跳到主要內容

臺灣博碩士論文加值系統

(44.222.82.133) 您好!臺灣時間:2024/09/08 17:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:游子賢
研究生(外文):Tzu-Hsien Yu
論文名稱:基於TSN 之即時感應資料路由策略
論文名稱(外文):Online Stream-Aware Routing in TSN Networks
指導教授:逄愛君逄愛君引用關係
指導教授(外文):Ai-Chun Pang
口試委員:林忠緯施淵耀余亞儒莊清智
口試委員(外文):Chung-Wei LinYuan-Yao ShihYa-Ju YuChing-Chih Chuang
口試日期:2019-06-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:資訊工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:22
中文關鍵詞:時敏感網路路由規劃元啟發式算法
DOI:10.6342/NTU201903742
相關次數:
  • 被引用被引用:0
  • 點閱點閱:524
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著工業4.0與即時敏感網路(TSN)日益普及,大量客制化製造(Mass customization production, MCP)需求逐漸受到重視,其產品製造須依前端客戶需求變化來動態調整後端的產線生產,以獲得廠商與消費者間利益最大化之目標。然而,此客製化模式使得工業網路面臨動態的網路配置需求,造成現有的靜態TSN網路路由機制將不適用於此應用情境。同時,本篇論文亦發現過去TSN路由機制僅考量部分資料流路由的最佳化,其僅能獲得一個區域性最佳解。為此,本篇論文擬提出一個基於蟻群優化法的動態路由演算法,其考量多種資料流的特性與演算法計算複雜度,以動態調整資料流的路徑並滿足所有資料流之需求。為驗證本篇論文所提出的演算法之效能表現,我們採用OMNet++/NeSTiNg網路模擬器並搭配真實網路參數來進行TSN網路模擬。實驗結果顯示,我們所提出之演算法能有效提升資料流的可排程率進而優化整體網路的最大承載量。
With Industrial 4.0 and Time Sensitive Network (TSN) being more andmore popular, the requirement of Mass Customization Production (MCP) isalsogrowing. Itsuggestsustoadjusttheproductionlinedynamicallyaccord-ing to the clients’ demands in order to maximize the benefit. However, MCPrequires the industrial network to be dynamic and allow online reconfigures,which makes current TSN static routing strategies unfeasible. Besides, wealso find that previous routing strategies only consider part of the streams,which makes them unable to find a global optimal solution. To overcome theaboveissue,weproposeanonlineroutingalgorithmbasedonAntColonyOp-timization (ACO). It considers cimputational complexity and multiple kindsof streams, adjusting the routing assignment to meet the application’s con-straints. We will use OMNet++/NeSTiNg to simulate the environment ofindustrialproduction. Theexperimentwillshowthatouralgorithm coulden-hance schedulability, making the system capable of handling more streams.
摘要 iii
Abstract v
1 Introduction 1
2 Related Works and Background 3
2.1 TT Scheduling Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 AVB Traffic Shaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 AVB Worst Case Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3 System Model and Problem Formulatioin 7
3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Problem Formulatioin . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4 Routing Algorithm 11
4.1 Search Space Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Cost Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2.1 Scheduling TT flows . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2.2 AVB Schedulability . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2.3 AVB Performance Estimate . . . . . . . . . . . . . . . . . . . . 13
4.2.4 Impact To Network . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Ant Colony Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5 Experimental Evaluation 17
6 Conclusion 19
Bibliography 21
[1]S. S. Craciunas, R. S. Oliver, M. Chmelík, and W. Steiner. Scheduling real-timecommunication in ieee 802.1 qbv time sensitive networks. InProceedings of the24th International Conference on Real-Time Networks and Systems, pages183–192.ACM, 2016.
[2]A. R. Curtis, W. Kim, and P. Yalagandula. Mahout: Low-overhead datacenter trafficmanagementusingend-host-basedelephantdetection. InInfocom,volume11,pages1629–1637, 2011.
[3]M. Dorigo and G. Di Caro. Ant colony optimization: a new meta-heuristic. InProceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No.99TH8406), volume 2, pages 1470–1477. IEEE, 1999.
[4]V. Gavriluţ and P. Pop. Scheduling in time sensitive networks (tsn) for mixed-criticality industrial applications. In2018 14th IEEE International Workshop onFactory Communication Systems (WFCS), pages 1–4. IEEE, 2018.
[5]S. M. Laursen, P. Pop, and W. Steiner. Routing optimization of avb streams in tsnnetworks.ACM Sigbed Review, 13(4):43–48, 2016.
[6]N. G. Nayak, F. Dürr, and K. Rothermel. Routing algorithms for ieee802. 1qbvnetworks.ACM SIGBED Review, 15(3):13–18, 2018.
[7]R.S.Oliver,S.S.Craciunas,andW.Steiner. Ieee802.1qbvgatecontrollistsynthesisusing array theory encoding. In2018 IEEE Real-Time and Embedded Technologyand Applications Symposium (RTAS), pages 13–24. IEEE, 2018.21
[8]D. Pannell. Avb latency math.802.1 AVB Face to Face, 2010.
[9]M. L. Raagaard, P. Pop, M. Gutiérrez, and W. Steiner. Runtime reconfiguration oftime-sensitive networking (tsn) schedules for fog computing. In2017 IEEE FogWorld Congress (FWC), pages 1–6. IEEE, 2017.
[10]E. Schweissguth, P. Danielis, D. Timmermann, H. Parzyjegla, and G. Mühl. Ilp-based joint routing and scheduling for time-triggered networks. InProceedings ofthe 25th International Conference on Real-Time Networks and Systems, pages 8–17.ACM, 2017.
[11]S. Singh. Routing algorithms for time sensitive networks. Master’s thesis, 2017.
[12]T. Stützle and H. H. Hoos. Max–min ant system.Future generation computer sys-tems, 16(8):889–914, 200
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top