21437/Interspeech.2016-491 [14] Kuan,C-M.andLiu,T.(1995).”ForecastingExchangeRatesUsingFeedforwardandRecurrent Neural Networks,” Journal of Applied Econometrics vol 10, 347-364. [15] Hochreiter, S. Bengio, Y. Frasconi, P. and Schmidhuber, J. (2001). ”Gradient flow in recurrent nets: the difficulty of learning long-term dependencies.” A Field Guide to Dynamical Recurrent Neural Networks. New York: IEEE Press. [16] Hochreiter, S. and Schmidhuber, J. (1997). ”Long Short-Term Memory,” Neural computation, 9(8),1735–1780. [17] Meese, R. and Rogoff, K. (1983). ”Empirical Exchange Rate Models of the Seventies: Do They Fit Out of Sample?” Journal of International Economics 14,3-24. (a) [18] Nelson, D. M. Q., Pereira, A. C. M. and R. A. de Oliviera. (2017). ”Stock Market’s Price Move- ment Prediction with LSTM Neural Networks”, International Joint Conference on Neural Net- works (IJCNN), pp. 1419-1426. doi: 10.1109/IJCNN.2017.7966019 [19] Rumelhart, D. E., Hinton, G. E. and Williams, R. J. (1986). ”Learning representations by back- propagating errors.” Nature 323 (6088): 533–536. doi:10.1038/323533a0 [20] Samuelson, P. A. (1964). “Theoretical Notes on Trade Problems,”Review of Economics and Statistics 46 , 145-154. [21] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R. (2014). ”Dropout: a simple way to prevent neural networks from overfitting.” Journal of Ma- chine Learning Research, 15:1929–1958. [22] Sun,S.,Wei,Y.andWang,S.(2018).”AdaBoost-LSTMEnsembleLearningforFinancialTime Series Forecasting,” Computational Science –ICCS 2018, 590-597. doi: 10.1007/978-3-319- 93713-7_55 [23] Sutskever, I., Vinyals, O. and Le, Q. V.(2014). ”Sequence to Sequence Learning with Neural Networks,” Advances in Neural Information Processing Systems 27. Curran Associates, Inc. 3104–3112. [24] Tenti, P.(1996). ”Forecasting Foreign Exchange Rates Using Recurrent Neural Networks,” Ap- plied Artificial Intelligence, 10:6, 567-582, doi: 10.1080/088395196118434 [25] Wang, Y., Hui, X. and Soofi, A.S. (2007). ”Estimating Renminbi (RMB) Equilibrium Exchange Rate,” Journal of Policy Modeling 29(3), 417-429. doi: 10.1016/j.jpolmod.2006.12.003 [26] West, K. D. (1996). ”Asymptotic Inference About Predictive Ability,” Econometrica, Vol. 64, No. 5, 1067-1084. [27] Zhang, B. (2018). ”Foreign Exchange Rates Forecasting with an EMD-LSTM Neural Networks Model,” Journal of Physics: Conf. Series 1053, 012005. doi: 10.1088/1742- 6596/1053/1/012005 [28] Zhang,Z.(2010).”UnderstandingtheBehavioralEquilibriumExchangeRateModelviaItsAp- plication to the Valuation of Chinese Renminbi”. doi: 10.2139/ssrn.2120419 [29] Zhuge, Q., Xu, L. and Zhang G. (2017). ”LSTM Neural Network with Emotional Analysis for Prediction of Stock Price,” Engineering Letters, 25:2, EL_25_2_09
|